

QUALITY PRODUCTS SINCE 1953

New Products

Custom Tool Steel Camshafts

Custom made to match any engine configuration.

Options Include

- Cam bearing journal diameters
- Nose configurations
- Linear spacing and widths of journals and lobes, cam barrel diameters
- Lobe angular placement for different lifter bank angle blocks
- Firing orders
- Gun drilling
- Distributor/oil pump drive gears hobbed on camshaft, fuel pump eccentrics
- Rear drive configurations
- Oil passages
- Micro polishing

Break-In Engine Oil 10W-40

Specially formulated 10W-40 <u>conventional engine oil copes</u> with the stresses created with flat-faced follower camshafts.

Protects Against Wear and Failure

- Flat Tappet and Roller Cams
- Lifters
- Valve Guides
- Pistons and Rings
- Crank Journals
- Rod Bearings

<image>

How to Use This Catalog

About the Catalog

This catalog is organized into three separate sections. First is the Cam & Valve Train Application pages which includes all of the necessary information needed to choose the right camshaft for your needs. Next is the Cam & Valve Train Buyer's Guide. The Buyer's Guide contains additional product applications and additional information not found on the regular applications pages.

Each product section is organized in alphabetical order, and in "Make, number of cylinders, year, engine" fashion. Cam & Valve Train Applications are organized in alphabetical order, by engine make. Cam profiles ("grinds") are listed beginning with the "mildest" duration (lowest numerical duration shown at .050" cam lobe lift) through the "wildest" duration figures.

Catalog Sections

Cam & Valve Train Applications: Pages 20–263 Valve Train Buyer's Guide: Pages 264–350

Choosing the Correct Cam

All Crane Cams are organized in typical "Make, number of cylinders, year, engine" fashion, and according to the type of lifter used... *Hydraulic, Hydraulic Roller, Mechanical* (Sometimes called "solid" or "flat tappet"), and *Mechanical Roller*. Cam profiles ("grinds") are listed beginning with the mildest duration through the most radical in each lifter type.

Each left page begins with the **Application** column. This column gives basic application information. In the next column is the **Cam Series** and **Grind Number**. Next is the **RPM Power Range**, and then the cam **Part Number**. "Cam Only" cams usually have a suffix (last) digit "1" in the part number. Cam & Lifter Kits usually have a "2" digit suffix. Application provides additional information about the camshaft. If the idle quality is other than stock, it is also noted in this column. **Cam specs data** such as **valve lift**, **duration** and **lobe separation** is shown at the far-right of each cam listing. To choose a street performance cam refer to "**Choosing The Right Cam**", and "**Getting Information**", found on pages 11 and 12–13. Note the part number of the cam you select.

Choose the Correct Valve Train Components

You can find these by reading right, across the page. For detailed info and applications on *Valve Train Components* see the *Buyers Guide* section, pages 264–350.

Product Emissions Codes

Product Emissions Codes For California Air Resources Board (CARB) Regulations

The product Emissions Code is designed to aid in determining the correct application of emissions related motor vehicle components. Please use our Master Catalog to be sure that purchases comply with all emission laws.

Product bearing this product identification code has been granted a California Air Resources Board (CARB) exemption ("EO" number), or is a direct or consolidated replacement part. It is 50-state legal, per the manufacturer's application guide. See pages 16 and 17 for a complete list of products that have been granted EO numbers.

The manufacturer of the product bearing this identification code represents that it has not been found, nor is it believed to be, unlawful for use under provisions of the Clean Air Act, per the manufacturer's application guidelines. This product is not legal for sale or use in the State of California (or in states which have adopted California emission standards) except on pre-emission-controlled vehicles/motor vehicle engines (pre-1966 model years).



Products bearing this product identification code are legal only for off-highway use (except CA or states that have standards), or pre-emissions controlled engines (pre-1966 domestic vehicles certified to CA standards, pre-1968 domestic vehicles certified to federal standards and all pre-1968 foreign vehicles), per the manufacturer's application guide.

Table of Contents

How to Use this Catalog	1
Crane Cams History	4–5
Cam and Valve Train Applications	6–263
Crane Camshaft Series	8-9
How the Cam and Valve Train Section is Organized	10
Basic Tips on Choosing the Right Cam	11
Getting Information	12–13
Advanced Tips to Choose the Proper Camshaft	14–15
C.A.R.B. E.O. Authorization Numbers	16–17
Custom Tool Steel Camshafts	18–19
Camshaft and Valve Train Applications	20–263
Chevrolet Small Block V8 Tech Tips and Notes	34–35
Chevrolet Big Block V8 Tech Tips and Notes	88-89
Chrysler Small Block V8 Tech Tips and Notes	132–133
Chrysler Big Block V8 Tech Tips and Notes	150–151
Ford Small Block V8 Tech Tips and Notes	176–177
Ford Big Block V8 Tech Tips and Notes	224–225
Oldsmobile and Pontiac V8 Tech Tips and Notes	250–251
Cam and Valve Train Buyers Guide	264–364
Camshaft Components	266–267
Distributor-Magneto Drive Gears	268–271
Fuel System Accessories	271
Lifters	272–284
Lubricants	285

Table of Contents

Crane Cams History

Crane Cams History

known as "Crane Engineering Company, repeatable camshafts. Inc.", and was founded on January 1st, 1953. In 1970 the original name, "Crane Engineering", was shortened to "Crane Cams, Incorporated", better defining the company's products and market of that era.

humble beginning, Crane Cams has evolved into a manufacturing and marketing company. Amazingly, it all began in an unused corner of the company owned by the founder's father's machine shop.

machinist, became interested in "souping- strips and oval tracks suddenly appeared, up" his flathead Ford V-8 hot rod. Like not only across Florida, but the nation, most others, he was strongly influenced and the tiny backroom cam company by the various "hot rodding" magazines, grew as well. ordering his first cam from a California cam company's ad. The founder's machinist's training and hot-rodder's ingenuity had already taught him that camshaft design and accuracy exacts a critical effect on engine power. He also knew he was easily capable of designing and manufacturing camshafts. What's

accurate and

> Although money was scarce, the young apprentice traded his way into a wellused cylindrical grinder. In rebuilding this old, used machine he quickly developed cam manufacturing and design

knowledge. His initial "home made" cams were accurately made and surprisingly more powerful than anything he'd previously purchased. Other local hot rodders soon found out, and began buying his camshafts. The reputation of the backroom Crane cam company spread quickly across Florida and further into the Southeast. In response, Crane Engineering Company was founded, which was an impressive name for a tiny From that very yet highly ambitious firm.

By the mid-1950's the flathead Ford and early overhead-valve Oldsmobile and Cadillac V-8's were replaced by the powerful, compact Chevrolet 265-283 V-8 engine family. It seemed that with the early small-block Chevys came a surge of The founder, a young apprentice growth for all forms of auto racing. Drag

In 1960, a Georgia Tech University engineering student and weekend drag racer, Pete Robinson, bought a Crane cam for his supercharged Buick powered 1940 Ford. After success on the street and at the drags, Robinson sold the '40 and bought a dragster chassis from the Dragmaster Chassis company, in California. Pete more, he knew he could design more carefully assembled a stroker crankshaft,

supercharged,

small-block Chevy, and installed a Crane roller cam. Robinson's new car ran well on Atlanta area tracks and at a few NHRA Division 2 events. On a whim, he entered the "Southwind" dragster into the field at the 1961 NHRA Nationals, an event that had previously been dominated by California based cars and drivers.

A virtual unknown, Robinson's little singleengine dragster shocked the race field and the nation, winning Top Eliminator and smashing records in a major upset. Several other Crane-cammed racers were also successful, but it was "Sneaky Pete" Robinson and Crane Cams that suddenly captured the racing world's imagination!

Soon, word of the amazing power produced by Crane Cams reached circle track racers. This reputation attracted a number of racers and engine builders including: A.J. Foyt, Red Farmer, The Wood Brothers, Bud Moore, Bill Elliott, Junior Johnson, Dale Earnhardt, Richard Petty,

Crane Cams History

Crane Cams History (continued)

Darrell Waltrip, Bobby Allison, Donnie Allison, Cale Yarborough, and David Pearson, all using Crane Cams and winning heat and feature circle track races across the South.

father had once operated his own related products and services. purchased property and

produced, custom-ported, all-out racing Florida, and relocated to Daytona Beach. cylinder heads, heat treated chromemoly In February, 1994, Crane Cams acquired valve spring retainers, machined steel

the huge success that Crane cammed Corp. in early 1999. racers were enjoying firmly established Crane Cams now has an expanded

also enabled Crane's design staff to highest standards since "day one."

explore new possibilities in cam and valve New facilities have been set up in Daytona train function. Each day brought new Beach, with a large number of veteran innovations and a tremendous amount of Crane Cams employees continuing in data that could all be applied to the their technical and manufacturing design and manufacture of new, even capacities. The engineering staff utilizes more powerful camshafts!

motorsports programs, Crane Cams was developing the best possible components tapped as a provider of cam design for each application. knowledge as well as becoming a trusted Customers can be secure in the knowledge supplier to the automotive industry. Ford, that the company will strive to lead the Crane Cams prospered greatly during the American Motors, Chrysler, and Holden all industry in quality and performance while "car culture" years of the 1960's, and soon selected Crane Cams as their choice for a improving product availability to levels outgrew the building where the founder's variety of racing and street performance that racers require.

began steel cam cores from Universal Camshaft new products being introduced, an construction on a brand new building. Company, of Muskegon, Michigan. When impressive manufacturing capability, and The firm moved into its brand new that company became available in 1975, an experienced tech staff ready to provide facilities in January of 1966, allowing an Crane acquired it, thereby providing itself racers with race-winning valve train expansion of its product line and services. with a stable, long-term source for steel components, Crane is prepared to meet Soon Crane introduced its hallmark, gold- cam cores. That operation was moved in yourperformance needs and expectations. anodized, full-roller aluminum rockers, 1981 to a newly constructed manufacturing was granted a U.S. Patent on a brand new center in Daytona Beach. In 1985 the entire roller lifter design, began selling mass- company left its founding city, Hallandale,

pushrods, aluminum, steel and titanium Camshaft Machine Company and its plants in Michigan and Indiana. To better valve locks, high-rev kits, and stud girdles. reflect its new market mix, the company's Crane's rapidly expanding product line na-mewaschanged to Crane Technologies was chocked full of unique and innovative Group, Inc. Seeking to return to its core items, all engineered to boost horsepower cam and valve train business and its roots and reliability in race engines as well as in the performance market, Crane sold street performance applications. That plus Camshaft Machine to Federal-Mogul

Crane as the industry's No. 1 cam company. amount of state-of-the art manufacturing It was also during this time Crane Cams firepower and R&D at its beck and call. became a pioneer in the science of This includes a substantial number of the computerized cam lobe design. Previously, latest CNC machining centers, the ability cam profile designs required lengthy, to produce fully digitized camshafts using tedious mathematical exercises with a Landis CNC equipment, as well as grinding slide rule or mechanical calculator, cams via traditional methods using Computer technology slashed this time production masters, dyno cells, and and substantially increased lobe accuracy. Spintrons. Quality control is aided by For Crane Cams, the result was an state-of-the-art testing equipment such explosion of knowledge gathered, Zeiss optical and Adcole computerized expanded and utilized. Computerization devices, along with a dedicated staff that of the science of cam lobe profile design has helped to maintain the industry's

the latest in design and analytical software As Detroit accelerated and expanded its to continue the company tradition of

With the industry's largest camshaft machine shop. In 1965, Crane Engineering For many years Crane had purchased its database, which exceeds 80,000 profiles,

Camshaft Table of Contents

Cam and Valve Train Applications	6–263
Crane Camshaft Series	8–9
How the Cam and Valve Train Section is Organized	10
Basic Tips on Choosing the Right Cam	11
Getting Information	12–13
Advanced Tips to Choose the Proper Camshaft	14–15
C.A.R.B. E.O. Authorization Numbers	16–17
Custom Tool Steel Camshafts	18–19
Camshaft and Valve Train Applications	20–263
American Motors/Jeep 6 Cylinder 64-05, 199-258 cu.in.	20–21
American Motors/Jeep V-8 66-91, 290-401 cu.in.	22–25
Buick V-8 67-76, 400-455 cu.in.	26–27
Cadillac V-8 68-81, 368-500 cu.in.	26–27
Chevrolet 6 Cylinder 62-84, 194-250 cu.in.	28–29
Chevrolet 60° V-6 80-94, 173 cu.in. 3.1-3.4L	30–31
Chevrolet 90° V-6 92-02, 4.3L	32–33
Chevrolet Small Block V8 Tech Tips and Notes	34–35
Chevrolet V-8 57-87, 262-400 cu.in.	36–67
Chevrolet V-8 87-92, 305-350 cu.in.	68–69
Chevrolet V-8 87-99, 305 (5.0L) - 350 (5.7L) cu.in.	70–75
Chevrolet V-8 92-96, 5.0-5.7L LT1	74–75
Chevrolet V-8 97-15, 4.8-6.2L LS1, LS2, LS3/L92, LS6	76–85
Chevrolet V-8 06-15, 7.0L LS7	86-87
Chevrolet V-8 07-15, 6.2L LS3/L92/Vortec 6.2 with three bolt timing gear	86–87
Chevrolet Big Block V8 Tech Tips and Notes	88–89
Chevrolet V-8 58-65, 348-409-427 (Z-11) cu.in.	90–93
Chevrolet V-8 67-95, 396-454 cu.in.	94–119
Chevrolet V-8 96-00, 454 (7.4L)-502 (8.2L) cu.in. Gen VI	120–125
Chevrolet V-8 01-08, 8.1L L18	126–127
Chrysler/Dodge Neon, 4 cyl. 95-05, 2.0L SOHC 4V	128–129
Chrysler/Dodge Neon, 4 cyl. 95-10, 2.0-2.4L DOHC 4V	130–131
Chrysler Small Block V8 Tech Tips and Notes	132–133
Chrysler Hemi V-8 51-56 301-331-354 cu.in. and 57-58 392 cu.in.	134–135

Camshaft Table of Contents

Chrysler-Dodge-Plymouth "LA" V-8 64-87, 273-360 cu.in.	136–145
Chrysler-Dodge-Plymouth "LA" V-8 86-91, 318 (5.2L)-360 (5.9L) cu.in.	146–147
Chrysler-Dodge-Plymouth Magnum V-8 92-02, 5.2-5.9L	146–147
Chrysler-Dodge V-8 03-15, 5.7-6.1L Hemi (non-VCT)	148–149
Chrysler Big Block V8 Tech Tips and Notes	150–151
Chrysler-Dodge-Plymouth "B" V-8 58-78, 350-440 cu.in. Single Bolt—see pages 151–161	
Chrysler-Dodge-Plymouth "B" V-8 70-78, 383-440 cu.in. Three Bolt	152–161
Chrysler-Dodge-Plymouth V-8 "Hemi 426" 66-71	162–167
Ford 4 Cylinder 74-87, 2.3L SOHC and 83-87 2.0L SOHC	168–169
Ford 4 Cylinder 88-98, 2.3L SOHC	170–171
Ford Zetec 4 Cylinder 95-02, 2.0L DOHC 4V Zetec	172–173
Ford 6 Cylinder 65-96, 240-300 cu.in.	174–175
Ford Small Block V8 Tech Tips and Notes	176–177
Ford-Mercury V-8 62-87, 221-302 cu.in.	178–185
Ford-Mercury V-8 85-95, 302 (5.0L) cu.in. H.O.	186–193
Ford-Mercury V-8 69-93, 351W & 82-84 302 (5.0L) cu.in. H.O.	194–211
Ford-Mercury "Cleveland" V-8 70-82, Boss 351-351C-351M-400 cu.in.	212–219
Ford-Mercury V-8 91-15, 4.6-5.4L SOHC 2V	220–221
Ford-Mercury V-8 93-15, 4.6-5.4L DOHC 4V	222–223
Ford-Mercury V-8 05-15, 4.6-5.4L SOHC 3V	222–223
Ford Big Block V8 Tech Tips and Notes	224–225
Ford-Mercury V-8 63-76, 352-428 cu.in. "FE"	226–231
Ford-Mercury V-8 68-97, 370-460 (7.5L) cu.in.	232–243
MG TC-TD-TF 4 cyl. 40-55, 1250-1466cc	244–245
MGA-MGB 4 cyl. 57-80, 1598-1798cc	244–245
MG Midget-Mini-Sprite 4 cyl. 57-84, BMCA 848-1275cc	244–245
Mitsubishi 4G63/4G63-T 4 cyl. Eclipse-Talon-Gallant 1989-1999, 2.0L DOHC 4V	246–247
Mitsubishi 4G63BT EVO 8 4 cyl. 2003-2005, 2.0L DOHC 4V	248–249
Oldsmobile and Pontiac V8 Tech Tips and Notes	250–251
Oldsmobile V-8 67-84, 260-455 cu.in. 39° Bank Angle	252–255
Pontiac V-8 55-81, 265-455 cu.in.	256–261
Toyota 20R-22R-22RE 4 cyl. 74-89, SOHC 2V	262–263

Crane Camshaft Series

Crane Camshaft Series

Blueprint™ Cams for Musclecars

Crane Blueprint[™] musclecar cams are duplicates of popular original equipment musclecar cams from the 60's and 70's. These hydraulic and mechanical cams are computer smoothed for added performance and increased valve train life. They are an excellent choice for a true musclecar restoration where engine authenticity, correct idle quality and detail are critical to the restoration. This catalog lists our most popular Blueprint grinds, but many more are available on request. We have an extensive library of profiles, enabling us to match the correct year and horsepower, or factory part number, camshaft for your specific requirements.

We also provide regrinding services for the restoration of older and antique camshafts, when outright cam cores are no longer available.

Energizer™ Hydraulic

Energizer street performance cams are produce sizeable torque, HP, and RPM increases at an affordable price. Energizer cams use the same computer techniques and software that developed the world's fastest and quickest cams. These single-pattern cams have tighter lobe separations, for added torque, mid-range power, throttle response and that popular lumpy idle for non-computer controlled V-8 engines. They are available as camshaft and lifter kits, or as a camshaft only.

Emissions Legal-Computer Compatible

Crane emissions legal camshafts produce amazing increases in torque, horsepower, and throttle response while extending the rpm powerband of computer controlled performance passenger cars, 2x4 and 4x4 light trucks. Emissions legal camshafts also permit full function of stock engine control computers. Emissions legal camshafts also work well with performance "chips." Emissions legal camshaft profiles are available in both standard "flat-faced" hydraulic lifter cast-billet designs as well as Hydraulic Roller designs. Crane Emissions legal camshafts are available for GM, Ford, and Dodge Magnum[®] V-8 engines as well as selected GM V-6 engines.

Hydraulic, Hydraulic Roller, Mechanical Non-Roller and Mechanical Roller Cams

Most cams feature a dual-pattern lobe design, for optimum intake/exhaust flow, maximum low-end, mid-range and upper rpm power. Hydraulic cams begin at 248° advertised duration (192°/204°@ .050″), .400/.427″ valve lift, up through 312°/319° advertised duration (262°/270° @ .050″) and .636″ valve lift. Many are designed to maximize the effects of power enhancing systems such as nitrous-oxide, superchargers, and turbochargers.

Whenever practical, the lobes are optimized to take full advantage of the maximum flat-faced lifter diameter of each engine family (such as .842" for most GM, .875" for Ford, and .904" for AMC/ Jeep and Chrysler). This produces the best powerband without sacrificing durability, idle quality, and responsiveness. These include Crane Cams' Hydraulic Roller and Street-Roller mechanical roller cams.

Crane Camshaft Series

Crane Camshaft Series (continued)

Hydraulic Roller Cams

Crane Hydraulic Roller cams offer the sizeable power and torque increases that are available only with roller cams, plus the low-maintenance convenience of a hydraulic cam. Hydraulic Roller cams are available for retrofit (converting earlier non-hydraulic roller cam engines), and to increase power output of engines already equipped with hydraulic roller cams. Crane Hydraulic Roller cams are produced using our own industry standard, steel billet cam cores, carburized or inductionhardened for strength and wear resistance. Hydraulic Roller cams are available as catalogued plus custom grind lobe availability.

Street-Roller Mechanical Roller Cams

Street-Roller cams are available in a variety of profiles, ground on our famous steel billet cam cores and fitted with iron distributor drive gears (where applicable). Street-Roller cam lobe profiles feature exclusive lobe ramp designs that minimize valve train noise and increase valve train durability for street driving engine applications. Street-Roller profiles are also available for nitrous-oxide systems, superchargers, and turbochargers, offering even greater horsepower and torque output for these power enhancing systems.

Saturday Night Special™ Cams for Circle Track and Drag Racing

Crane Saturday Night Specials are hydraulic and mechanical lifter cam, lifter, and valve spring kits, primarily developed for rules-limited oval track racing and ET-Bracket drag racing applications. For oval track racing they produce maximum off-thecorner torque, with strong upper-rpm horsepower to pull the straightaways. For drag racing they produce maximum torque, for starting line launch and the upper rpm power to pull through the gears. Saturday Night Special cams are available for Small-block and Big-block Chevy; 289-302-351W Ford; and 429-460 Ford V-8's. (For circle track racing we also offer many other profiles for specific track cam rules not covered by Saturday Night Specials. Contact Crane Technical Services for details.

Crane Racing Cams for All-Out Competition

Crane pioneered the use of computers for lobe profile design and dual-pattern cam profiles. With over 80,000 grind numbers in our cam library, we've designed and produced cams for drag racing, circle track, road racing, boat racing, 4x4 off-road, mud racing, truck and tractor pulling, even airboats and swamp buggies. Some of our most popular racing profiles are listed in this catalog. We also custom design and grind cams for specific race engine needs.

Crane Cams & Valve Train Products Section

How the Cam and Valve Train Section is Organized

Crane Cam & Valve Train Applications catalog pages are organized by **"Make, Number of Cylinders, Year, Engine"** fashion .

After locating your desired **"Engine"** comes the **type of lifter** the camshaft is designed for. These begin with Standard flat-face Hydraulic Lifters, then Hydraulic Rollers, then Mechanical flat-face Lifters (also called Solids or Flat Tappets), and Mechanical Roller Lifters.

Important information on each left-hand page is arranged in columns.

Application

This column describes the basic usage that each cam is intended for, along with any pertinent advised component items to produce the best results.

Camshaft Series and Grind Number

Identifies the cam series and the cam grind number. (Grind Number is different from the cam Part Number. To order, always use the cam Part Number.)

RPM Power Range

States the RPM range at which the cam produces **maximum torque and horsepower** (The engine will typically rev 500-1,000 RPM above the stated RPM Power Range but not at peak power levels)

Camshaft Part Number/Emissions Code

Identifies the actual Part Number for this camshaft. Cams sold as Cam Only (without lifters) usually end with the numeral 1. Cam & Lifter Kits include matching Crane lifters. Their Part Numbers usually end in the numeral 2. The "Emissions Code" states the California (CARB) emissions designation for that particular cam.

Lifters

These are the lifters recommended for best durability and performance for each camshaft. Upgrade options are also conveniently listed.

Complete Cam Specifications

Under this bar you'll find all of the cam's critical specifications. These include: Degrees Duration @ .050"; Advertised Degrees Duration; Degrees Lobe Separation; Open/Close @ .050 Cam Lift; Lash Hot; and Gross Lift.

Cam Facts and Notes

More helpful information on the correct application of this cam as related to the specific engine. Also provides helpful hints to insure proper camshaft and component application and installation.

Right Page: Matched Valve Train Products

Provides part numbers for related valve train components and refers to the catalog page of the **Buyer's Guide** catalog section (pages 264–350) where more detailed information on the recommended valve train components and the wide range of optional Valve Train Components we offer are located.

Basic Tips on Choosing the Right Cam

Cam selection accuracy begins with knowing how you intend to use the vehicle, engine and drivetrain modifications already made or planned, and the lifter type (Hydraulic, Hyd. Roller, Mechanical ("Solid" or "Flat Tappet"), or Mech. Roller you wish to use. You'll find additional information to help you choose the correct cam on **Pages 12–15**. We urge you to take a little extra time now in making your selection. This will insure that you make the right choice, the first time! To choose the correct cam and valve train for your engine, vehicle and application follow the steps below:

What to Look for First

First, find your **engine make**, **number of cylinders**, **year**, **and original engine displacement** as listed in cubic inches or metric reference. (Example: Chevrolet, 1986, 350 cu. in.)

Decide Which Lifter Style

Decide on the **lifter type** you wish to use in your engine. For convenience and ease of maintenance we recommend a hydraulic cam and lifters, either "flat-face" or hydraulic roller for most street performance and daily-driving applications.

NOTE: Passenger car engines up through 1987 model year generally used conventional hydraulic or mechanical (solid) lifters and cams. In the GM family 1988-up pass. car and 1996-up truck engines were factory equipped with hydraulic roller cams and lifters. (Light trucks (pick-up's, etc.) generally used flat-face lifters and cams up through 1995 model year.) We offer many different hydraulic roller cams, our exclusive Crane Cams hydraulic roller lifters (drop-in installation), correct-length pushrods and other valve train components for converting a flat-face lifter engine to the tremendous power benefits found with a Crane hydraulic roller cam. Look under **Hydraulic Roller Retrofit Cams** for specific engine details.

Determine Your Vehicle's 60 MPH Cruise RPM

Determine your **Cruising RPM At 60 MPH** by reading Page 12 (Getting Information). Match your **Cruise RPM At 60 MPH** with the information found under **Application**) See the gear ratio/tire diameter chart on Page 13 to help you determine this RPM. Note: This is critical in making the right choice for a vehicle that is street driven. Be sure your information is accurate!

Choose Your Cam

Use the **Cruise RPM At 60 MPH** numbers and match this RPM range with the **RPM Power Range** numbers shown on the left-hand page. Be sure to consult the **Application** info before you make your cam choice. Pay particular attention to the recommended engine compression ratio. Also, engines using aluminum cylinder heads dissipate heat more rapidly and can therefore use approximately +.75 (threequarters "point") compression ratio. (Example: Iron heads, 9.0:1 c/r; Alum. heads, 9.75:1 c/r)

Remember: If you are in doubt, always choose **the next milder** cam profile. Be sure to specify the Part Number when ordering!

Choose Your Valve Train Components

The Valve Train Buyer's Guide (Pages 264–350) contains additional product applications and additional information not found on the regular applications pages. Be sure to consult these pages for optional products that will add even more horsepower, torque, rpm, response and reliability to your cam selection.

Getting Information

How To Determine Your Cruising RPM at 60 MPH

- 1. Hold a constant 60 MPH and check the tachometer, if so equipped. You can also hook up a test-type tachometer, providing it has a sufficient RPM range.
- 2. Using the reference chart, locate your tire diameter (height) and rear end ratio, then read the RPM indicated.

How To Determine Your True Rear Axle Ratio

- 1. The actual ratio, or a reference code, will normally be found on either a tag attached to a bolt, or will be actually stamped into the axle housing. Your car dealer can tell you how your vehicle is marked.
- 2. Raise both rear wheels of the vehicle, with the transmission in neutral. Make sure that you support the vehicle with safety stands and block the front tires. Make a reference mark on the driveshaft and on the housing. Next, without rotating them, make a mark on both of the tires and the fenderwells. With a friend watching the driveshaft carefully, rotate both tires at the same time exactly one revolution. The number of turns the driveshaft makes indicates the ratio, i.e.,: $3\frac{1}{2}$ turns = 3.5 to 1; $2\frac{3}{4}$ turns = 2.75 to 1; etc. You an also use the above procedure the next time you have your vehicle lubed at the service station.
- 3. Many vehicles are equipped with overdrive-type transmissions. If this occurs, you must multiply your rear end ratio by the final transmission ratio. EXAMPLE: You have a 3.23 rear end ratio and a .85 high gear in the transmission: 3.23 x .85 = 2.75 final drive ratio.

How To Determine Your Engine's Compression Ratio

- 1. If your engine has stock-type pistons, and the original cylinder heads, you should be able to locate the compression ratio by:
 - A. Checking your owner's manual.
 - B. Checking a repair or service manual such as "Chiltons" or "Motors".
 - C. Call your car dealer's parts department with the engine description or serial number.
- 2. If your engine has non-stock pistons, refer to the piston manufacturer's catalog.

NOTE: If the cylinder heads are not stock, check to see if they have the same size combustion chambers. If not, refigure the compression ratio. Milling the block or heads also affects the compression ratio. Contact a Crane Performance Consultant for additional information.

Getting Information (continued)

RPM Shown at 60 MPH (Cruise RPM)

			RPM FC	DRMULA:		<u>MPH x A</u> Tire Dia		<u>x 336</u>				
	Tire Diar	neter										
Rear End Ratio	24″	26″	28″	30″	32″	34″	36″	38″	40″	42″	44″	46″
2.18	1831	1690	1570	1465	1373	1293	1221	1157	1099	1046	999	955
2.50	2100	1938	1800	1680	1575	1482	1400	1326	1290	1200	1145	1096
2.74	2301	2124	1973	1841	1726	1625	1534	1454	1381	1315	1255	1201
3.08	2587	2388	2218	2070	1940	1826	1725	1634	1552	1478	1411	1350
3.23	2713	2504	2326	2170	2035	1915	1809	1714	1628	1550	1480	1416
3.50	2940	2714	2520	2352	2205	2075	1960	1857	1764	1680	1604	1534
3.73	3133	2892	2686	2507	2349	2212	2089	1979	1880	1790	1709	1635
3.90	3276	3024	2808	2621	2457	2312	2184	2069	1966	1872	1787	1709
4.10	3444	3179	2952	2755	2583	2431	2296	2175	2066	1968	1879	1797
4.56	3830	3536	3283	3064	2873	2704	2554	2419	2298	2189	2089	1998
4.88	4099	3784	3513	3279	3074	2894	2733	2589	2460	2342	2236	2139

Finding Overall Tire Diameter, RPM, MPH, or Rear Axle Ratio

OVERALL TIRE DIAMETER: <u>MPH x Axle Ratio x 336</u> RPM

RPM:

MPH x Axle Ratio x 336 Tire Diameter

<u>RPM x Overall Diameter</u> Axle Ratio x 336

MPH:

Axle Ratio:

<u>RPM x Tire Diameter</u> MPH x 336

Crane Cams & Valve Train Products Section

Advanced Tips to Choose the Proper Camshaft

Although pages 12 and 13 of this catalog outline the very basic steps in selecting the best camshaft for a particular application, we can certainly add to the criteria needed for the best possible results. For general street (or marine) applications, the following will help provide an enhanced guideline.

Exactly What Engine Is It?

This sounds really obvious, but a lot of folks aren't really knowledgeable on what they're working with. For example, "I've got a small-block Chevrolet." It could be a 1957-87 power plant that was originally equipped with a flat faced lifter camshaft, or it could be a 1987-96 style engine that came with a hydraulic roller camshaft. Each basic engine requires a different style camshaft. Similar choices can also occurs with the evolution of big block Chevrolets, small block Fords, small block Mopars, and many others. In the 1970's General Motors exchanged the Buick, Oldsmobile, and Pontiac bodies and engines, with some folks not understanding that the Buick 455, Oldsmobile 455, and Pontiac 455 V-8s are all totally different engines. Any information that can be obtained to verify which engine that the customer has, will help make the correct choice the first time.

What Cubic Inch Displacement Is the Engine?

A smaller engine will usually require a shorter duration camshaft than a larger engine, given all other factors being equal.

What Compression Ratio Is the Engine?

An answer of "stock" is not really sufficient, as compression ratios of most engines changed during their production runs, due to differing horsepower ratings, emissions concerns, the vehicle that it was originally installed in, etc. A basic generalization that higher compression ratio engines can use camshafts with larger (more radical) duration figures will normally apply.

What Cylinder Heads Do You Have?

Iron or aluminum, stock or ported, standard combustion chamber size or milled? These factors are also critical. Aluminum cylinder heads dissipate heat more readily, enabling them to use slightly milder camshafts for best torque characteristics. A good approximation is that going from iron heads to aluminum heads is like lowering the compression ratio 0.75 (i.e.: a 9.25:1 engine with iron heads will have similar characteristics to a 10.00:1 engine with aluminum heads). Installing heads with smaller combustion chambers will raise the compression ratio, so don't forget to take that into account. High compression combined with too mild a camshaft will cause problems with detonation, and reducing the ignition timing to compensate for this will usually hurt the torque and horsepower everywhere throughout the power band.

What Intake Manifold Is On It?

In carbureted applications, a dual plane manifold will favor low-end and mid-range power, with a single plane unit being good for upper RPM usage. If you've got a single plane manifold on a relatively mild street machine, you may want a milder cam to pick up the bottom-end torque.

Do You Have a Supercharger/ Turbocharger/Nitrous Oxide?

All of these enhancements will greatly influence the camshaft recommendation. Supercharged combinations tend to have slightly lower compression ratios, with slightly milder camshafts on wide lobe separation. Turbocharged engines might have slightly lower compression ratios (or not, if an intercooler is used), with a mild cam used to minimize overlap area. Heavy NOX applications might need a longer exhaust duration with a wide lobe separation in order to relieve the greater exhaust heat that's generated.

Advanced Tips to Choose the Proper Camshaft (continued)

What Carburetor/Throttle Body Are You Using?

The larger units favor upper-end performance, so a proper match here is essential to put the power into your intended RPM operating range.

What's Your Cranking Compression?

With the advent and widespread usage of the cylinder leakdown checkers, most folks have forgotten about the compression gauge. This is still a very valuable tool to verify your cylinder pressure, as it will illustrate the effects of a camshaft (or compression ratio) change, which a leakdown tester won't. Higher pressures will give an indication of how much ignition timing that you can run, what octane gasoline that's required to prevent detonation, and help to provide a tuning baseline for varying atmospheric conditions.

Headers or Stock Exhaust Manifolds?

A good exhaust system can be really beneficial in most any application. Going to really large diameter systems in a mild application can hurt the torque curve, so don't get carried away there. In V-8 situations, a crossover pipe is advised for dual exhaust systems.

What Transmission Do You Have?

Manual vs. automatic, how many gears, additional stall speed in the converter? This will help determine how broad the power curve needs to be, with milder cams traditionally having better torque and drivability over a wider RPM range.

What's the Rear End Ratio and Rear Tire Diameter?

This will provide the basic operating and cruising RPM of the vehicle, one of the most critical portions of the camshaft selection process. Each of our grinds lists a basic operating band to help in the selection.

How Much Does the Vehicle Weigh?

Heavier cars may need milder camshafts with wider torque bands for best results.

At What Altitude Will This Engine Normally Be Used?

An engine at sea level will normally use a more radical camshaft than one at 5,000 feet (we're back to the compression gauge/cylinder pressure factor again).

What Idle Quality and Drivability Factor Are You Looking For?

This is the one area where the customer's individual desires can influence overall choices. If a radical idle is wanted with no concern for vacuum readings, go with the higher duration/narrower lobe separation options. If a smooth idle with lots of low-end torque is the choice, use the shorter duration/wider lobe separation cam.

All of this adds up to formulating a workable combination to produce the best overall performance that's needed to get the job done. We see combinations every day that are put together with little thought to the overall picture. Too much compression ratio, in too heavy a car, and a single plane intake manifold, with low numerical rear end ratios: no camshaft will be able to make up for a drastic mismatch of components. If possible, try to help the customer obtain the correct components from the beginning of his project. This will produce the best results, with time and money being saved by not having to repurchase items that were poorly chosen the first time.

Crane Cams Products with C.A.R.B. E.O. Authorization Numbers

Crane Cams has been certifying many of its products to be 50-state legal, as approved by the California Air Resources Board. These Exemption Orders are granted after passing a thorough testing process that's required for these applications. Some of these products are year, model, cubic inch, and horsepower specific, so be aware that not all exemptions are universal. The following products are approved, and include a special mandated sticker that must be placed in the vehicle in a designated location. As the C.A.R.B. regulations are now accepted in other states, having the appropriate sticker is necessary to pass inspection. Additional application information can be found on the product's page number that's referenced.

Part Number	Description	C.A.R.B. E.O. Number	Page Number
10003	260 H10 Camshaft - Ch. 262-400 V8 57-87	D-225-21	36
100032	260 H10 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-21	36
10004	266 H10 Camshaft - Ch. 262-400 V8 57-87	D-225-21	36
100042	266 H10 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-21	36
10005	272 H10 Camshaft - Ch. 262-400 V8 57-87	D-225-21	38
100052	272 H10 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-21	38
104201	2010 Camshaft - Ch. 305 (5.0L)-350 (5.7L) V8 87-92	D-225-22	68
104204	2011 Camshaft - Ch. 305 (5.0L)-350 (5.7L) V8 87-92	D-225-22	68
104211	2020 Camshaft - Ch. 305 (5.0L)-350 (5.7L) V8 87-92	D-225-22	68
104221	2030 Camshaft - Ch. 305 (5.0L)-350 (5.7L) V8 87-92	D-225-22	68
104224	2032 Camshaft - Ch. 305 (5.0L)-350 (5.7L) V8 87-92	D-225-22	68
104225	2031 Camshaft - Ch. 305 (5.0L)-350 (5.7L) V8 87-92	D-225-22	68
104241	2050 Camshaft - Ch. 5.0-5.7L V8 LT1 92-96	D-225-55	74
10758-1	Gold Race Rocker Arms - Ch. 305-350 V8 1.6 3/8" self-align. pkg/1	D-225-50	297
10758-16	Gold Race Rocker Arms - Ch. 305-350 V8 1.6 3/8" self-align. set/16	D-225-50	297
10759-1	Gold Race Rocker Arms - Ch. 305-350 V8 1.6 3/8" pkg/1	D-225-50	297
10759-16	Gold Race Rocker Arms - Ch. 305-350 V8 1.6 3/8" set/16	D-225-50	297
113901	H-260-2 Camshaft - Ch. 262-400 V8 57-87	D-225-18	36
113902	H-260-2 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-18	36
113931	H-266-2 Camshaft - Ch. 262-400 V8 57-87	D-225-18	38
113932	H-266-2 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-18	38
113941	H-272-2 Camshaft - Ch. 262-400 V8 57-87	D-225-18	38
113942	H-272-2 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-18	38
113971	H-248-2 Camshaft - Ch. 262-400 V8 57-87	D-225-18	36
113972	H-248-2 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-18	36
114102	2010 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-51	36
114112	2020 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-51	36
114122	2030 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-51	36
114132	2040 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-25	36
114142	2050 Camshaft and Lifter Kit - Ch. 262-400 V8 57-87	D-225-25	38
11746-1	Energizer Rocker Arms Ch. 262-400 V8 1.6 3/8" pkg/1	D-225-50	295
11746-16	Energizer Rocker Arms Ch. 262-400 V8 1.6 3/8" set/16	D-225-50	295
11747-1	Energizer Rocker Arms Ch. 262-400 V8 1.6 7/16" pkg/1	D-225-50	295
11747-16	Energizer Rocker Arms Ch. 262-400 V8 1.6 7/16" set/16	D-225-50	295
11748-16	Gold Race Rocker Arms - Ch. 262-400 V8 8-1.5/8-1.6 3/8" set/16	D-225-50	297
11752-1	Gold Race Rocker Arms - Ch. 262-400 V8 1.5 7/16" pkg/1	D-225-17	297
11752-16	Gold Race Rocker Arms - Ch. 262-400 V8 1.5 7/16" set/16	D-225-17	297

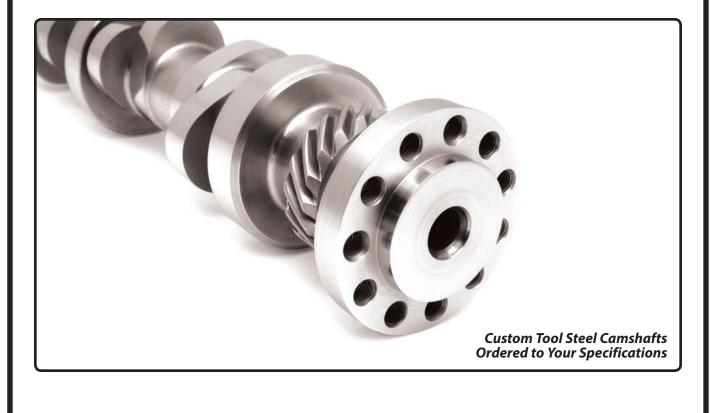
C.A.R.B. E.O. Authorization Numbers

Crane Cams Products with C.A.R.B. E.O. Authorization Numbers (continued)

Part Number	Description	C.A.R.B. E.O. Number	Page Number	
11755-1	Gold Race Rocker Arms - Ch. 262-400 V8 1.6 7/16" pkg/1	D-225-50	297	
11755-16	Gold Race Rocker Arms - Ch. 262-400 V8 1.6 7/16" set/16	D-225-50	297	
11759-1	Gold Race Rocker Arms - Ch. 262-400 V8 1.6 3/8" pkg/1	D-225-50	297, 298	
11759-16	Gold Race Rocker Arms - Ch. 262-400 V8 1.6 3/8" set/16	D-225-50	297, 298	
11802-1	Rocker Arms - Ch. 262-400 V8 Stamped 1.6 x-long pkg/1	D-225-50	292	
11802C-1	Rocker Arms - Ch. 262-400 V8 Nitro-Carb Stamped 1.6 x-long pkg/1	D-225-50	293	
11802C-16	Rocker Arms - Ch. 262-400 V8 Nitro-Carb Stamped 1.6 x-long set/16	D-225-50	293	
11803-16	Rocker Arms - Ch. 262-400 V8 Stamped 8-1.5 / 8-1.6 x-long set/16	D-225-50	292	
13755-16	Gold Race Rocker Arms - Ch. 396-454 V8 1.8 7/16" set/16	D-225-50	298	
363901	H-260-2 Camshaft - Fd. 221-302 V8 62-87	D-225-32	178	
363902	H-260-2 Camshaft and Lifter Kit - Fd. 221-302 V8 62-87	D-225-32	178	
363941	H-272-2 Camshaft - Fd. 221-302 V8 62-87	D-225-32	178	
363942	H-272-2 Camshaft and Lifter Kit - Fd. 221-302 V8 62-87	D-225-32	178	
364112	2021 Camshaft and Lifter Kit - Fd. 221-302 V8 62-87	D-225-24	178	
364211	2020 Camshaft - Fd. 221-302 V8 62-87	D-225-46	182	
36750-1	Gold Race Rocker Arms - AMC 290-401 / Fd. 221-351W V8 1.6 3/8" pkg/1	D-225-17	297, 299	
36750-16	Gold Race Rocker Arms - AMC 290-401 / Fd. 221-351W V8 1.6 3/8" set/16	D-225-17	297, 299	
36757-1	Gold Race Rocker Arms - AMC 290-401 / Fd. 221-351W V8 1.7 7/16" pkg/1	D-225-17	297, 299	
36757-16	Gold Race Rocker Arms - AMC 290-401 / Fd. 221-351W V8 1.7 7/16" set/16	D-225-17	297, 299	
443901	H-260-2 Camshaft - Fd. 351W V8 69-93 and 5.0L H0 82-84	D-225-32	194	
443902	H-260-2 Camshaft and Lifter Kit - Fd. 351W V8 69-93 and 5.0L HO 82-84	D-225-32	194	
443941	H-272-2 Camshaft - Fd. 351W V8 69-93 and 5.0L HO 82-84	D-225-32	194	
443942	H-272-2 Camshaft and Lifter Kit - Fd. 351W V8 69-93 and 5.0L HO 82-84	D-225-32	194	
444211	2020 Camshaft - Fd. 5.0L V8 85-95	D-225-46	186, 202	
444212	2020 Camshaft, Spring, Retainer Kit - Fd. 5.0L V8 85-95	D-225-46	186, 202	
444221	2030 Camshaft - Fd. 5.0L V8 85-95	D-225-46	186	
444222	2030 Camshaft, Spring, Retainer Kit - Fd. 5.0L V8 85-95	D-225-46	186	
444225	2031 Camshaft - Fd. 5.0L V8 85-95	D-225-46	186	
444226	2031 Camshaft, Spring, Retainer Kit - Fd. 5.0L V8 85-95	D-225-46	186	
444231	2040 Camshaft - Fd. 5.0L V8 85-95	D-225-46	186	
444232	2030 Camshaft and Lifter Kit - Fd. 351W V8 69-93 and 5.0L HO 82-84	D-225-46	194	
694111	2020 Camshaft - Chry. LA 318-360 V8 86-91	D-225-23	146	
704111	2020 Camshaft - Chry. Magnum 5.2-5.9L V8 92-02	D-225-47	146	
704121	2030 Camshaft - Chry. Magnum 5.2-5.9L V8 92-02	D-225-54	146	
99377-16	Hi Int. Hydraulic Lifters - Ch842" set/16	D-225-27	273	
99377-2	Hi Int. Hydraulic Lifters - Ch842" pkg/2	D-225-27	273	

Custom Tool Steel Camshafts

New Product—Custom Tool Steel Camshafts


Crane Cams announces new tool steel camshafts custom made to match any engine configuration. These cams can be built "one-off" to any linear spacing, journal size, or firing order that you need.

This service meets the demand for the incredible variety of design combinations created by the cylinder head and block manufactures of today. These are the ultimate camshafts for high performance and all out racing applications.

These new camshafts are made from a dedicated variety of tool steel using a through hardening heat treating process to create an extremely stable part that is resistant to surface wear, twist and deflection with the ability to withstand high surface loading and shock. These finish ground camshafts can be ordered to your specifications either one at a time, or in quantity. Once the cam core is produced, it is rough ground, through hardened, then finish ground to best suit your application.

If you can supply a print, a sample camshaft, or specify what modifications are needed to an existing product, we can produce a camshaft to meet your requirements. For unique applications, we maintain a proprietary relationship, making the camshaft exclusive to the customer.

We are currently able to expedite delivery on these items, along with competitive pricing. Note: Popular applications, such as Chrysler 426 Hemi and Johnson/Rodeck 481X cores are maintained in stock.

Custom Tool Steel Camshafts

New Product—Custom Tool Steel Camshafts (continued)

Custom Options

- Cam bearing journal diameters
- Nose configurations (bolt holes, dowel pins/ keyways, integral gear drive flanges)
- Linear spacing and widths of journals and lobes, cam barrel diameters
- Lobe angular placement for different lifter bank angle blocks
- Firing orders
- Gun drilling
- Distributor/oil pump drive gears hobbed on camshaft, fuel pump eccentrics
- Rear drive configurations
- Oil passages
- Micro polishing

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshat	fts									
Brute low-end torque, smooth idle, daily usage, fuel economy, fuel injection compatible, 1600-2200 cruise RPM, 7.75 to 8.75 compression ratio advised.	H-192/2667-2S-10	800- 4200	750501 ^{*a}	99278-12	192 204	248 260	110	(9) 21 37 (13)		.427 .456
			•							
Good low-end torque, smooth idle, daily usage, fuel economy, fuel injection compatible, off road, towing, also mild turbocharged, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-260-2	1200- 4800	753901 ^{*a}	99278-12	204 216	260 272	112	(5) 29 45 (9)	.000 .000	
Good low and midrange torque, good idle, daily usage and off road, towing, performance and fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio advised.	H-272-2	1800- 5400	753941 ^{*a}	99278-12	216 228	272 284	112	1 35 51 (3)		.484 .512
Performance usage, good mid and upper RPM HP, seri- ous off road, limited oval track, 10.25 to 11.75 com- pression ratio advised.	H-222/3200-2-8	2600- 6200	750591 ^{*a}	99278-12	222 232	294 304	108	8 34 49 3	.000 .000	.512 .538
Mechanical Lifter Camsh	afts									
Good low-end torque, good idle, daily performance usage, good low and mid-range HP, 3200-3600 cruise RPM, 9.5 to 10.75 compression ratio advised.	F-228/3334-2-12	2200- 6000	751101 ^{*a}	99260-12	228 238	264 274	112	7 41 56 2		.533 .555
Good mid range torque and HP, fair idle, moderate per- formance usage, serious off-road usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised. Good w/plate nitrous system.	F-238/3467-2-8	2800- 6600	751121 [*] ª	99260-12	238 248	264 274	108	16 42 57 11		.555 .576

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: The 1999-05 4.0 litre engines have a camshaft with a different nose configuration. Our camshafts listed above can be used in these engines if the following factory parts are used: 53020443 gear, 53020444 chain, 53020445 gear, and 83502890 bolt kit.

NOTE: To provide the most accurate valve adjustment on hydraulic lifter camshafts for 1964-early 1972 engines, special length pushrods can be ordered. Refer to page 353 for checking your hydraulic lifter preload. For late 1972-1998 engines, the NOTE: 1974 American Motors/Jeep 232 and 258 cu.in. engines rocker stands can be shimmed or longer pushrods installed to provide the proper hydraulic lifter preload. For mechanical camshafts in late 1972-05 engines, screw-in rocker arm studs and pushrod guideplates must be installed to effect valve adjustment. Special order heat treated pushrods are required for use with guideplates.

- IMPORTANT: For late 1972-05 engines, if your preload is excessive, this can be remedied by using Crane's Rocker Arm Bridge Shim Kit (99179-1). Refer to page 304 for details. were equipped with exhaust valve rotators and 11/32" stem exhaust valves. In these instances use 3 of 99936-2 valve spring retainers and 3 of 99820-2 valve seals (on exhaust valves only) to prevent excessive valve spring shimming. NOTE: 1987-05 American Motors/Jeep 4.0 litre engines are
- equipped with 5/16" stem valves, requiring appropriate retainers and valve stem seals as indicated.

CAMSHAFTS

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

CRANE VALV	/E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29.
VALVE SPRING AND RETAINER KITS	VALVE Springs	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	ROCKERS – Gold Race
	96803-12⁵ 96806-12℃	99948-12 ^ь	99822-12 ^{b,d} 99824-12 ^{c,d}						
	96803-12⁵ 96806-12℃	99948-12 ^ь	99822-12 ^{b,d} 99824-12 ^{c,d}						
	96803-12⁵ 96806-12℃	99948-12 ^ь	99822-12 ^{5,d} 99824-12 ^{c,d}						
	96803-12⁵ 96806-12℃	99948-12 ^b	99822-12 ^{b,d} 99824-12 ^{c,d}						
	99838-12ª	99948-12 ^ь	99822-12 ^{5,d} 99824-12 ^{c,d}						
	99838-12 ^d	99948-12 ^b	99822-12 ^{b,d} 99824-12 ^{c,d}						

a To install these camshafts in 1995-05 4.0 litre engines, see the IMPORTANT NOTE on the opposite page.
b Except 4.0 litre engines.
c For 4.0 litre engines.
d Must machine cylinder head.

290-304-343-360 (5.9L)-390-401 cu.in.

					СОМ	PLETE C		CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf	ts							-			
Brute low-end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 compression ratio advised.	H-192/2667-25-10	800- 4200	860501°	99278-16	192 204	248 260	110	(9) 21 37 (13)	.000 .000		
Great low-end torque, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200- 2800 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-260-2	1200- 4800	863901° 863902°ª 3	99278-16	204 216	260 272	112	(5) 29 45 (9)	.000 .000		
Good low and mid range torque, good idle, daily usage and off road, towing, performance and fuel effi- ciency, 2600-3000 cruise RPM, 8.75 to 10.5 compres- sion ratio advised.	H-272-2	1800- 5400	863941° 863942°ª 3	99278-16	216 228	272 284	112	1 35 51 (3)	.000 .000	.484 .512	
Good mid range torque and HP, good idle, daily per- formance usage, mild bracket racing, 3000-3400 cruise RPM, mild supercharged, mild nitrous, 9.5 to 10.75 compression ratio advised.	H-278-2	2200- 5800	863801° 863802°a 3	99278-16 99378-16* ^ь	222 234	278 290	114	2 40 56 (2)	.000 .000		
Good mid range to upper RPM torque and HP, good idle, moderate performance usage, bracket racing, 3200-3600 cruise RPM, 9.5 to 11.0 compression ratio advised.	H-288-2	2400- 6000	864441° 864442°ª 3	99278-16 99378-16⁵	226 230	288 292	112	6 40 52 (2)	.000 .000		
Good mid range to upper RPM torque, rough idle, moderate performance usage, serious off road, bracket racing, 3200-3600 cruise RPM, 10.0 to 11.0 compres- sion ratio advised.	H-232/310-8	2800- 6200	860641°	99278-16 99378-16⁵	232 232	312 312	108	14 38 50 2	.000 .000		
Good mid to upper RPM HP, rough idle, performance usage, auto trans w/2500+ converter, 3400-3800 cruise RPM, mild nitrous, supercharged 10-14#, 10.0 to 11.5 compression ratio advised.	H-302-2	3000- 6600	864561°	99278-16 99378-16⁵	232 242	302 312	112	9 43 58 4	.000 .000		
Good upper RPM HP, rough idle, performance usage, bracket racing, 390 cu.in., auto trans w/3500+ con- verter, 3800-4200 cruise RPM, mild nitrous, 11.0 to 12.5 compression ratio advised.	H-242/3520-2-12	3400- 7000	860661°	99278-16 99378-16⁵⁵	242 252	314 324	112	14 48 63 9	.000 .000		
Moderate competition only, rough idle, good upper RPM HP, bracket racing, 401+ cu.in., auto trans w/4000+ converter, good with aluminum heads, plate nitrous, 12.5 minimum compression ratio advised.	H-252/3680-2-10	4000- 7200	860681°	99278-16 99378-16⁵⁵	252 262	324 334	110	21 51 66 16	.000 .000	.589 .614	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- NOTE: To provide the most accurate valve adjustment on hydraulic lifter camshafts for 1966-1973 engines, a set of positive locking nuts should be obtained for the rocker arm studs. For 1974-1991 engines, the rocker stands can be shimmed, or longer pushrods installed to provide the proper hydraulic lifter preload. Special order heat treated pushrods are required for use with guideplates.
- IMPORTANT: If your hydraulic lifter preload is excessive, this can be easily remedied by using Crane's Rocker Arm Bridge Shim Kit (99179-1). Refer to page 304 for details.
- NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. Refer to page 353 for checking your hydraulic lifter preload.
- NOTE: Some 1978 and 1979 engines may not be able to obtain the correct valve spring assembled height with the components listed. Different springs and retainers may be required.
- NOTE: 1973 and 1974 American Motors/Jeep 360 and 401 cu.in. engines are equipped with exhaust valve rotators and 11/32" stem exhaust valves. In these instances, use 4 of 99936-2 valve spring retainers and 99820-8 valve seals (on the exhaust valves only) to prevent excessive valve spring shimming.

CAMSHAFTS

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

See	pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
AND R	E SPRING Retainer Kits	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	N ROCKERS Gold Race
643	08-1 [.]	99839-16 [,]	99957-16		99098-1°	95637-16 ^f	86977-1 ^{*h}		11746-16 ^{j,i}	36750-1 86757-1
643	08-1'	99839-16 [,]	99957-16		99098-1°	95637-16 ^f	86977-1 ^{*g}		11746-16 ^{j,i}	36750-1 86757-1
643	08-1 °	99839-16 [.]	99957-16		99098-1°	95637-16 ^f	86977-1* ^g		11746-16 ^{i,j}	36750-1 86757-1
643	08-1 °	99839-16 [.]	99957-16		99098-1°	95637-16 ^ŕ	86977-1* ⁹		11746-16 ^{j,i}	36750-1 86757-1
643	08-1 [°]	99839-16 [,]	99957-16		99098-1°	95637-16 ^ŕ	86977-1* ⁹		11746-16 ^{j,i}	36750-1 86757-1
		99838-16ª	99948-16		99098-1°	95637-16 ^f	86977-1* ⁹		11746-16 ^{j,i}	36750-1 86757-1
		99838-16 ^d	99948-16	99822-16ª	99098-1°	95637-16 ^f	86977-1 ^{*g}		11746-16 ^{j,i}	36750-1 86757-1
		99838-16 ^d	99948-16	99822-16ª	99098-1°	95637-16 ^f	86977-1 ^{*g}		11746-16 ^{j,i}	36750-1 86757-1
		99893-16ª	99954-16	99822-16 ^d	99098-1°	95637-16 ^f	86977-1 ^{*g}		11746-16 ^{i,i}	36750-1 86757-1

Cam and lifter kit, includes installation lubricants and Rocker Arm Bridge Shim Kit. а

Optional Hi Intensity hydraulic lifters, see page 272 for details. Contains standard diameter valve springs, no machining required. b

C

d Must machine cylinder heads.

Machined steel, heat treated, for engines with single groove valve stems. Pro Series one-piece, for 1970-1991 304 thru 401 engines. Pro Series steel billet gears and roller chain with thrust bearing. e f

g

i Must machine 74-91 cylinder heads and install 99156-16 3/8" rocker arm studs (or 99157-16 7/16 rocker arm studs for 86757-16 rockers) and aftermarket pushrod guideplates. Special order heat-treated pushrods are required for use with guideplates. Energizer, 1.6 ratio, 3/8" stud.

j k 1.6 ratio, 3/8" stud.

1.6 ratio, 7/16" stud.

290-304-343-360 (5.9L)-390-401 cu.in.

			COMPLETE CAM SPECIFICATIONS								
Application	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	@ .05 Cam Li	ift Int.	Lift Int.	
	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Ex	h Exh.	Exh.	
Hydraulic Roller Camshaf Brute low end torque and HP, good idle, daily usage,	HR-208/3313-2S-12	1000-	869501*	86532-16ª	208	264	112	(3) 3	1 000	.530	
performance and fuel efficiency, towing, 2200-3000 cruise RPM, 8.0 to 9.5 compression ratio advised.	III200/3313-23-12	5200	3	00552-10	216	272	112	45 (9		.530	
			•								
Excellent low end torque and HP, good idle, daily usage, off road, performance and fuel efficiency, mild turbocharged, 2600-3400 cruise RPM, 8.75 to 10.5 compression ratio advised.	HR-216/325-2S-12	1600- 5600	869511*	86532-16ª	216 224	278 286	112	1 3 49 (1		.520 .542	
Good low end and mid range torgue and HP, fair idle,	UD 224/220 20 12	2000	•	0(533 1/3	224	297	110	r 7	0 000	542	
moderate performance usage, serious off road, mild bracket racing, auto trans w/2500+ converter, 3000- 3800 cruise RPM, 9.5 to 10.75 compression ratio advised.	HR-224/339-25-12	2000- 6000	869521*	86532-16ª	224 232	286 294	112	53 53(.542 .563	
Good mid range torque and HP, fair idle, moderate per-	HR-232/352-2S-10	2600-	869531*	86532-16ª	232	294	110	11 4	1 .000	.563	
formance usage, serious off road, mild bracket racing, 390+ cu.in., auto trans w/2800+ converter, 3400-4200 cruise RPM, 10.0 to 11.5 compression ratio advised.		6600	•		240	302				.584	
Good upper RPM torque and HP, rough idle, performance usage, professional off road, bracket racing, 401+ cu.in.,	HR-244/372-2S-12	3200- 7000	869541*	86532-16ª	244 256	306 318	112	15 4 65 1	9.000	.595 .595	
autō trāns w/3500+ converter, good with aluminum heads, 4000-4800 cruise RPM, 11.0 to 12.5 compression ratio advised.			\$								
Mechanical Lifter Camsho	afts										
Good mid range torque and HP, fair idle, moderate performance usage, off road, 3200-3600 cruise RPM,	F-238/3200-2-12	2800- 6400	861201 [*]	99260-16	238 248	300 310	112			.512 .533	
10.0 to 11.5 compression ratio advised.		0400	•		240	510		01	7 .022	.222	
Good mid range to upper RPM torque and HP, rough	F-248/3334-2-12	3400-	861241*	99260-16	248	310	112	17 5		.533	
idle, performance usage, 3800-4200 cruise RPM, seri- ous off road, 10.5 to 12.0 compression ratio advised.		7000			258	320		66 1	2 .022	.555	
			3								
Good upper RPM torque and HP, rough idle, performance usage, serious off road, bracket racing, 390+ cu.in., auto	F-258/3468-8	4000- 7400	861321 [*]	99260-16	258 258	320 320	108	26 5 62 1		.555 .555	
w/3500+ converter, good with aluminum heads, 11.0 to 12.5 compression ratio advised.		7400	•		200	520		02	υ .U22	.200	
·	<i>(</i> ,		V								
Mechanical Roller Camsh		2(00	000514*	CCEED AND	227	201	110	12	12 020	560	
Good low end and mid range torque and HP, fair idle, moderate performance usage, serious off road, mild bracket racing, auto trans w/2500+ converter, 3200- 3600 cruise RPM, 10.0 to 11.25 compression ratio	SR-236/350-25-10	2600- 6600	868511*	66550-16 ^b	236 244	286 294	110		3.020 7.020	.560 .579	
advised.			€								
Competition only, good mid and upper RPM torque and HP, oval track, bracket racing, auto trans w/3500+ converter, professional off road, 11.5 minimum com-	R-258/420-25-6	3800- 7800	868821*	66550-16 ^b	258 266	290 298	106	26 5 62 2		.672 .672	
pression ratio advised.			•								

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

WOTE: For mechanical or foiler litter canshafts, screw-in rocker arm studies and pushrod guideplates.
 NOTE: Hydraulic roller canshafts require special length pushrods.
 Refer to page 353 for checking your lifter preload. To provide the most accurate valve adjustment on hydraulic roller lifter canshafts, screw-in rocker arm studies and pushrod guideplates.
 NOTE: Hydraulic roller canshafts require special length pushrods.
 Refer to page 353 for checking your lifter preload. To provide the most accurate valve adjustment on hydraulic roller correct valve spring assembled height with the components lifter canshafts, screw-in rocker arm studies and pushrod guideplates.

- lifter camshafts, screw-in rocker arm studs and pushrod guideplates can be installed to effect valve adjustment.
- listed. Different springs and retainers may be required.

NOTE: For mechanical or roller lifter camshafts, screw-in rocker arm NOTE: 1973 and 1974 American Motors/Jeep 360 and 401 cu.in. engines are equipped with exhaust valves rotators and 11/32" stem exhaust valves. In these instances, use 4 of 99936-2 valve spring retainers and 99820-8 valve seals (on the exhaust valves only) to prevent excessive valve spring shimming.

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

		MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKERS – Gold Race
	99893-16ʻ	99954-16	99822-16 [,]	99098-1 ⁴	95622-16°	86977-1* ^r		11746-16 ^{i,h}	36750-16 86757-16
	99893-16 [,]	99954-16	99822-16 [.]	99098-1ª	95622-16°	86977-1* ^f		11746-16 ^{i,h}	36750-16 86757-16
	99893-16'	99954-16	99822-16 ⁴	99098-1ª	95622-16°	86977-1* ^f		11746-16 ^{i,h}	36750-16 86757-16
	99893-16 [,]	99954-16	99822-16 ^c	99098-1ª	95622-16°	86977-1* ^f		11746-16 ^{i,h}	36750-16 86757-16
	99893-16 [.]	99954-16	99822-16 '	99098-1ª	95622-16°	86977-1* ^f		11746-16 ^{i,h}	36750-16 86757-16

99838-16 [.]	99948-16	99822-16 [.]	99098-1ª	95641-16°	86977-1 ^{°f}	36750-16 ^{j.h} 86757-16 ^{k.h}
99838-16 [,]	99954-16	99822-16'	99098-1ª	95641-16°	86977-1* ^f	36750-16 ^{j,h} 86757-16 ^{k,h}
99838-16'	99954-16	99822-16 [.]	99098-1ª	95641-16°	86977-1 ^{°f}	36750-16 ^{j,h} 86757-16 ^{k,h}
99838-16 [,]	99954-16	99822-16 [.]	99098-1ª	95645-16°	86977-1* ^r	36750-16 ^{j.h} 86757-16 ^{k.h}
99876-16 ⁴	99963-16	99822-16'	99098-1ª	95645-16°	86977-1* ^f	36750-16 ^{j,h} 86757-16 ^{k,h}

а

- Special length pushrods are required. Ultra Pro Series roller lifters, with -.200" height pushrod seats, special length pushrods are required. Must machine cylinder heads. Machined steel, heat treated for engines with single groove valve stems. Pro Series one piece, for 1970-1995 304 thru 401 engines. Pro Series steel billet gears and roller chain with thrust bearing. b
- C
- d
- e f

h Must machine 74-91 cylinder heads and install 99156-16 rocker arm studs and aftermarket pushrod guideplates. Special order heat-treated pushrods are required for use with guideplates.
i Energizer, 1.6 ratio, 3/8"stud.
j 1.6 ratio, 7/16" stud.
k 1.6 ratio, 7/16" stud.

					COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf											
Brute low end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 com- pression ratio advised.	H-194/250-2S-10	800- 4200	850501°	99284-16	194 202	252 260	110	(8) 22 36 (14)		.400 .416	
Good low end torque, smooth idle, daily usage, tow- ing, economy, also mild turbocharged, 2200-2800 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-202/260-2S-10	1200- 4800	850521* 3	99284-16	202 210	260 268	110	(4) 26 40 (10)		.416 .432	
Good low to mid range torque, good idle, daily usage, towing,performance and fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio advised.	H-218/280-2S-12	1800- 5400	850571°	99284-16	218 226	276 284	112	2 36 50 (4)		.448 .464	
Good mid range torque, fair idle, moderate perfor- mance usage, good mid-range HP, excellent for 455GS, bracket racing, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised.	H-226/290-2S-10	2200- 5800	850631°	99284-16 99384-16*ª	226 234	284 292	110	8 38 52 2		.464 .480	
Replacement for factory Stage 2 camshaft.	BluePrinted 1385557	2200- 5800	850421* •	99284-16 99384-16*ª	226 255	312 332	115	4.5 41.5 69 6		.453 .482	
Rough idle, performance usage, good mid-range HP, 3800-4200 cruise RPM,10.5 to 12.0 compression ratio advised.	H-242/310-2S-10	2800- 6600	850671* (99284-16 99384-16*ª	242 250	300 308	110	16 46 60 10		.496 .512	
Performance usage, good upper RPM HP for large dis- placement engines, bracket racing, auto trans w/race converter, also nitrous, 12.0 minimum compression ratio advised.	H-252/348-2S-12	3600- 6800	850701°	99284-16 99384-16*ª	252 260	322 330	112	19 53 37 13		.557 .576	

Cadillac V-8 68-81

Hydraulic Lifter Camshafts Excellent low end torque, smooth idle, daily usage, towing, economy, also mild turbocharged, 2200-2600 H-202/260-2S-14 1200-1020541* 99284-16 202 260 114 .000 .447 (8) 30 4800 210 268 44 (14) .000 .464 cruise RPM, 8.0 to 9.5 compression ratio advised. € 1020561* Good low end torque, good idle, daily usage, towing, 112 H-210/270-2S-12 1400-99284-16 210 268 (2) 32 .000 .464 economy, mild marine usage, airboat, mild turbo-5200 218 276 .000 .482 46 (8) charged, 2400-2800 cruise RPM, 8.5 to 10.0 compres-€ sion ratio advised. Good low and mid range torque, good idle, daily H-218/280-25-12 1800-1020571* 99284-16 218 276 112 2 36 .000 .482 usage, performance, 2600-3000 cruise RPM, 8.75 to 5600 226 284 50 (4) .000 .499 10.5 compression ratio advised. € Good mid range torque and HP, fair idle, moderate H-226/290-2S-12 2200-1020631* 99284-16 226 284 112 6 40 .000. .499 performance usage, bracket racing, auto trans 99384-16*a 234 292 0 5800 54 .000 .516 w/2500+ converter, 3400-3800 cruise RPM, 9.5 to € 11.0 compression ratio advised. Rough idle, performance usage, good mid and upper RPM torque and HP, bracket racing, auto trans H-234/300-2S-12 1020641* 99284-16 2800-234 292 112 .516 10 44 .000 6400 99384-16*a 242 300 58 4 .000 .533 w/3000+ converter, 10.0 to 11.5 compression ratio € advised.

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: Mechanical lifter camshafts and components are available on special order.

NOTE: To provide the most accurate valve adjustment on hydraulic lifter camshafts, special length pushrods can be ordered. Refer to page 353 for checking your hydraulic lifter preload.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

368-425-472-500 cu.in.

26

CAMSHAFTS

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

CRANE VAL	VE TRAIN CO	OMPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	ROCKERS - GOLD RACE
	99838-16	99910-16	99822-16 ^b						
	99838-16	99910-16	99822-16 ^ь						
	99838-16	99910-16	99822-16 ^b						
	99838-16	99910-16	99822-16 ^ь						
	99838-16	99910-16	99822-16 ^b						
	99838-16	99910-16	99822-16 ^b						
	99838-16	99910-16	99822-16 ^b						

99848-16	99916-16	99820-16 ^b	99097-1°	102621-16 ^d	
99848-16	99916-16	99820-16 ^b	99097-1 °	102621-16 ^d	
99848-16	99916-16	99820-16 ^b	99097-1 [.]	102621-16 ^d	
99848-16	99916-16	99820-16 ^b	99097-1°	102621-16 ^d	
99848-16	99916-16	99820-16 ^b	99097-1 °	102621-16 ^d	

a Optional Hi Intensity hydraulic lifters, see page 272 for details.
b Must machine cylinder heads.
c Machined steel, heat treated.
d Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.

Chevrolet 6 Cylinder 62-84

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf										
Brute low end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 com- pression ratio advised.	H-192/2667-25-12	800- 4200	200511°	99277-12	192 204	248 260	112	(11) 23 39 (15)	.000 .000	
			•					(-)		
Good low end torque, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200- 2600 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-260-2	1200- 4800	203901*	99277-12	204 216	260 272	112	(5) 29 45 (9)		.498 .530
			•							
Good low to mid range torque, good idle, daily usage and off road, towing, performance and fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio	H-272-2	1800- 5400	204541*	99277-12	216 228	272 284	112	1 35 51 (3)		.530 .560
advised.			3							
Performance usage, good mid range to upper RPM torque and HP, oval track, radical off road, 10.5 mini- mum compression ratio advised.	H-234/3250-2-6	3000- 6000	200541*	99277-12	234 244	304 314	106	15 39 52 12		.569 .593
			•							
Mechanical Lifter Camsh	afts									
Good mid range torque and HP, fair idle, moderate performance usage, 1/4-3/8 oval track, off road, 3400- 3800 cruise RPM,10.0 to 11.5 compression ratio advised.	F-238/3200-2-8	2800- 6600	201141*	99250-12	238 248	304 314	108	16 42 57 11	.022 .022	.560 .583
Rough idle, performance usage, good mid and upper	F-248/3334-2-6	3400-	201221*	99250-12	248	310	106	22 46	.022	502
ROUGH TOTE, DEFINITIATCE USAGE, good find and upper RPM HP, 3/8-1/2 oval track, bracket racing, 11.0 to 12.5 compression ratio advised.	F-248/3334-2-0	3400- 6800	201221	99230-12	248 258	310	100	22 46 59 19	.022 .022	
			•							
Performance usage, good mid and upper RPM HP, bracket racing, long unlimited oval track, 12.25 mini-	F-256/3634-2S-8	4200- 7200	201311*	99250-12	256 260	292 296	108	23 53 61 19		.636 .646
mum compression ratio advised.		7200	•		200	290		01 19	.020	.040
			•							

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: Roller camshafts and components are available on special order. See page 349 regarding outright steel billet camshafts.

NOTE: The 1963-84 Chevrolet I6 292 cu. in. engines use a different camshaft core than the 194-230-250 engines, and are not interchangeable.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

CRANE VAL	/E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — Gold Race
	99838-12	99944-12	99820-12ª	99097-1 ^ь	20621-12° 20622-12ª				20750-12° 13750-12 ^f
	99838-12	99944-12	99820-12ª	99097-1 ^ь	20621-12 ^c 20622-12 ^d				20750-12° 13750-12 ^ŕ
	99838-12	99944-12	99820-12ª	99097-1 ^ь	20621-12° 20622-12 ^d				20750-12° 13750-12 [°]
	99838-12	99944-12	99820-12ª	99097-1 ^ь	20621-12 ^c 20622-12 ^d				20750-12° 13750-12 [°]
	99893-12	99953-12	99820-12ª	99097-1 ^ь	20621-12° 20622-12ª				20750-12° 13750-12 ^ŕ
	99893-12	99953-12	99820-12ª	99097-1 ^ь	20621-12 ^c 20622-12 ^d				20750-12° 13750-12 ^f
	99893-12	99953-12	99820-12ª	99097-1 ^ь	20621-12° 20622-12ª				20750-12° 13750-12 ^f

a Must machine cylinder head
b Machined steel, heat treated
c Heavy wall, heat treated, for 194-230-250 engines

d Heavy wall, heat treated, for 194-230-250 engines, for use with Crane aluminum rocker arms
 e 1.7 ratio, 3/8 stud, requires 20622-12 pushrods
 f 1.7 ratio, 7/16 stud, requires 20622-12 pushrods

173 (2.8L)-189 (3.1L) cu.in.-3.4L

				COMPLETE CAM SPECIFICATIONS							
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf	ts										
Brute low end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 com- pression ratio advised.	H-192/2667-2S-12	800- 4200	250511°	99286-12	192 204	248 260	112	(11) 23 39 (15)	.000 .000		
Low and mid-range torque and HP, great choice for cars and 4x4 trucks, highway or off road. Works really great for trailer towing.	2020	800- 4200	254112 ^{*a,b}	99286-12	198 204	258 264	104	(1) 19 30 (6)		.401 .427	
Mid and upper range torque and HP improver for cars, especially Camaros, S-10 pick-up's, Blazers, Jimmy's , etc., and all performance applications.	2030	1200- 4600	254122 ^{*a,b}	99286-12	204 214	264 274	109	(3) 27 40 (6)	.000 .000	.423 .423	
Good low end torque, good idle, daily usage and off road, towing, economy, also mild turbocharged, 2200- 3000 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-260-2	1200- 4800	253901* 253902* ^b	99286-12	204 216	260 272	112	(5) 29 45 (9)	.000 .000	.427 .454	
Good low to mid range torque, good idle, daily usage & off road, towing, performance & fuel efficiency, increased compress. ratio & gearing advised, 2600-3200 cruise RPM, 8.75 to 10.5 compression ratio advised.	H-272-2	1800- 5400	253941*	99286-12	216 228	272 284	112	1 35 51 (3)	.000 .000	.454 .480	
Good mid to upper RPM torque and HP, fair idle, seri- ous off road, moderate performance usage, 3000-3600 cruise RPM, 9.75 minimum compression ratio advised.	H-222/3114-25-10	2200- 6000	250321°	99286-12	222 234	278 290	110	6 36 52 2	.000 .000	.467 .494	

RPM range shown is for average usage. These cam profiles will RPM higher,depending upon application.

will not be applicable in these instances. Some engines also have a 1.600" valve spring assembly height that will not allow the use of our recommended valve springs and retainers. IMPORTANT: Some engines may have oversize (.010") diameter lifter check fewilter paiter marking shows lifter hows lifter hows

IMPORTANT: These camshafts are for use in distributor equipped

engines only. **IMPORTANT:** Certain 1991 and later engines may have 8mm diameter valve stems. Our 11/32"retainers and valve stem locks

lifters, check for white paint markings above lifter bores indicating their use.

throughout different models. Be certain of exactly which engine you have before ordering.

30

CAMSHAFTS

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

CRANE VALV	E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — GOLD RACE
NI S	Si Mindo	REIMINERS	SERES	LUCKS	1 Conners	ASSEMBLI	Animo	LNENGIZEN	NACL
	99848-12°	99915-12		99097-1 ^{e,f}	25621-12 ⁹				25750-12 ^h 25759-12 ⁱ
	99848-12°	99915-12		99097-1 ^{e,f}	25621-12 ⁹				25750-12 ^h 25759-12 ⁱ
	99848-12°	99915-12		99097-1 ^{e,f}	25621-12 ⁹				25750-12 ^h 25759-12 ⁱ
	99848-12°	99915-12		99097-1 ^{e,f}	25621-12 ⁹				25750-12 ^h 25759-12 ⁱ
	99848-12° 96802-12 ^{cd}	99915-12		99097-1 ^{e,f} 99095-1 ^{e,f}	25621-12 ⁹				25750-12 ^h 25759-12 ⁱ
	99848-12° 96802-12 ^{cd}	99915-12		99097-1 ^{e,f} 99095-1 ^{e,f}	25621-12 ⁹				25750-12 ^h 25759-12 ⁱ

- a For 1981-89 applications.
 b Cam and Lifter Kit, includes installation lubricants.
 c Standard diameter valve springs, no machining required.
 d Additional assembly height required, use 99095-1 valve stem locks.

For 11/32" diameter valve stems. Machined steel, heat treated.

e f

- g For cast iron inline-valve cylinder heads, heavy wall, heat treated, for use with pushrod guideplates.
 h 1.5 ratio,narrow body (not self-aligning), with special 10mm x 1.50 bottom x 3/8"x 24 top rocker arm studs included.
 i 1.6 ratio,narrow body (not self-aligning), with special 10mm x 1.50 bottom x 3/8"x 24 top rocker arm stude includes.

arm studs included.

					COMPLETE CAM SPECIFICATIONS					
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Roller Camshai	fts									
Brute low end torque, smooth idle, low and mid-range performance in passenger car, van and truck applica- tions. Great choice for either manual four or five speed or automatic transmission. Greatly improves drivabili- ty, especially on the highway. Runs strongest from 2000 RPM and up.	HR-194/271-2-12	800- 4600	1439801* •	10530-12ª	194 204	250 260	112	(10) 24 39 (15)	.000 .000	.407 .429
Good low end torque, smooth idle, daily usage, light towing, economy, also mild turbo-charged, 2200-3000 cruise RPM, 8.0 to 9.5 compression ratio advised.	HR-204/286-25-12	1200- 5200	1439811°	10530-12ª	204 214	260 276	112	(5) 29 44 (10)		.429 .430
Good low end torque, good idle, daily usage, off road, towing, performance and fuel economy, 2600-3400 cruise RPM, 8.75 to 10.75 compression ratio advised.	HR-214/325-2S-12	1600- 5600	1439721°	10530-12ª	214 222	276 284	112	(0) 34 48 (6)	.000 .000	.488 .509
Good low and mid range torque, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3000-3800 cruise RPM, 9.5 to 10.75 compress. ratio advised, also mild supercharged.	HR-222/339-25-12	2200- 6000	1439731* 3	10530-12ª	222 230	284 292	112	(4) 38 52 (2)	.000 .000	.509 .528
Good mid to upper RPM torque and HP, fair idle, moder- ate performance usage, serious off road, bracket racing, auto trans with 2800+ converter, 10.25 to 11.5 com- pression ratio advised, also mild supercharged.	HR-230/352-25-12	2600- 6400	1439531°	10530-12ª	230 234	292 296	112	8 42 54 0	.000 .000	.528 .539

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- NOTE: The hydraulic roller camshafts listed above do not have a fuel pump eccentric, therefore a mechanical fuel pump cannot be used with them (as some marine applications may require).
- NOTE: 1985-91 Chevrolet 90° V-6 262 cu.in. (4.3L) engines have a different firing configuration than the 200-229 cu.in. engines, and cannot use the 200-229 cambaft. The 1987-91 262 cuin. (4.3L) a different configuration cambaft core than the 85-86 engines and cannot be interchanged. These 1992-2002 (4.3L) engines and cannot be interchanged. These 1992-1992 (4.3L) engines and cannot be interchanged. These 1992-1992 (4.3L) engines a incorporate a balance shaft and utilize a different camshaft core that cannot be interchanged with previous models.
- **NOTE:** Mechanical roller camshafts and components are available on special order.

Consultants for details. Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	I ROCKERS — Gold Race
	96802-12 [⊾]	99915-12		99097-1ª	10621-12°		11801-12 ^{f,k}	11744-12 ^{h,k}	11750-12 ^{i,} 10751-12 ^{i,}
	96802-12 [⊾]	99915-12		99097-1ª	10621-12°		11801-12 ^{f,k}	11744-12 ^{h,k}	11750-12 ⁱ 10751-12 ⁱ
	99838-12 ⁴	99944-12	99820-12°	99097-1ª	10621-12º		11801-12 ^{f,k}	11744-12 ^{h,k}	11750-12 ⁱ 10751-12 ⁱ
	99838-12 [.]	99944-12	99820-12°	99097-1ª	10621-12°		11801-12 ^{f,k}	11744-12 ^{h,k}	11750-12 ^{i,} 10751-12 ^{j,}
	99838-12°	99944-12	99820-12 ^c	99097-1 ^d	10621-12°		11801-12 ^{f,k}	11744-12 ^{h,k}	11750-12 10751-12

For use with standard GM alignment bars. а

- b
- C

d

- For use with standard GM alignment bars. Standard diameter valve springs, no machining required. Must machine cylinder heads. Machined steel, heat treated. Heat treated, heavy wall, for use with or without pushrod guideplate cylinder heads. 1.5 ratio, 3/8" stud, extra long slot (not self-aligning). Energizer 1.5 ratio, 3/8" stud (not self-aligning). 1.5 ratio, 3/8" stud (self-aligning). е
- f

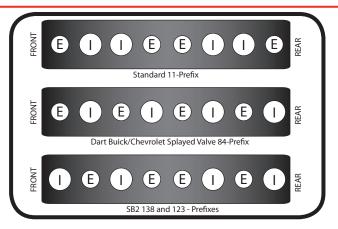
h

1.5 ratio, 3/8" stud (not self-aligning). i

1.5 ratio, 3/8" stud, self-aligning, narrow body for center bolt valve covers. Early 1992 engines are equipped with 3/8" stud self-aligning rocker arms. Late 1992 and later engines have 8mm stud self-aligning rocker arms. These engines can be converted to 3/8" studs by installing 6 of our **99148-2** rocker arm studs which have a 10mm bottom thread and a 3/8"-24 top thread (no machining is required). Appropriate pushrod guideplates must be installed if non self-aligning type rocker arms are used. If aluminum rocker arms are desired, only the narrow body configuration will fit if standard center bolt valve covers are being used. J k

Chevrolet Small Block V8 Tech Tips & Notes

1957–1987 262-400 V8 (262-265-267 (4.4L)-283-302-305 (5.0L)-307-327-350 (5.7L)-400 cu.in.)


The classic Small Block Chevrolet V8 was introduced in 1955, in a 265 cu.in. version. The 1955-56 265 engines required a camshaft having a flat machined on the rear cam bearing journal to allow for oil flow to the lifter galleries and the top end. If you are using one of these blocks, a flat must be machined in center of the rear cam journal, .350" wide and .080" deep. Another option would be installing later model cam bearings in these early blocks. If your camshaft already has a flat on the rear journal, it will not cause any oiling problems if used in a later engine.

The entire family of engines, designated by Crane Cams' 11 prefix (except the Energizer line of camshafts), were equipped from the factory with flat faced lifters, either hydraulic or mechanical, throughout their production run. We offer complete lines of hydraulic, hydraulic roller, mechanical, and mechanical roller camshafts, lifters, and valve train components for these. Although we list this engine family as running through 1987, some truck applications continued through 1995. It's important to verify the engine type when dealing with these vehicles to insure the proper components are being obtained.

Cast hydraulic and mechanical lifter camshafts are available with standard cam bearing sizes, and also optional Chevrolet Big Block bearing sized journals (1.948" dia.), indicated by a BB suffix in the grind number. The standard firing order is 1-8-4-3-6-5-7-2, and cast standard journal camshafts can also be ordered with our SFO suffix firing order configuration of 1-8-7-3-6-5-4-2.

Crane Cams' retrofit hydraulic roller and mechanical roller camshafts are produced from steel billet material, heat treated, and finish ground in a variety of versions. Our retrofit hydraulic roller lifters do not require any block machining, and are a drop-in configuration, incorporating a vertical locking bar. For street and endurance applications, we offer camshafts equipped with a cast iron distributor drive gear and rear journal installed on the steel camshaft. These are noted by an IG suffix (Iron Gear), allowing the use of a standard type distributor gear for long term reliability.

There are many journal size options available for the roller camshafts, including: Standard (1.868"); Roller Bearing (1.875") – RB suffix; Big Block (1.948") – BB suffix; Large Roller Bearing (50mm/1.969") – LRB suffix; 55mm (2.165") –55J suffix. Other sizes are available on request. Camshafts with larger then stock journals have a step

ground on the front journal, so a standard size camshaft sprocket can be used.

We offer camshafts with different lobe layouts for the various cylinder head options that can be installed on these engines. On this page are drawings illustrating the standard Small Block, Dart Buick/Chevrolet Splayed Valve (84 – prefix), and Chevrolet SB2 (138 – prefix) cylinder head valve layouts that are primarily in use today.

Standard, SFO (1-8-7-3-6-5-4-2), and SFO1 (1-8-7-2-6-5-4-3) firing orders are offered, along with other custom options for 180 degree crankshafts and other unique situations.

Drilling and tapping the rear cam journal for the Sander accessory drive is offered (RD – suffix), as is gun drilling of the camshaft for lightness and reduced torsional deflection (DR – suffix). For certain usages, we offer special lightweight camshafts (LW – suffix) having undercut bearing journals, narrow lobes, and gun drilling where weight saving is of prime importance.

1987–1999 305 (5.0L)- 350 (5.7L) V8

This first major upgrade to the traditional Small Block V8 incorporated a hydraulic roller camshaft and lifters. These are sometimes referred to as Vortec engines when checking some reference materials. The bolt pattern on the front of the camshaft was reduced in diameter, allowing for a step on the front journal, permitting the installation of a thrustplate to control camshaft endplay.

This engine family is referred to as Crane Cams' 10-prefix, and our early steel billet camshaft cores did not incorporate provisions for the front ignition drive that was later used on the 1992-1997 LT-1 and LT-4 engines.

We have separated these engines from the LT-1 & LT-4 versions in this catalog to properly define the emissions legalities of the camshafts, although they will now physically interchange. Since the late 90's, all of our

camshafts for these power plants have been machined for the front ignition drive and include the long cam dowel pin that's also needed. If you have an engine that does not require the long dowel pin, you can drive the pin in further to the proper length for your application.

The lifter bores on these blocks were increased in height to accommodate the hydraulic roller lifters. When using a camshaft with greater than standard lobe lift, or a small base circle cam, you must use taller-than-standard lifters to prevent them dropping out of the factory alignment bars when on the base circle. Our **10535-16** hydraulic roller lifters are intended for these purposes. Our vertical guidebar **11532-16** retrofit hydraulic roller lifters are also suitable for these applications.

We also offer mechanical roller lifter camshafts and components for these engines, in either standard or Iron Gear configurations.

1992-1996 305 (5.0L)- 350 (5.7L)LT-1 & LT-4 V8

Additional changes in 1992 resulted in the Gen II, or LT-series of engines. Reverse cooling, front mounted distributors, a different timing chain and gear set, and other improvements resulted in greater power potential and reliability. All of these were hydraulic roller camshaft and lifters equipped, incorporating the tall lifter bores. The Crane Cams 10-prefix is again used for these engines. On applications where higher than stock lift, or small base circle camshafts are used, our **10535-16** or **11532-16** hydraulic roller lifters should be used.

Mechanical roller lifter camshafts and components are offered, in standard or Iron Gear versions.

1997-2015 4.8-5.3-5.7-6.0-6.2-7.0L LS-Series V8

A clean sheet design for the Small Block, this new engine has virtually no interchangeability with the earlier engines. Crane Cams 144, 201, and 203 prefixes designate these camshafts and specific components. The camshaft has large 55mm (2.165") diameter journals, three bolts to attach the cam sprocket, and no distributor drive gear. Hydraulic roller camshafts and lifters are standard.

LS1 and LS6 engines have a camshaft position sensor split ring incorporated into the barrel of the cam, near the rear of the camshaft. LS2, LS3, LS7, and L92 engines have the camshaft position sensor incorporated into the camshaft sprocket. Our camshafts have the sensor split ring on the cam, and can be used in either version. The standard firing order is 1-8-7-2-6-5-4-3.

The LS3, LS7, and L92 engines are originally equipped

with camshafts that have a single bolt to attach the cam sprocket. Our camshafts can be installed in these engines if the proper three bolt type cam sprocket is used.

Standard rocker arm ratio for these engines is 1.7:1, except the LS7, which comes equipped with 1.8:1 rockers.

Again, when using camshafts with greater than stock lobe lifts (or reduced base circle diameters), there can be a danger of the lifters dropping out of the alignment blocks. Crane Cams offers specific long travel lifters to prevent this occurrence, with our **144536-16** steel billet hydraulic roller lifters. Long travel mechanical roller lifters **144511-16** (that use the standard alignment blocks) are also available for those demanding the increased RPM capabilities of a mechanical roller camshaft (available on special order).

We're constantly adding to our product offerings for this family of engines, as its popularity continues to grow. Heavy wall pushrods, stud and shaft mounted rocker arms, valve springs, retainers, and steel billet valve locks provide performance and reliability improvements that you will find throughout this catalog.

1996-2010 SB2 V8

Designed specifically for racing applications, and never installed in any production vehicles, the SB2 engine has a unique cylinder block and cylinder heads. Although the SB2 heads have a different valve layout from other members of the Small Block family, they can also be installed on a conventional 262-400 type engine, provided many other changes are made, among these being the camshaft (use our 138-prefix camshafts for this application as noted earlier).

An SB2.2 block has staggered lifter bores, similar to the Big Block Chevys, straightening the pushrod angles for the canted valve SB2 series of cylinder heads. Our 123-prefix camshafts have been created expressly for these engines. Steel billet roller camshafts are offered with Large Roller Bearing (50mm/1.969") LRB – suffix, and 55mm (2.165") 55J – suffix options. As these are usually produced for specific racing applications, we custom grind them per order to insure the latest cam lobe design technologies are used.

Roller lifters are offered in standard .842", .875" and .904" diameter. Any of these are available with appropriate pushrod seat offsets as required by the cylinder head preparation that was performed.

Contact Crane Cams directly for the latest product information on these engines.

					COMPLETE CAM SPECIFICATIONS					
	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @.050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.
Hydraulic Lifter Camshaf Brute low end torgue, great for standard 267 and 305	2010	500-	114102 ^{a,b}	99277-16	104	244	104	(12) 16	000	.378
engines. (50 state legal in 81-87 car and 81-92 truck 267-305 applications only. C.A.R.B. E.O. D-225-51)	2010	4000	114102-	99277-10	184 194	244 254	104	21 (7)	.000	
Brute low end torque, smooth idle, daily usage, fuel	H-248-2	800-	113971	99277-16	192	248	112	(11) 23	.000	400
economy, 1600-2200 cruise RPM, 7.75 to 8.75 compres- sion ratio advised. (50 state legal, pre-computer, C.A.R.B. E.O. D-225-51)	11 240 2	4600	113972 ^b	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	204	260	112	39 (15)	.000	
	2020	000	•	00277.1/	104	254	104	(7) 21	000	401
Great for 305 engines in cars, light and intermediate trucks with optional gearing. Good Iow and mid-range torque and HP. (50 state legal in 81-87 car applications only. C.A.R.B. E.O. D-225-19)	2020	800- 4400	114112ª,b	99277-16	194 204	254 264	104	(7) 21 26 (2)	.000 .000	
Replacement for factory 300 HP 327 cu.in. camshaft.	BluePrinted 3896929	800- 4500	968711	99277-16	195 202		112	(10.5) 25.5 37 (15)		.390 .410
Excellent low end torque, smooth idle, daily usage, fuel	Energizer	1000-	10003	99277-16	204	260	110	(3) 27	.000	.427
economy, 1600-2200 cruise RPM, 8.0 to 95 compression ratio advised. (50 state legal, pre-computer, C.A.R.B. E.O. D-225-21)	260 H10	4600	100032°		204	260		37 (13)		.427
Good mid-range and top-end performance in Monte Carlo SS, Camaro and Firebird with 305 HO, and 350 trucks. (50 state legal in 81-87 car and 81-92 truck 267- 305 applications only. C.A.R.B. E.O. D-225-51)	2030	1200- 4800	114122 ^{a,b}	99277-16	204 214	264 274	110	(8) 32 37 (3)	.000 .000	
Excellent low end torque and HP, smooth idle, daily usage, off road, towing, economy, also mild turbo- charged, marine applications: primarily used in 305 and 350 cu.in. near-stock engines for mild performance applications in heavy boats, OK for through-prop exhaust, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised. (50 state legal, pre-computer, C.A.R.B. E.O. D-225-18)	H-260-2	1200- 5000	113901 113902 ^b	99277-16	204 216	260 272	112	(5) 29 45 (9)	.000 .000	
Excellent low end torque and HP, smooth idle, daily usage, off road, towing, economy, also mild turbo- charged, marine applications: primarily used in 305 and 350 cu.in. near-stock engines for mild performance applications in heavy boats, OK for through-prop exhaust, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised.	Z-256-2	1200- 5200	113501* 113502* ^b	99277-16	206 218	256 268	112	(4) 30 46 (8)	.000 .000	
Good low end torque, smooth idle, daily usage, fuel economy, light towing, off road, 2200-2700 cruise RPM, 8.5 to 10.0 compression ratio advised. (50 state legal, pre-computer, C.A.R.B. E.O. D-225-21).	Energizer 266 H10	1400- 5000	10004 100042 ^c	99277-16	210 210	266 266	110	0 30 40 (10)		.440 .440
Great for 305 HO and performance 350 trucks, good mid and top end torque and HP, axle ratios of 3.73 or numeri- cally higher required, auto or 5-speed manual, must use 99470-1 Adjustable Fuel Pressure Regulator. (50 state legal in 81-87 267-400, carb equipped cars only. C.A.R.B. E.O. D-225-25)	2040	1600- 5400	114132 ^{a,b}	99277-16	210 216	270 276	114	(4) 34 47 (11)	.000 .000	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.	NOTE:	19 35
5 / 1 51 11		41.

988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 50 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged. NOTE: Camshafts having standard size journals with SFO firing

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special Since 1975, General Motors divisions have exchanged engines order. Contact Crane's Performance Consultants for details. NOTE: Camshafts for modified standard blocks, or Oldsmobile/

Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.

throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM	ROCKERS GOL
NIIS	SPRINGS	RETAINERS	JEALS	LUCKS	PUSHKUDS	ASSEMIDLI	AUNIS	ENERGIZER	RAC
11308-1 ^{4,e}	99848-16 ^{4,e}	99915-16°		99097-1 ^f	11621-169	11975-1* ^h	11800-16 ⁱ	11744-16 ^k	11750-1 10750-1 10751-1
11308-1 ^{d,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-169	11975-1* ^h	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-
11308-1 ^{d,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-16 ⁹	11975-1* ^h	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-
11308-1 ^{d,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-169	11975-1* [*]	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-
11308-1 ^{d,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-169	11975-1* ^h	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-
11308-1 ^{4,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-16 ⁹	11975-1 ^{*h}	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-
11308-1 ^{d,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-16 ⁹	11975-1* ^h	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-
11308-1 ^{d,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-169	11975-1 ^{°h}	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-
11308-1 ^{4,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-169	11975-1* ^h	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-
11308-1 ^{d,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-16 ^g	11975-1* ^h	11800-16 ⁱ	11744-16 ^k	11750- 10750- 10751-

Section Continued

- а
- For 81-87 applications. Cam and Lifter Kit, includes installation lubricants and Cam Sprocket bolt Locking Plate. Cam and Lifter Kit, includes assembly lubricants. b
- C
- Contains standard diameter valve springs, no machining required. For 1967-87 with 1.700" assembly height. Machined steel, heat treated. d
- е
- f
- Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. g

- h Performance steel billet gears and roller chain set.
 i. 5. ratio, 3/8" stud, long slot, (not self-aligning).
 k Energizer, 1.5 ratio, 3/8" stud (not self-aligning).
 i.5 ratio, 3/8" stud (not self-aligning).
 m 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers.
 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers.
- n 1.5 ratio, 3/8" stud, self-aligning narrow body for center bolt valve covers.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf		KANGE	Emissions code	LIFTERS	IIII/EXII.	IIIU/EXII.	Separation	IIIt/EXII	EXII.	EXII.
Good low end and mid range torque and HP, good idle, daily usage, off road, towing, economy, marine applica- tions: primarily used in 350 cu.in. mildly modified engines for mild performance applications in light boats, OK for through-prop exhaust, 2400-2800 cruise RPM, 8.5 to 10.0 compression ratio advised. (50 state legal, pre- computer, C.A.R.B. E.O. D-225-18)	H-266-2	1600- 5200	113931 113932ª ()	99277-16	210 216	266 272	114	(4) 34 47 (11)		.440 .454
Good low end and mid range torque and HP, good idle, daily usage, off road, towing, economy, marine applica- tions: primarily used in 350 cu.in. mildly modified engines for mild performance applications in light boats, OK for through-prop exhaust, 2400-2800 cruise RPM, 8.5 to 10.0 compression ratio advised.	Z-262-2	1600- 5400	113511* 113512** •	99277-16	212 218	262 268	114	(3) 35 48 (10)	.000 .000	
Good low end and mid range torque, good idle, daily usage, off road, highway towing, fuel efficiency plus per- formance, 2600-3000 cruise RPM, 8.75 to 10.0 compres- sion ratistate legal, pre-computer, C.A.R.B. E.O. D-225- 21)	Energizer 272 H10	1600- 5400	10005 100052 ^b	99277-16	216 216	272 272	110	3 33 43 (7)	.000 .000	
Serious performance for 305 and 350 carb equipped cars w/aftermarket intake, performance cylinder heads and free flow exhaust, auto or manual trans or modified 305 w/5-speed, axle ratios 3.73 or numerically higher required. 11308-1 Spring and Retainer Kit required for maximum perfomance. (50 state legal in 81-87 267 thru 400 carb equipped cars only. C.A.R.B. E.O. D-225-25).	2050	1800- 5600	114142ª.¢	99277-16	216 228	272 284	112	1 35 51 (3)		.454 .480
Good low end and mid range torque and HP, good idle, daily usage and off road, towing, performance and fuel efficiency, marine applications: for 350+ cu.in. modified engines with free flowing above water exhaust systems for performance applications in light pleasure and ski boats, including jet boats, 2600-3000 cruise RPM, 8.75 to 10.75 compression ratio advised, good w/plate nitrous system. Good w/centrifugal or Roots supercharger, 8 lbs. maximum boost w/8.5 maximum compression ratio advised. (50 state legal, pre-computer, C.A.R.B. E.O. D-225-18).	H-272-2	1800- 5600	113941 113942ª •	99277-16	216 228	272 284	112	1 35 51 (3)	.000 .000	.454 .480

RPM range shown is for average usage. These cam profiles	NOTE: Camshafts having standard size journals with SFO firing
will RPM higher, depending upon application.	order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on sp

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

NOTE: 1988-99 (herolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.

order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details. **NOTE:** Camshafts for modified standard blocks, or Oldsmobile/Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.

Camshafts having standard size journals with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details.

CRANE VAL	VE TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	NROCKERS – Gold Race
KIIS	SI KINGS	RETAINERS	JERES	LUCKS	TOSINODS	ASSEMBEI	AIIMD	ENERGIZER	NACE
11308-1 ^{4,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-169	11975-1 ^{*h}	11800-16 ⁱ	11744-16 ^k	11750-16 10750-16 10751-16
11308-1 ^{4,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-169	11975-1 ^{°h}	11800-16 ⁱ	11744-16 ^k	11750-16 10750-16 10751-16
11308-1 ^{4,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-169	11975-1 ^{*h}	11800-16 ⁱ	11744-16 ^k	11750-10 10750-10 10751-10
11308-1 ^{4,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-16º	11975-1" ^h	11800-16 ⁱ	11744-16 ^k	11750-16 10750-16 10751-16
11308-1 ^{4,e}	99848-16 ^{d,e}	99915-16°		99097-1 ^f	11621-16 ⁹	11975-1 ^{*h}	11800-16 ⁱ	11744-16 ^k	11750-16 10750-16 10751-16

Section Continued 👐

Cam and Lifter Kit, includes installation lubricants and Cam Sprocket bolt Locking Plate. Cam and Lifter Kit, includes assembly lubricants. а

- b
- For 81-87 applications. C
- d
- e f
- For 1967 applications. Contains standard diameter valve springs, no machining required. For 1967-87 with 1.700" assembly height. Machined steel, heat treated. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. g

- h Performance steel billet gears and roller chain set.
 i 1.5 ratio, 3/8" stud, long slot, (not self-aligning).
 k Energizer, 1.5 ratio, 3/8" stud (not self-aligning).
 l 1.5 ratio, 3/8" stud (not self-aligning).
 m 1.5 ratio, 3/8" stud, long slot, self-aligning), narrow body for center bolt valve covers.
 n 1.5 ratio, 3/8" stud, self-aligning narrow body for center bolt valve covers.

				_						
					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273 LIFTERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf	ts									
Good low and mid range torque, rough idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 2600-3000 cruise RPM, oval track; Street Stock, Enduro, Hobby, etc, 1/4-3/8 mile, 8.75 to 10.0 compression ratio advised.	Energizer 274 H06	1800- 5400	10017° 100172° ^b	99277-16	218 218	274 274	106	7 31 39 (1)	.000 .000	.450 .450
Good idle, daily usage and off road, towing, performance and fuel efficiency, marine applications: for 350+ cu.in. modified engines with free flowing above water exhaust systems for performance applications in light pleasure and ski boats, including jet boats. 2600-3000 cruise RPM, 8.75 to 10.75 compression ratio advised, good w/plate nitrous system. Good w/centrifugal or small Roots super- charger, 8 lbs. maximum boost w/8.5 maximum com- pression ratio advised.	Z-268-2	1800- 5800	113521* 113522'*	99277-16	218 230	268 280	112	2 36 52 (2)	.000 .000	.459 .486
Good mid range torque, good to fair idle, daily perfor- mance usage, mild bracket racing, auto trans w/stock to 2500 converter, 2700-3200 cruise RPM, 9.5 to 10.75 compression ratio advised.	Energizer 278 H10	2000- 5800	10013 100132 ^{°b}	99277-16 99377-16ª	222 222	278 278	110	6 36 46 (4)	.000 .000	.467 .467
Replacement for factory 350 HP 327 cu.in. camshaft.	BluePrinted 3863151	2000- 5600	967601	99277-16 99377-16ª	222 222		114	1 41 49 (7)	.000 .000	.447 .447
Performance usage, good upper RPM HP, 360+ cu.in., bracket racing; Pro ET, Super ET, etc., auto trans w/4000+ converter, 11.5 minimum compression ratio advised.	H-284	2200- 6000	114201	99277-16 99377-16ª	222 222	284 284	114	2 40 50 (8)	.000 .000	.450 .450

 RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.
 NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.
 Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

 IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
 NOTE: Camshafts having standard size journals with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details.
 Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

 NOTE:
 Camshafts having standard size journals with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details.
 Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

 NOTE:
 Camshafts having standard size journals with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details.

 NOTE:
 Camshafts for modified standard blocks, or Oldsmobile/Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.

CRANE VAL	VE TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	A ROCKERS Gold Race
11309-1 ^{9,h} 11310-1 ⁱ	96802-16 [;] 99846-16 ^h 99838-16 [;]	99915-16 ^f 99944-16	99820-16 ⁱ	99097-1 ^k	11621-16 [।] 11630-16™	11975-1*⁰ 11984-1*º 11977-1*₽	11801C-16ª 10800C-16'	11744-16 ["]	11750-1 10750-1 10751-1
11308-1 ^{e,f}	99848-16 ^{e,f} 96802-16 ^j	99915-16 ^f		99097-1 ^k	11621-16 [¦] 11630-16 [™]	11975-1° ⁿ 11984-1°º 11977-1° ^p	11801-16 ^s 11801C-16ª 10800C-16'	11744-16 ^u	11750-1 10750-1 10751-1
11308-1 ^{e,f}	99848-16 ^{e,f} 96802-16 ^j	99915-16 [†]		99097-1 ^k	11621-16 ¹ 11630-16 ^m	11975-1** 11984-1** 11977-1**	11801-16° 11801C-16° 10800C-16′	11744-16 ^u	11750-1 10750-1 10751-1
11308-1 ^{e,f}	99848-16 ^{e,f} 96802-16 ^j	99915-16 ^f		99097-1 ^k	11621-16 [⊨] 11630-16™	11975-1* ⁿ 11984-1*º 11977-1* ^p	11801-16° 11801C-16ª 10800C-16'	11744-16"	11750-1 10750-1 10751-1
11308-1 ^{e,f}	99848-16 ^{e,f} 96802-16 ^j	99915-16 ^f		99097-1 ^k	11621-16 [⊨] 11630-16™	11975-1* ⁿ 11984-1*º 11977-1* ^p	11801-16 ^s 11801C-16ª 10800C-16 ^r	11744-16	11750-1 10750-1 10751-1

Section Continued 🔰

Cam and Lifter Kit, includes installation lubricants and Cam Sprocket bolt Locking Plate. а

- Cam and Lifter Kit, includes assembly lubricants. b
- d Optional Hi Intensity Lifters, see page 272 for details.
- Contains standard diameter valve springs, no machining required. е
- For 1967-87 with 1.700" assembly height. f
- Contains standard diameter valve springs and machined steel valve stem locks (99095-1), no g machining required.
- Standard diameter XHTCS tool steel valve springs for 1.800" assembly height. Must machine cylinder heads. Standard diameter chrome silicon valve springs for 1.750" assembly height. Machined steel, heat treated. h

- k
- L Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
- Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. m

- n Performance steel billet gears and roller chain set.
- Pro Series steel billet gears and roller chain set. 0
- Pro Series steel billet gears and roller chain set with thrust bearing. p
- q
- 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb.
 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb.
 1.5 ratio, 3/8" stud, extra long slot (not self-aligning).
 1.5 ratio, 3/8" stud, extra long slot (not self-aligning).
 Energizer, 1.5 ratio, 3/8" stud (not self-aligning). r
- S
- u
- Unergizer, 1.3 ratio, 3/8 stud (not self-aligning).
 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers.
 x 1.5 ratio, 3/8" stud, self-aligning narrow body for center bolt valve covers.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf	ts									
Good mid range to upper RPM torque and HP, good idle, daily performance usage, mild bracket racing, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	H-278-2	2200- 6200	113801* 113802*a 3	99277-16 99377-16ª	222 234	278 290	114	2 40 56 (2)	.000 .000	.467 .494
Good mid range to upper RPM torque and HP, fair idle, daily performance usage, mild bracket racing, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	Z-274-2	2200- 6400	113531* 113532** 3	99277-16	224 230	274 280	110	7 37 50 0	.000 .000	.473 .486
Rough idle, moderate performance usage, good mid range to upper RPM HP, 3000-3400 cruise RPM, bracket racing; Street, Heavy, etc., auto trans w/3000+ converter, oval track; Street Stock, Enduro, Hobby, etc., 1/4-3/8 mile, serious off road, 9.5 to 11.0 compress. ratio advised.	Energizer 282 H06	2400- 6200	10008° 100082° ^b	99277-16 99377-16ª	226 226	282 282	106	12 34 44 (2)	.000 .000	.470 .470
Good mid range HP, fair idle, moderate performance usage, w/plate or manifold nitrous system, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised. Good w/cen- trifugal or Roots supercharger, 10 lbs maximum boost w/8.0 maximum ratio advised.	H-288-2	2600- 6400	113821° 113822'a 3	99277-16 99377-16ª	226 234	288 296	114	4 42 56 (2)	.000 .000	
Performance usage, good mid range torque and HP, bracket racing; Street, Heavy, etc., auto trans w/3000+ converter, 9.5 to 11.5 compression ratio advised.	H-228/320-6	2800- 6400	110551°	99277-16 99377-16ª	228 228	284 284	106	12 36 44 4	.000 .000	.480 .480
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, good mid range HP, 3400- 3800 cruise RPM, 9.5 to 11.0 compression ratio advised.	Energizer 284 H12	2800- 6200	10007 100072" ^b	99277-16 99377-16ª	228 228	284 284	112	7 41 51 (3)		.480 .480
Good upper RPM torque and HP, fair idle, moderate per- formance usage, 3600-4000 cruise RPM, 10.0 to 11.5 compression ratio advised. Good w/centrifugal or Roots supercharger, 12 lbs. maximum boost w/8.0 maximum compression ratio advised.	H-228/3200-14	3000- 6400	110601°	99277-16 99377-16ª	228 228	284 284	114	5 43 53 (5)	.000 .000	.480 .480
Oval track; .390/.410 lift rule classes, 2-bbl or 4-bbl, 1/4- 3/8 mile, 9.0 to 10.5 compression ratio advised.	H-228/260-25-7	2800- 6000	110251°	99277-16 99377-16ª	228 232	288 292	107	11 37 47 5	.000 .000	
Performance usage, good mid range torque and HP, bracket racing; Street, Heavy, etc., auto trans w/3000+ converter, oval track; Street Stock, Enduro, Hobby, etc., 1/4-3/8 mile, 10.0 to 11.5 compression ratio advised.	Saturday Night Special H-228/3200-25-6	2800- 6400	110591* 110594*ª 3	99277-16 99377-16ª	228 234	284 290	106	12 36 47 7	.000 .000	.480 .494
Performance usage, good mid and upper RPM HP, bracket racing; Street, Heavy, etc., auto trans w/3000+ converter, oval track; Street Stock, Enduro, Hobby, etc., 1/4-3/8 mile, serious off road, 10.0 to 11.5 compression ratio advised.	Energizer 286 H06	3000- 6400	10018° 100182° ^ь 3	99277-16 99377-16ª	230 230	286 286	106	13 37 45 5		.465 .465

 RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.
 NOTE:
 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 Since 1975, General Motors divisions have exchanged engines 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.
 Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

 IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
 NOTE:
 Camshafts having standard size journals with SF0 firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details.
 Sonte:
 Sonte:

 NOTE:
 Camshafts for modified standard blocks, or Oldsmobile/ Dark blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.
 Sonte:
 Consultants for details.

CAMSHAFTS

42

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
see py. 558	see pg. 517	see pg. 550	see pg. 545	See µg. 540	See pg. 200	see py. 508	see pg. 292	See py. 295	See pg. 2
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUM	A ROCKERS
AND RETAINER	VALVE		STEM	STEM		AND GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
11308-1 ^{e,f}	99848-16 ^{e,f}	99915-16 ^f		99097-1 ^m	11621-16°	11975-1 ^{*q}	11801-16 ^t		11750-1
	96802-16 ^j				11630-16 ^p	11984-1* ^r	11801C-16"	11744-16 [×]	10750-1
						11977-1*s	10800C-16 ^v		10751-1
11308-1 ^{e,f}	99848-16 ^{e,f}	99915-16 ^f		99097-1 ™	11621-16°	11975-1 ^{*q}	11801-16 ^t		11750-1
11500 1	96802-16 ⁱ	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11630-16 ^p	11984-1*r	11801C-16 ^u	11744-16 [×]	10750-1
	20002-10				11050-10	11977-1*	10800C-16 ^v	11744-10	10751-1
11309-1 ^{9,h}	96802-16 ^j	99915-16 ^f	99820-16 ⁱ	99097-1 ^m	11621-16°	11975-1 ^{*q}	11801C-16 ^u	11744 164	11750-1
11310-1 ⁱ	99846-16 ^h	99944-16		99094-1°	11630-16 ^p	11984-1 [*]	10800C-16 ^v	11744-16 [×]	10750-1
	99838-16 ⁱ 96874-16 ^{i,k}	99969-16 ¹				11977-1 ^{*s}			10751-1
11308-1 ^{e,f}	99848-16 ^{e,f}	99915-16 ^f		99097-1 ^m	11621-16°	11975-1*ª	11801-16 ^t		11750-1
	96802-16 ^j				11630-16 ^p	11984-1*r	11801C-16 ^u	11744-16 [×]	10750-1
						11977-1 [*]	10800C-16 ^v		10751-1
11309-1 ^{9,h}	96802-16 ^j	99915-16 ^f	99820-16 ⁱ	99097-1 ^m	11621-16°	11975-1 ^{*q}	11801C-16"		11750-1
11310-1 ⁱ	99846-16 ^h	99944-16		99094-1"	11630-16 ^p	11984-1*r	10800C-16 ^v	11744-16 [×]	10750-1
	99838-16 ⁱ	99969-16 ¹				11977-1*s			10751-1
	96874-16 ^{i,k}								
11309-1 ^{g,h}	96802-16 ⁱ	99915-16 ^f	99820-16 ⁱ	99097-1 ^m	11621-16°	11975-1 [*] 9	11801C-16 ^u		11750-1
11310-1 ⁱ	99846-16 ^h	99944-16		99094-1"	11630-16 ^p	11984-1*r	10800C-16 ^v	11744-16 [×]	10750-1
	99838-16 ⁱ 96874-16 ^{i,k}	99969-16 ¹				11977-1 [*]			10751-1
11200 1ab		0001E 16	00920 16	00007.1m	11601 160	11075 1 ^{*g}	110010 164		11750 1
11309-1 ^{9,h} 11310-1 ⁱ	96802-16 ⁱ 99846-16 ^h	99915-16 ^r 99944-16	99820-16 ⁱ	99097-1" 99094-1"	11621-16º 11630-16 ^p	11975-1*º 11984-1*'	11801C-16" 10800C-16"	11744-16 [×]	11750-1 10750-1
11310-1	99838-16 ⁱ	99969-16 ¹		3303 4 -1	11030-10	11977-1*5	100000-10	11/44-10	10751-1
	96874-16 ^{i,k}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							10/51 1
11309-1 ^{g,h}	96802-16 ^j	99915-16 ^f	99820-16 ⁱ	99097-1 ™	11621-16°	11975-1 ^{*q}	11801C-16"		11750-1
11310-1 ⁱ	99846-16 ^h	99944-16	>>020 IU	99094-1"	11630-16 ^p	11984-1 [*]	10800C-16 ^v	11744-16 [×]	10750-1
	99838-16 ⁱ	99969-16 ¹				11977-1*5			10751-1
	96874-16 ^{i,k}								
11309-1 ^{g,h}	96802-16 ^j	99915-16 ^f	99820-16 ⁱ	99097-1 ^m	11621-16º	11975-1 ^{*q}	11801C-16"		11750-1
11310-1 ⁱ	99846-16 ^h	99944-16		99094-1"	11630-16 ^p	11984-1*r	10800C-16 ^v	11744-16 [×]	10750-1
	99838-16 ⁱ	99969-16 ¹				11977-1*s			10751-1
	96874-16 ^{i,k}								
11309-1 ^{9,h}	96802-16 ⁱ	99915-16 ^f	99820-16 ⁱ	99097-1 ^m	11621-16°	11975-1 ^{*q}	11801C-16"		11750-1
11310-1 ⁱ	99846-16 ^h	99944-16		99094-1"	11630-16 ^p	11984-1*r	10800C-16 ^v	11744-16 [×]	10750-1
	99838-16 ⁱ	99969-16 ¹				11977-1*s			10751-1

Section Continued 🛰

- a Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate.
 b Cam and Lifter Kit, includes assembly lubricants.
 d Optional Hi Intensity Lifters, see page 272 for details.
 e Contains standard diameter valve springs, no machining required.
 f For 1967-87 with 1.700" assembly height.
 g Contains standard diameter valve springs and machined steel valve stem locks (99095-1), no machining required. machining required. Standard diameter XHTCS tool steel valve springs for 1.800" assembly height.
- h
- Must machine cylinder heads.
- Standard diameter chrome silicon valve springs for 1.750" assembly height. Dual valve springs for +.100" length valves.
- Requires Crane Multi Fit valve locks.
- Machined steel, heat treated. m
- n Machined steel, heat treated, Multi Fit.

- Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
 Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
 Performance steel billet gears and roller chain set.
 Pro Series steel billet gears and roller chain set.
 Pro Series steel billet gears and roller chain set with thrust bearing.
 1.5 ratio, 3/8" stud, extra long slot (not self-aligning).

- 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb (not self-aligning). u
- 1.5 ratio, 3/8" stud, self-aligning, Nitro Carb. V Energizer, 1.5 ratio, 3/8" stud (not self-aligning). X
- 1.5 ratio, 3/8" stud (not self-aligning).
- у ż
- 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers. aa 1.5 ratio, 3/8" stud, self-aligning narrow body for center bolt valve covers.
- 43

					СОМ	PLETE C	AM SPE		TIONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Clo @ .050 Cam Lif Int/Ext	′Hot t Int.	Gross Lift Int. Exh.
lydraulic Lifter Camshai										
Performance usage, good mid and upper RPM HP, fair idle, auto trans w/3000+ converter, 10.0 to 11.5 com- pression ratio advised.	H-230/318-12	3000- 6600	110501°	99277-16 99377-16'	230 230	290 290	112	8 42 52 (2)		.477 .477
Oval track; .390/.410 lift rule classes, 2-bbl or 4-bbl, 1/4- 3/8 mile, 10.0 to 11.0 compression ratio advised.	H-232/260-2S1-6	3000- 6400	110271°	99277-16 99377-16'	232 236	292 296	106	14 38 48 8		.390 .410
Oval track; .410 lift rule classes, 2-bbl or 4-bbl, 1/4-3/8 mile, 10.0 to 11.0 compression ratio advised.	H-232/2732-6	3000- 6400	110301"	99277-16 99377-16'	232 232	290 290	106	14 38 46 6		.410 .410
Fair idle, performance usage, good mid range HP, 3800- 4200 cruise RPM, 10.25 to 12.0 compression ratio advised.	H-296-2	3000- 6600	114561*	99277-16 99377-16'	234 242	296 304	110	12 42 56 6		.473 .488
Oval track; .390/.410 lift rule classes, 3/8-1/2 mile, 10.0 to 11.0 compression ratio advised.	H-236/260-251-6	3200- 6600	110291°	99277-16 99377-16'	236 242	296 302	106	16 40 51 11		.390 .410
Fair idle, performance usage, good mid range HP, 3800- 4200 cruise RPM, 10.25 to 12.0 compression ratio advised.	Z-286-2	3000- 6800	113541* 113542*ª 3	99277-16 99377-16'	236 244	286 294	110	13 43 57 7		.491 .497
Performance usage, good mid and upper RPM torque, bracket racing; Street, Heavy, Pro ET, Super ET, etc., auto trans w/3500+- converter, oval track; Street Stock, Enduro, Hobby, etc., 1/4-3/8 mile, 10.5 to 12.0 compres- sion ratio advised.	H-238/3347-6	3200- 6600	110651°	99277-16 99377-16'	238 238	294 294	106	17 4 49 9		.502 .502
Rough idle, performance usage, good mid and upper RPM torque and HP, bracket racing, auto trans w/3500+ converter, 4200-4600 cruise RPM, 10.5 to 12.0 compres- sion ratio advised.	H-238/3347-252-10	3200- 6800	110521°	99277-16 99377-16'	238 242	294 304	110	14 44 56 6		.502 .520
Performance usage, good mid and upper RPM torque and HP, bracket racing; Street, Heavy, Pro ET, Super ET, etc., auto trans w/3500+ converter, oval track; Street Stock, Enduro, Hobby, etc., 1/4-3/8 mile, 10.5 to 12.0 compression ratio advised.	Saturday Night Special H-238/3347-2S-6	3200- 6800	110691 * 110694 *ª •	99277-16 99377-16	238 244	294 300	106	17 41 52 12		.502 .516
Rough idle, performance usage, w/manifold nitrous sys- tem, good mid and upper RPM HP, bracket racing, auto trans w/3500+ converter, 4200-4600 cruise RPM, 10.5 to 12.0 compression ratio advised. Good w/Roots super- charger, 15 lbs. maximum boost w/8.0 maximum com- pression ratio advised.	H-300-2	3200- 7000	114051°	99277-16 99377-16'	238 246	300 308	112	12 46 60 6		.480 .495

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.	NOTE:		Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.
IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.		Camshafts having standard size journals with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details.	
	NOTE:	Camshafts for modified standard blocks, or Oldsmobile/ Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.	

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See J
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUI Energizer	M ROCKE G(R/
11309-1 ^{d,e} 11310-1 ^f	96802-16 ^g 99846-16 ^e 99838-16 ^f 96874-16 ^{f,h}	99915-16 ⁱ 99944-16 99969-16 ⁱ	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16ª 11630-16ª	11975-1*º 11984-1*º 11977-1*٩	11801C-16' 10800C-16 ^s	11744-16 ^u	11750 10750 10751
11309-1 ^{d,e} 11310-1 ^f	96802-16 ^g 99846-16 ^e 99838-16 ^f 96874-16 ^{țh}	99915-16 ⁱ 99944-16 99969-16 ^j	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16ª 11630-16ª	11975-1*º 11984-1*º 11977-1*٩	11801C-16' 10800C-16 ^s	11744-16 ^u	1175(1075(10751
11309-1 ^{d,e} 11310-1 ^f	96802-16 ^g 99846-16 ^e 99838-16 ^f 96874-16 ^{ț,}	99915-16 ⁱ 99944-16 99969-16 ^j	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16 ^m 11630-16 ⁿ	11975-1*º 11984-1* ^p 11977-1*٩	11801C-16' 10800C-16'	11744-16 ^u	1175(1075(10751
11310-1 ^f	99838-16 ^f 96874-16 ^{f,h}	99944-16 99969-16 ^j	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16" 11630-16"	11975-1*º 11984-1*¤ 11977-1*٩	11801C-16' 10800C-16'	11744-16 ^u	11750 10750 10751
11309-1 ^{d,e} 11310-1 ^f	96802-16 ^g 99846-16 ^e 99838-16 ^f 96874-16 ^{ț,h}	99915-16 ⁱ 99944-16 99969-16 ⁱ	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16™ 11630-16¹	11975-1*º 11984-1*¤ 11977-1*٩	11801C-16' 10800C-16'	11744-16 ^u	11750 10750 10751
11310-1 ^f	99838-16 ^f 96874-16 ^{ț,h}	99944-16 99969-16 ^j	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16ª 11630-16ª	11975-1*º 11984-1* ^p 11977-1*٩	11801C-16' 10800C-16'	11744-16 ^u	11750 10750 10751
11310-1 ^f	99838-16 ^f 96874-16 ^{ț,h}	99944-16 99969-16 ^j	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16ª 11630-16ª	11975-1*º 11984-1*¤ 11977-1*٩	11801C-16 ^r 10800C-16 ^s	11744-16 ^u	11750 10750 10751
11309-1 ^{d,e} 11310-1 ^f	96802-16 ^g 99846-16 ^e 99838-16 ^f 96874-16 ^{f,h}	99915-16 ⁱ 99944-16 99969-16 ⁱ	99820-16 ^f	99097-1 ^k 99094-1 ¹	11621-16ª 11630-16ª	11975-1°° 11984-1°¤ 11977-1°۹	11801C-16' 10800C-16 ^s	11744-16 ^u	11750 10750 10751
11309-1 ^{d,e} 11310-1 ^f	96802-16 ^g 99846-16 ^e 99838-16 ^f 96874-16 ^{f,h}	99915-16 ⁱ 99944-16 99969-16 ⁱ	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16ª 11630-16ª	11975-1°° 11984-1*° 11977-1*°	11801C-16 ^r 10800C-16 ^s	11744-16 ^u	11750 10750 10751
11310-1 ^f	99838-16 ^f 96874-16 ^{f,h}	99944-16 99969-16 [;]	99820-16 ^f	99097-1 ^k 99094-1 ⁱ	11621-16™ 11630-16™	11975-1*º 11984-1* ^p 11977-1* ^q	11801C-16' 10800C-16'	11744-16 ^u	11750 10750 10751

- Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate. а
- c
- Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate. Optional Hi Intensity Lifters, see page 272 for details. Contains standard diameter valve springs and machined steel valve stem locks (**99095-1**), no machining required. Standard diameter XHTCS tool steel valve springs for 1.800" assembly height. Must machine cylinder heads. Standard diameter chrome silicon valve springs for 1.750" assembly height. Dual valve springs for +.100" length valves. For standard diameter valve springs, no machining required. Benuines Crane Multi Ei valve locks d
- е
- f
- g h

- Requires Crane Multi Fit valve locks.
- Machined steel, heat treated.
- Machined steel, heat treated, Multi Fit.

- m Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
 n Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
 o Performance steel billet gears and roller chain set.
 p Pro Series steel billet gears and roller chain set.
 q Pro Series steel billet gears and roller chain set with thrust bearing.
 r 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb (not self-aligning).
 s 1.5 ratio, 3/8" stud, ont self-aligning, Nitro Carb.
 u Fnervier. 1 5 ratio, 3/8" stud (not self-aligning).

- Energizer, 1.5 ratio, 3/8" stud (not self-aligning). 1.5 ratio, 3/8" stud (not self-aligning). u
- V
- 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers. W
- 1.5 ratio, 3/8" stud, self-aligning narrow body for center bolt valve covers. х

					6014			CIEL	CATI	<u>onc</u>	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Advertised Degrees Duration Int/Exh.		Open/ @.0 Cam Int/	/Close)50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf	fts										
Performance usage, good mid to upper RPM torque, bracket racing; Heavy, Pro ET, Super ET, etc., auto trans w/3500+ converter, oval track; Street Stock, Enduro, Hobby, etc., 3/8-1/2 mile, 10.5 to 12.0 compression ratio advised.	H-244/3439-6	3200- 6800	110711°	99277-16 99377-16'	244 244	300 300	106	20 52		.000 .000	
Performance usage, good upper RPM torque and HP, bracket racing; Heavy, Pro ET, Super ET, etc., auto trans w/3500+ converter, 10.5 to 12.0 compression ratio advised.	Saturday Night Special H-244/3439-2S-6	3400- 7000	110741 [°] 110744 ^{°a}	99277-16 99377-16'	244 252	300 308	106	20 56	44 16		.516 .525
Performance usage, good upper RPM torque and HP, bracket racing; Heavy, Pro ET, Super ET, etc., auto trans w/3500+ converter, oval track; Street Stock, Enduro, Hobby, etc., 3/8-1/2 mile, 10.5 to 12.0 compression ratio advised.	Energizer 302 H06	3400- 7000	10011° 100112° ^b	99277-16 99377-16'	246 246	302 302	106	21 53	45 13	.000 .000	.500 .500
Rough idle, performance usage, good w/manifold nitrous system, good upper RPM HP, bracket racing, auto trans w/3500+ converter, 11.25 to 13.0 compression ratio advised. Good w/Roots supercharger, 18 lbs. maxi- mum boost w/8.0 maximum compression ratio advised.	H-308-2	3400- 7200	114571° 3	99277-16 99377-16'	246 254	308 316	112	16 64	50 10	.000 .000	
Competition only, good upper RPM HP, 360+ cu.in., bracket racing w/light car; Pro ET, Super ET, etc., auto trans w/4000+ converter, 12.0 minimum compression ratio advised.	H-252/3500-12	3600- 7200	110541°	99277-16 99377-16'	252 252	308 308	112	19 63	53 9	.000 .000	
Competition only, NHRA Stock Eliminator 255 HP 350 cu.in.	654-655-08 T2 0A	4200- 7200	110311°	99277-16 99377-16'	252 272	286 306	108	18 64	54 28		.390 .410
Competition only, good upper RPM HP, 360+ cu.in., bracket racing; Pro ET, Super ET, etc., auto trans w/4000+ converter, 11.5 minimum compression ratio advised.	H-256/3500-8	3800- 7200	114581°	99277-16 99377-16'	256 256	312 312	108	25 61	51 15	.000 .000	

 RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.
 NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 Since 1975, General Motors divisions have exchanged engines 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.
 Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

 IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
 NOTE: Camshafts having standard size journals with SF0 firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Consultants for details.
 Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

 NOTE: Camshafts having standard size journals with SF0 firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Consultants for details.
 NOTE: Camshafts for modified standard blocks, or Oldsmobile/
 have before ordering.

 NOTE: Camshafts for modified standard blocks, por oldsmobile/
 Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.
 Performance Consultants for details.

CRANE VALV	/E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKERS — Gold Race
11310-1 ⁴	99838-16ª 96874-16 ^g	99944-16 99969-16 ⁱ	99820-16 ⁴	99097-1 ^k 99094-1 ⁱ	11621-16 ^m 11630-16 ⁿ	11975-1*º 11984-1*¤ 11977-1*٩	11801C-16' 10800C-16 ^s	11744-16 ["]	11750-16 ^v 10750-16 ^w 10751-16 ^x
11309-1 ^{e,f} 11310-1 ^d	96802-16 ^h 99846-16 ^f 99838-16 ^d 96874-16 ^g	99915-16 [;] 99944-16 99969-16 [;]	99820-16 ^d	99097-1 ^k 99094-1 ⁱ	11621-16 ^m 11630-16 ⁿ	11975-1°° 11984-1"¤ 11977-1"¶	11801C-16' 10800C-16 ^s	11744-16 ^u	11750-16 ^v 10750-16 ^w 10751-16 ^x
11309-1 ^{e,f} 11310-1 ^d	96802-16 ^h 99846-16 ^f 99838-16 ^d 96874-16 ^g	99915-16 [;] 99944-16 99969-16 [;]	99820-16ª	99097-1 ^k 99094-1 ⁱ	11621-16 ^m 11630-16 ⁿ	11975-1*º 11984-1* ^p 11977-1* ^q	11801C-16' 10800C-16'	11744-16 ^ª	11750-16 ^v 10750-16 ^w 10751-16 ^x
11310-1 ⁴	99838-16ª 96874-16ª	99944-16 99969-16 ⁱ	99820-16 ^d	99097-1 ^k 99094-1 ⁱ	11621-16 ^m 11630-16 ⁿ	11975-1*º 11984-1*¤ 11977-1*٩	11801C-16' 10800C-16'	11744-16"	11750-16 ^v 10750-16 ^w 10751-16 ^x
11310-1ª	99838-16ª 96874-16 ^g	99944-16 99969-16 ⁱ	99820-16 ^d	99097-1 ^k 99094-1 ⁱ	11621-16™ 11630-16 [™]	11975-1 [*] º 11984-1 ^{*p} 11977-1 ^{*q}	11801C-16' 10800C-16'	11744-16 ^u	11750-16 ^v 10750-16 ^w 10751-16 ^x
11309-1 ^{e,f}	99846-16 ^f	99915-16 ⁱ		99097-1 ^k	11630-16ª	11975-1*º 11984-1*¤ 11977-1*¶	11801C-16' 10800C-16 ^s		
11310-1 ⁴	99838-16ª 96874-16 ^g	99944-16 99969-16 ⁱ	99820-16 ^d	99097-1 ^k 99094-1 ⁱ	11621-16 ^m 11630-16 ⁿ	11975-1*º 11984-1*º 11977-1*٩	11801C-16' 10800C-16 ^s	11744-16ª	11750-16 ^v 10750-16 ^w 10751-16 ^x

Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate а

- b Cam and Lifter Kit, includes assembly lubricants.
- Optional Hi intensity lifters, see page 272 for details. C
- d
- Must machine cylinder heads. Contains standard diameter valve springs and machined steel valve stem locks (**99095-1**), no е Contains standard diameter valve springs and machined steel valve stem locks machining required. Standard diameter XHTCS tool steel valve springs for 1.800" assembly height. Dual valve springs for +.100" length valves. Standard diameter chrome silicon valve springs for 1.750" assembly height. Requires Crane Multi Fit valve locks.
- f

g

- h
- For standard diameter valve springs, no machining required.
- Machined steel, heat treated.
- Machined steel, heat treated, Multi Fit. L

- m Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
- n
- Performance steel billet gears and roller chain set. 0

- Performance steel billet gears and roller chain set.
 Pro Series steel billet gears and roller chain set.
 Pro Series steel billet gears and roller chain set with thrust bearing.
 r 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb (not self-aligning).
 s 1.5 ratio, 3/8" stud, self-aligning, Nitro Carb.
 u Energizer, 1.5 ratio, 3/8" stud (not self-aligning).
 v 1.5 ratio, 3/8" stud (not self-aligning).
 w 1.5 ratio, 3/8" stud (not self-aligning).
 w 1.5 ratio, 3/8" stud, not self-aligning), narrow body for center bolt valve covers.
 x 1.5 ratio, 3/8" stud, self-aligning narrow body for center bolt valve covers.

COMPLETE CAM SPECIFIC	

	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
	Hydraulic Roller Camsha	fts <u> </u>										
	Brute low end torque and HP; smooth idle, daily usage, towing, economy, also mild turbocharged, 2200-3000 cruise RPM, 8.0 to 9.5 compression ratio advised.	HR-260-2-12 IG	1000- 5200	119811*ª 3	11532-16 ^ь	204 214	260 270	112	(5) 29 44 (10)	.000 .000	.429 .452	
	Excellent low end and mid range torque and HP, good idle, daily usage, off road, performance and fuel efficien- cy, 2400-3200 cruise RPM, 8.75 to 10.5 compression ratio advised. Good w/small centrifugal or Roots supercharger, 8 lbs. maximum boost w/8.5 maximum compression ratio advised, .900" base circle for long stroke clearance.	HR-210/325-25-12.90 IG	1400- 5600	119561'ª €	11532-16 ^b	210 218	272 280	112	(2) 32 46 (8)	.000 .000		
	Excellent low end and mid range torque and HP, good idle, daily usage, off road, performance and fuel efficien- cy, 2600-3400 cruise RPM, good w/small plate nitrous system, 8.75 to 10.5 compression ratio advised. Good w/ centrifugal or small Roots supercharger, 8 lbs. maximum boost w/8.5 maximum compression ratio advised.	HR-276-25-12 IG	1600- 5800	119821'ª 3	11532-16 ^b	214 222	276 284	112	0 34 48 (6)	.000 .000	.488 .509	
	Excellent low end and mid range torque and HP, good idle, daily usage, off road, performance and fuel efficien- cy, 2600-3400 cruise RPM, good w/small plate nitrous system, 8.75 to 10.5 compression ratio advised. Good w/ centrifugal or small Roots supercharger, 8 lbs. maximum boost w/8.5 maximum compression ratio advised, .900" base circle for long stroke clearance.	HR-216/339-25-12.90 IG	1600- 5800	119671°ª	11532-16 ^b	216 224	284 292	112	1 35 49 (5)		.509 .528	
	Good mid range torque and HP, fair idle, moderate per- formance usage, mild bracket racing, auto trans w/2500+ converter, good w/plate or manifold nitrous system, 3000-3800 cruise RPM, 9.5 to 10.75 compression ratio advised. Good w/centrifugal or Roots supercharger, 10 lbs. max. boost w/8.0 max. compression ratio advised.	HR-284-25-12 IG	2000- 6200	119831'ª 3	11532-16 ^ь	222 230	284 292	112	4 38 52 (2)	.000 .000		
	Good mid range torque and HP, fair idle, moderate per- formance usage, mild bracket racing, auto trans w/2500+ converter, good w/plate or manifold nitrous system, 3000-3800 cruise RPM, 9.5 to 10.75 compression ratio advised. Good w/centrifugal or Roots supercharger, 10 lbs. maximum boost w/8.0 maximum compression ratio advised, .900" base circle for long stroke clearance.	HR-222/345-25-12.90 IG	2000- 6200	119701*ª	11532-16 ^b	222 230	288 296	112	4 38 52 (2)	.000 .000		
	Good mid range torque and HP, fair idle, moderate per- formance usage, serious off road, mild bracket racing w/ heavy car, auto trans w/2500+ converter, 3000-3800 cruise RPM, 9.5 to 10.75 compression ratio advised.	HR-230/352-251-8 IG	2400- 6400	119571*ª 3	11532-16 ^b	230 238	292 300	108	12 38 52 6	.000 .000		
	Good mid range torque and HP, fair idle, performance usage, 3600-4400 cruise RPM, good with manifold nitrous system, 10.0 to 11.5 compression ratio advised. Good w/Roots supercharger, 15 lbs. maximum boost w/8.0 maximum compression ratio advised, .900" base circle for long stroke clearance.	HR-230/359-25-12.90 IG	2600- 6600	119661*ª 3	11532-16 ^ь	230 238	292 300	112	8 42 56 2	.000 .000		
-	Good mid range torque and HP, fair idle, performance usage, mild bracket racing, auto trans w/3000+ convert- er, 3800-4600 cruise RPM, good with manifold nitrous system, 10.0 to 11.5 compression ratio advised. Good w/ Roots supercharger, 15 lbs. maximum boost, w/8.0 maxi- mum compression ratio advised.	HR-296-25-12 IG	2800- 6800	119841*ª (3)	11532-16 ^b	234 242	296 304	112	10 44 58 4	.000 .000	.539 .558	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 Since 1975, General Motors divisions have exchanged engines than the 57-87 engines and cannot be interchanged. **NOTE:** When using 55-56, 265 cu.in. blocks, late model cam bear-

ings must be installed.

350 V-8 engines) use a different configuration camshaft core throughout different models. Be certain of exactly which engine you have before ordering.

- IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability, and to insure that correct components are used, the NOTE: Camshafts having standard size journals with SFO firing appropriate CamPonent Kit is recommended. Each Crane CamPonent Kit contains the valve train components needed for maximum performance.
- IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details. . NOTE: Camshafts for modified standard blocks, or Oldsmobile/ Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	A ROCKEI Go Ra
11307-1 ^{c,d}	99838-16ª 96802-16° 144846-16 [×]	99944-16 99915-16º	99820-16 ^d	99097-1 ⁱ	11628-16 ^k 95621-16 ⁱ	11975-1* ^m 11984-1* ⁿ 11977-1*°	11801-16º 11801C-16º 10800C-16'	11744-16 ^t	11750 10750 10751
11307-1 ^{cd}	99838-16ª 96802-16ª 144846-16 ^x	99944-16 99915-16º	99820-16 ⁴	99097-1 ⁱ	11628-16 ^k 95621-16 ⁱ	11975-1* ^m 11984-1* ⁿ 11977-1*º	11801-16 ^p 11801C-16 ^q 10800C-16 ^r	11744-16 ^t	11750 10750 10751
11307-1 ^{.,d}	99838-16ª 96802-16° 144846-16 [×]	99944-16 99915-16º	99820-16 ⁴	99097-1 ⁱ	11628-16 ^k 95621-16 ⁱ	11975-1 ^{*m} 11984-1* ⁿ 11977-1*°	11801-16 ^p 11801C-16 ^q 10800C-16 ^r	11744-16 ^t	11750 10750 10751
11307-1 ^{c,d}	99838-16ª 96802-16ª 144846-16*	99944-16 99915-16º	99820-16 ⁴	99097-1 ⁱ	11628-16 ^k 95621-16 ⁱ	11975-1 ^{°m} 11984-1 ^{°n} 11977-1°°	11801-16º 11801C-16º 10800C-16'	11744-16 ^t	11750 10750 10751
11307-1 ^{.,d}	99838-16 ^d 96877-16 ^{d,f} 144846-16 ^x	99944-16 99969-16 ^h	99820-16ª	99097-1 ⁱ 99088-1 ^j	11628-16 ^k 95621-16 ⁱ	11975-1 ^{°m} 11984-1 ^{°n} 11977-1°°	11801-16 ^p 11801C-16 ^q	11744-16 ^t	11750 10750 10751
11307-1 ^{cd}	99838-16 ^d 96877-16 ^{d,f} 144846-16 ^x	99944-16 99969-16 ^h	99820-16ª	99097-1 ⁱ 99088-1 ^j	11628-16 ^k 95621-16 ⁱ	11975-1 ^{°m} 11984-1 ^{°n} 11977-1°°	11801-16 ^p 11801C-16 ^q	11744-16 ^t	11750 10750 10751
11307-1 ^{c,d}	99838-16 ^d 96877-16 ^{d,f} 144846-16 ^x	99944-16 99969-16 ^h	99820-16 ^d	99097-1 ⁱ 99088-1 ^j	11628-16 ^k 95621-16 ⁱ	11975-1 ^{°m} 11984-1 ^{°n} 11977-1°°	11801-16 ^p 11801C-16 ^q	11744-16 ^t	11750 10750 10751
11307-1 ^{c,d}	99838-16 ^d 96877-16 ^{d,f} 144846-16 ^x	99944-16 99969-16 ^h	99820-16 ⁴	99097-1 ⁱ 99088-1 ^j	11628-16 ^k 95621-16 ⁱ	11975-1 ^{*m} 11984-1* ⁿ 11977-1*°	11801-16 ^p 11801C-16 ^q	11744-16 ^t	11750 10750 10751
11307-1 ^{c,d}	99838-16 ^d 96877-16 ^{d,f}	99944-16 99969-16 ^h	99820-16 ^d	99097-1 ⁱ 99088-1 ^j	11628-16 ^k 95621-16 ⁱ	11975-1 ^{*™} 11984-1* [™]	11801-16 ^p 11801C-16 ^q	11744-16'	11750 10750

- Requires cam button spacer, aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to а prevent fuel pump lobe wear. Vertical locking bar hydraulic roller lifters, no machining required. CamPonent Kit contents:
- b
- c
- CamPonent Kit contents: Hydraulic Roller Lifters, set of 16 (**11532-16**) Pushrods, Special Length, set of 16 (**11628-16**) Valve Springs, set of 16 (**99838-16**) Valve Spring Retainers, set of 16 (**99944-16**) Machined Steel Valve Stem Locks, set of 32 (**99097-1**) Valve Stem Seals, set of 16 (**99820-16**) Fuel Pump Pushrod (**11985-1**) Cam Sprocket Bolt Locking Plate Kit (**99168-1**) Needle Bearing Cam Button Spacer (**99164-1**) Must machine cylinder heads. Standard diameter chrome silicon valve springs for 1.750" assembly height. For +.100" long valves. For standard diameter valve springs.

- d
- e
- q

- Requires Crane Multi Fit valve locks. h

- Requires Crane Multi Fit valve locks. Machined steel, heat treated. Machined steel, heat treated, Multi Fit. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Pro Series one-piece, for use with or without pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Series steel billet gears and roller chain set set. Series steel billet gears and roller chain set. Series steel billet gears and roller chain set set. Series steel billet gears and roller chain set set. Series steel billet gears and roller chain set set. Series steel billet gears and roller chain set set. Series steel billet gears and roller chain set set. Series steel billet gears and roller chain set set. Series steel billet gears and roller chain set. Stantio, 3/8" stud, or self-aligning). Valve Train Stabilizer available, see page 343. Series (3/8" stud, self-aligning), valve Train Stabilizer available, see page 343. Series (3/8" stud, self-aligning), narrow body for center bolt valve covers. Stantio, 3/8" stud, self-aligning narrow body for center bolt valve covers. Standard diameter PAC Enhanced valve springs for 1.750" assembly height.
- m
- n
- 0
- p q

- u
- v
- w x

Section Continued

		l ante a	<u> </u>		EC			

	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
ŀ	Aydraulic Roller Camshat	fts — Retrofit						•				
	Good mid range torque and HP, fair idle, performance usage, mild bracket racing, auto trans w/3000+ convert- er, 3800-4600 cruise RPM, good with manifold nitrous system, 10.0 to 11.5 compression ratio advised. Good w/ Roots supercharger, 15 lbs. maximum boost, w/8.0 maxi- num compression ratio advised, .900" base circle for long stroke clearance.	HR-234/365-25-12.90 IG	2800- 6800	119691*ª 3	11532-16 ^ь	234 242	296 304	112	10 44 58 4	.000 .000		
	Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, mild bracket racing, auto trans w/3000+ converter, 3800-4600 cruise RPM, good with manifold nitrous system, 10.5 to 112.0 compression ratio advised. Good w/Roots supercharger, 18 lbs. maximum boost, w/8.0 maximum compression ratio advised, .900″ base circle for long stroke clearance.	HR-238/372-252-10.90 IG	3000- 6800	119581*ª •	11532-16 ^ь	238 242	300 304	110	14 44 56 6	.000 .000		
	Good upper RPM torque and HP, rough idle, performance usage, bracket racing, auto trans w/3500+ converter, 4200-5000 cruise RPM, 10.5 to 12.0 compression ratio advised, 370+ c.u.in. Also mild supercharged and/or nitrous, .860" base circle for long stroke clearance.	HR-306-25-10.86 IG	3200- 7000	119651*ª (3)	11532-16 ^b	240 248	306 314	110	15 45 59 9	.000 .000		
	Rough idle, performance usage, good w/large nitrous system, good upper RPM torque and HP, 370+ cu.in., bracket racing, auto trans w/3500+ converter, 4200- 5000 cruise RPM, 10.5 to 12.0 compression ratio advised, .860" base circle for long stroke clearance. Good w/ Roots upercharger, 18 lbs. maximum boost w/8.0 maximum compression ratio advised.	HR-240/372-251-14.86 IG	3400- 7200	119681*ª €	11532-16 ⁶	240 248	306 314	114	11 49 63 5	.000 .000		
	Rough idle, performance usage, good w/large nitrous system, good upper RPM torque and HP, 370+ cu.in., bracket racing, auto trans w/3500+ converter, 10.5 to 12.5 compression ratio advised, .900" base circle for long stroke clearance. Good w/ Roots supercharger, 20 lbs. max. boost w/8.0 max. compression ratio advised.	HR-242/372-25-12.90 IG	3600- 7200	119591*ª (3)	11532-16 ^b	242 250	304 312	112	14 48 62 8	.000 .000		
	Rough idle, performance usage, good w/large nitrous system, good upper RPM torque and HP, 380+ cu.in., bracket racing, auto trans w/4000+ converter, 11.0 to 12.5 compression ratio advised. Good w/ Roots super- charger, 22 lbs. maximum boost w/8.0 maximum com- pression ratio advised.	HR-246/372-25-14 IG	3800- 7200	119601'ª 3	11532-16 ⁶	246 254	308 316	114	14 52 66 8	.000 .000		
	Competition only, good upper RPM torque and HP, 370+ cu.in., bracket racing, auto trans w/4000+ converter, 11.5 to 13.0 compression ratio advised, .860" base circle for long stroke clearance.	HR-250/372-25-10.86 IG	4000- 7200	119611*ª 3	11532-16 ^b	250 258	316 324	110	20 50 64 14	.000 .000		
	Competition only, good upper RPM torque and HP, 370+ cu.in., bracket racing, auto trans w/race converter, 12.0 minimum compression ratio advised.	HR-252/400-2S-8 IG	4200- 7200	119711*ª 3	11532-16 ^b	252 256	322 326	108	22.5 49.5 60.5 15.5	.000 .000		
	Competition only, good upper RPM HP, 380+ cu.in., bracket racing, auto trans w/race converter, good w/large nitrous system, 12.5 minimum compression ratio advised.	HR-258/372-25-12.86 IG	4400- 7200	119721*ª 3	11532-16 ^b	258 266	320 328	112	22 56 70 16	.000 .000		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability, and to insure that correct components are used, the appropriate CamPonent Kit is recommended. Each Crane CamPonent Kit contains the valve train components needed

for maximum performance. IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

- than the 57-87 engines and cannot be interchanged. NOTE: When using 55-56, 265 cu.in. blocks, late model cam bear-
- ings must be installed. **NOTE:** Camshafts having standard size journals with SFO firing
- order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details. . NOTE: Camshafts for modified standard blocks, or Oldsmobile/
 - Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.

NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 Since 1975, General Motors divisions have exchanged engines 350 V-8 engines) use a different configuration camshaft core throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See p
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKE Go R
11307-1 ^{c,d}	99838-16 ^d 96877-16 ^{d,e} 144846-16 ^u	99944-16 99969-16 ^f	99820-16 ^₄	99097-1 ⁹ 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1 ^{*k} 11984-1* ⁱ 11977-1 ^{*m}	11801-16ª 11801C-16º	11744-16ª	1175 1075 1075
11307-1 ^{cd}	99838-16 ^d 96877-16 ^{d,e} 144846-16 ^u	99944-16 99969-16 ^r	99820-16 ^d	99097-1º 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1" ^k 11984-1" ^I 11977-1" ^m	11801-16" 11801C-16°	11744-16ª	1175 1075 1075
11307-1 ^{c,d}	99838-16 ^d 96877-16 ^{d,e} 144846-16 ^u	99944-16 99969-16 ^f	99820-16ª	99097-1 ⁹ 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1 ^{*k} 11984-1* ⁱ 11977-1* ^m	11801-16" 11801C-16°	11744-16ª	1175 1075 1075
11307-1 ^{c,d}	99838-16 ^d 96877-16 ^{d,e} 144846-16 ^u	99944-16 99969-16 ^f	99820-16ª	99097-1 ⁹ 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1* ^k 11984-1* ¹ 11977-1* ^m	11801-16" 11801C-16°	11744-16ª	1175 1075 1075
11307-1 ^{cd}	99838-16 ⁴ 96877-16 ^{4,e} 144846-16"	99944-16 99969-16'	99820-16ª	99097-1º 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1* ^k 11984-1* ⁱ 11977-1* ^m		11744-16ª	1175 1075 1075
11307-1 ^{c,d}	99838-16 ^d 96877-16 ^{d.e} 144846-16 ^u	99944-16 99969-16 ^f	99820-16 ^d	99097-1 ⁹ 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1* ^k 11984-1* ⁱ 11977-1* ^m		11744-16ª	1175 1075 1075
11307-1 ^{c,d}	99838-16 ^d 96877-16 ^{d,e} 144846-16"	99944-16 99969-16 ^f	99820-16 ^d	99097-1 ⁹ 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1 ^{*k} 11984-1 ^{*i} 11977-1 ^{*m}		11744-16ª	1175 1075 1075
11307-1 ^{.,d}	99838-16 ^d 96877-16 ^{d,e} 144846-16 ^u	99944-16 99969-16 ^f	99820-16ª	99097-1 ⁹ 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1 ^{*k} 11984-1* ⁱ 11977-1 ^{*m}		11744-16ª	1175 1075 1075
11307-1 ^{.,d}	99838-16 ^d 96877-16 ^{d,e} 144846-16 ^u	99944-16 99969-16 ^f	99820-16 ^d	99097-1 ⁹ 99088-1 ^h	11628-16 ⁱ 95621-16 ⁱ	11975-1 ^{*k} 11984-1* ⁱ 11977-1* ^m		11744-16ª	1175 1075 1075

- Requires cam button spacer, aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Vertical locking bar hydraulic roller lifters, no machining required. CamPonent Kit contents: а b
- c
- CamPonent Kit contents: Hydraulic Roller Lifters, set of 16 (11532-16) Pushrods, Special Length, set of 16 (11628-16) Valve Spring, set of 16 (99838-16) Valve Spring Retainers, set of 16 (99944-16) Machined Steel Valve Stem Locks, set of 32 (99097-1) Valve Stem Seals, set of 16 (99820-16) Fuel Pump Pushrod (11985-1) Cam Scaredte Relt Acking Plate Mit (00168-1)
- Cam Sprocket Bolt Locking Plate Kit (**99168-1**) Needle Bearing Cam Button Spacer (**99164-1**)
- Must machine cylinder heads. For +.100" long valves. d
- e

- Requires Crane Multi Fit valve locks. f

- m
- n
- 0
- q
- Requires Crane Multi Fit valve locks. Machined steel, heat treated. Machined steel, heat treated, Multi Fit. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Pro Series one-piece, for use with or without pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb (not self-aligning). 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb (not self-aligning). Energizer, 1.5 ratio, 3/8" stud (not self-aligning). 1.5 ratio, 3/8" stud (not self-aligning). 1.5 ratio, 3/8" stud (not self-aligning). 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers. 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers. 5.5 ratio, 3/8" stud, self-aligning narrow body for center bolt valve covers. Standard diameter PAC Enhanced valve springs for 1.750" assembly height. S
- t
- u

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Mechanical Lifter Camsh										
Replacement for factory 340 HP 327 cu.in. Duntov cam- shaft.	BluePrinted 3736097	2000- 5600	110901	99250-16	227 230	260 268	110.5	3.5 43.5 46 4	.012 .018	.393 .399
Excellent low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 2600-3000 cruise RPM, limited oval track, 8.75 to 10.0 compression ratio advised.	F-228/3067-2-6	2400- 6000	110911°	99250-16	228 238	290 300	106	12 36 49 9	.022 .022	
Good low end and mid range torque and HP, good idle, daily performance usage, auto trans w/stock to 2500 converter, 2600-3000 cruise RPM, 9.25 to 10.75 compres- sion ratio advised.	F-228/3067-2-10	2600- 6200	110931*	99250-16	228 238	290 300	110	9 39 54 4	.022 .022	
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised. Good w/centrifu- gal or Roots supercharger, 8 lbs. maximum boost w/8.5 maximum compression ratio advised.	F-238/3200-14	3000- 6600	110941* 3	99250-16	238 238	278 278	114	10 48 58 0		.480 .480
Good low end and mid range torque and HP, fair idle, moderate performance usage, bracket racing, good w/ plate or manifold nitrous system, 3400-3800 cruise RPM, 10.0 to 11.5 compression ratio advised. Good w/centrifu- gal or Roots supercharger, 10 lbs. maximum boost w/8.5 maximum compression ratio advised.	F-278-2	3000- 6800	113841* •	99250-16	238 248	278 288	114	10 48 63 5		.480 .500
Replacement for factory 330 HP 350 cu.in. camshaft.	BluePrinted 3972182	2800- 6600	110951 3	99250-16	242 254		116	11 51 69 5	.020 .025	
Good mid range torque, performance usage, bracket rac- ing; Heavy, Pro ET, Super ET, etc., auto trans w/3000+ converter, oval track; Late Model, Sportsman, I.M.C.A., etc., 1/4-3/8 mile, 10.5 to 12.0 compression ratio advised.	Saturday Night Special F-244/3454-2S-6	3200- 6800	110921* 110924*ª 3	99250-16	244 252	280 288	106	19 45 55 17		.518 .536
Good mid range torque and HP, rough idle, moderate performance usage, 3600-4000 cruise RPM, good with plate or small manifold nitrous system, 10.5 to 12.0 com- pression ratio advised. Also good for mild supercharged.	F-280-2	3200- 7000	114681°	99250-16	244 252	280 288	112	14 50 62 10	.026 .026	
Performance usage, bracket racing; Heavy, Pro ET, Super ET, etc., auto trans w/3000+ converter, oval track; Late Model, Sportsman, I.M.C.A., etc., 1/4-3/8 mile, 11.0 to 12.5 compression ratio advised.	F-248/3334-6	3400- 7000	110961°	99250-16	248 248	288 288	106	22 46 54 14		.500 .500

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT:** Self-aligning rocker arms cannot be used with mechanical lifter camshafts.
- NOTE: When using 55-56, 265 cu.in. blocks, late model cam bearings must be installed.
- IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.
- NOTE: Camshafts having standard size journals with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special Since 1975, General Motors divisions have exchanged engines order. Contact Crane's Performance Consultants for details.
- NOTE: Camshafts for modified standard blocks, or Oldsmobile/ Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.

NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 NOTE: Camshafts specifically engineered for engines that have .875" or .904" diameter lifters are available on special order. Contact Crane's Performance Consultants for details.

> throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM RO
11308-1 ^{b,c}	99848-16 ^{b,c}	99915-16 ^h		99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1*" 11984-1*° 11977-1*P	11801-16ª	11 10
11309-1 ^{d,e}	99846-16° 96877-16 ^f	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ⁱ 95636-16 ^m	11975-1*" 11984-1*° 11977-1*P	11801-16ª	11 10
11309-1 ^{4,e}	99846-16° 96877-16 ^ŕ	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1*" 11984-1*° 11977-1*P	11801-16ª	11 10
	96877-16 ^f	99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1*" 11984-1*° 11977-1*P	11801-16ª	11 10
	96877-16 ^f	99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1°° 11984-1°° 11977-1°°	11801-16ª	11 10
	96877-16 ^f	99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1°" 11984-1°° 11977-1*P	11801-16 ^q	11 10
11309-1 ^{d,e}	99846-16° 96877-16 ^f	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ⁱ 95636-16™	11975-1 ^{°n} 11984-1°° 11977-1 ^{°p}	11801-16ª 11801C-16'	11 10
	96877-16 ^r	99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1*" 11984-1*° 11977-1*P	11801-16ª 11801C-16'	11 10
11309-1 ^{d,e}	99846-16° 96877-16 ^f	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1*" 11984-1*° 11977-1*P	11801-16ª 11801C-16'	11 10

- Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate а
- Contains standard diameter valve springs, no machining required. For 1967-87 with 1.700" assembly height. b
- C
- Contains standard diameter valve springs and machined steel valve stem locks (99095-1), no d machining required.
- Standard diameter XHTCS tool steel valve springs for 1.800" assembly height.
- Must machine cylinder heads.
- Standard diameter chrome silicon valve springs for 1.750" assembly height.
- g h For standard diameter valve springs, no machining required.
- Machined steel, heat treated.
- Machined steel, heat treated, +.050" assembly height.

- k Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
- Т
- Pro Series one-piece. Performance steel billet gears and roller chain set. m
- n
- Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. 0 р
- q
- 1.5 ratio, 3/8" stud, extra long slot (not self-aligning).
 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb (not self-aligning).
 1.5 ratio, 3/8" stud (not self-aligning). Valve Train Stabilizer available, see page 343. t
- u 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers.

- C		1	V.				C			-		-			Λ	_		
	U	л	11	P	L-	Е.	 L	А	LL.	-1	E.		- 1		÷		 IN)	ÞI

Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Degrees Duration	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Mechanical Lifter Camsh	afts										
Good mid range torque and HP, rough idle, moderate performance usage, good w/manifold nitrous system, bracket racing, auto trans w/3000+ converter, 3800- 4200 cruise RPM, 11.0 to 12.5 compression ratio advised. Good w/Roots supercharger, 15 lbs. maximum boost w/8.0 maximum compression ratio advised.	F-288-2	3400- 7200	113861°	99250-16	248 258	288 298	114	15 53 68 10	.022 .022		
Performance usage, good mid and upper RPM torque and HP, bracket racing; Pro, Pro ET, Super ET, etc., auto trans w/race converter, oval track; Late Model, Sportsman, I.M.C.A., etc., 3/8-1/2 mile, 11.0 to 12.5 compression ratio advised.	285-295-06	3600- 7000	12003°	99250-16	250 260	285 295	106	21 49 58 22	.026 .028		
Performance usage, good mid range torque and HP, bracket racing; Pro, Pro ET, Super ET, etc., auto trans w/ race converter, oval track; Late Model, Sportsman, I.M.C.A., etc., 3/8-1/2 mile, 11.5 to 12.5 compression ratio advised.	Saturday Night Special F-252/3574-2S-6	3800- 7200	110981° 110984°ª 3	99250-16	252 260	288 296	106	22 50 58 22		.536 .554	
Good mid range HP, rough idle, performance usage, 4000-4400 cruise RPM, good w/manifold nitrous system, 11.5 to 12.5 compression ratio advised. Good w/ Roots supercharger, 18 lbs. maximum boost w/8.0 maximum compression ratio advised.	F-290-2	3800- 7600	114691° 3	99250-16	252 260	290 298	112	17 55 65 15	.026 .026		
Replacement for factory 290 HP 302 cu.in. Z-28 cam- shaft.	BluePrinted 3849346	4000- 7000	967251	99250-16	254 254		114	15 59 63 11	.030 .030		
Competition only, serious flat lifter restricted oval track; Late Model, Sportsman, etc., 3/8-1/2 mile, intended for 1.8 intake and 1.7 exhaust ratio rocker arms, 11.5 to 12.5 compression ratio advised.	F-256/340-25-8	4000- 7800	110971°	99250-16	256 260	288 292	108	26 50 64 16	.018 .020		
Performance usage, good mid range torque and HP, bracket racing; Pro, Pro ET, Super ET, etc., auto trans w/ race converter, oval track; Late Model, Sportsman, I.M.C.A., etc., 3/8-1/2 mile, 11.5 to 12.5 compression ratio advised.	Saturday Night Special F-256/3634-2S-5	4000- 7600	111411* 111414*ª 3	99250-16	256 264	292 300	105	25 51 59 25	.026 .026		
Replacement for factory Off Road Special camshaft.	BluePrinted 3927140	4200- 7200	968821	99250-16	257 269		112	20.5 56.5 70.5 18.5	.024 .026		
Performance usage, good mid and upper RPM HP, brack- et racing; Pro, Super Pro, Hot Rod, Super ET, etc., auto trans w/race converter, oval track; Late Model, Sportsman, I.M.C.A., etc., 3/8-1/2 mile, 11.5 minimum compression ratio advised.	F-260/3694-25-6	4400- 7600	111431°	99250-16	260 268	296 304	106	26 54 62 26	.026 .026		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT:** Self-aligning rocker arms cannot be used with mechanical lifter camshafts.
- NOTE: When using 55-56, 265 cu.in. blocks, late model cam bearings must be installed.
- IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.
- NOTE: Camshafts having standard size journals with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special Since 1975, General Motors divisions have exchanged engines order. Contact Crane's Performance Consultants for details.
- NOTE: Camshafts for modified standard blocks, or Oldsmobile/ Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's Performance Consultants for details.
- NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 NOTE: Camshafts specifically engineered for engines that have .875" or .904" diameter lifters are available on special order. Contact Crane's Performance Consultants for details.

throughout different models. Be certain of exactly which engine you have before ordering.

CRANE VAL								
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295 See pg.
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM ROCKER Gol Energizer rac
	96877-16 ^ŕ	99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ⁱ 95636-16 ^m	11975-1°" 11984-1°º 11977-1°P	11801-16ª 11801C-16'	11750- 10750-
11309-1 ^{5,c}	99846-16° 96802-16 ⁹ 96877-16 [†]	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ⁱ 95636-16 ^m	11975-1*ª 11984-1*º 11977-1* ^p	11801C-16 ^r	11750- 10750-
11309-1 ^{b,c}	99846-16' 96802-16 ⁹ 96877-16 ^f	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16™	11975-1° ⁿ 11984-1°⁰ 11977-1° [₽]	11801C-16'	11750- 10750-
11309-1 ^{b,c}	99846-16° 96802-16 ⁹ 96877-16 ⁶	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ⁱ 95636-16™	11975-1 ^{°n} 11984-1°° 11977-1° ^p	11801C-16'	11750- 10750-
11308-1 ^{d,e}	99848-16 ^{4,e} 96802-16 ^g	99915-16 ^h 99943-16		99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ⁱ 95636-16™	11975-1* [™] 11984-1*º 11977-1* [₽]	11801-16ª 11801C-16'	11750- 10750-
	96877-16 ¹	99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1* ⁿ 11984-1*º 11977-1* ^p	11801C-16'	11750- 10750-
11309-1 ^{5,c}	99846-16° 96802-16ª 96877-16 ^f	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ⁱ 95636-16 ^m	11975-1 ^{°n} 11984-1°º 11977-1° ^p	11801C-16'	11750- 10750-
11309-1 ^{b,c}	99846-16° 96802-16 ⁹ 96877-16 ^f	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ⁱ 95636-16™	11975-1*⁰ 11984-1*⁰ 11977-1*₽	11801C-16'	11750- 10750-
11309-1 ^{5,c}	99846-16° 96802-16 ⁹ 96877-16 ^f	99915-16 ^h 99943-16	99820-16 ^f	99097-1 ⁱ 99095-1 ^j	11621-16 ^k 11630-16 ^l 95636-16 ^m	11975-1*" 11984-1*° 11977-1*P	11801C-16'	11750- 10750-

- Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate а
- Contains standard diameter valve springs and machined steel valve stem locks (99095-1), no b
- machining required. Standard diameter XHTCS tool steel valve springs for 1.800" assembly height. c
- Contains standard diameter valve springs, no machining required. For 1967-87 with 1.700" assembly height. d
- е
- f Must machine cylinder heads.
- Standard diameter chrome silicon valve springs for 1.750" assembly height.
- g h For standard diameter valve springs, no machining required.
- Machined steel, heat treated.
- Machined steel, heat treated, +.050" assembly height.

- Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. k
- Т
- Pro Series one-piece. Performance steel billet gears and roller chain set. m n
- 0
- Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. р
- q
- 1.5 ratio, 3/8" stud, extra long slot (not self-aligning).
 1.5 ratio, 3/8" stud, extra long slot (not self-aligning).
 1.5 ratio, 3/8" stud (not self-aligning). Valve Train Stabilizer available, see page 343.
 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers. t
- u

	COMPLETE CAM SPECIFICATIONS									
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Mechanical Lifter Camsh		RANGE	Emissions code	LIFTERS	IIII/EXII.	IIIU/EXII.	Separation	IIII/EXII	EXII.	EXII.
Performance usage, good mid and upper RPM HP, brack- et racing; Pro, Super Pro, Hot Rod, Super ET, etc., auto trans w/race converter, oval track; Late Model, Sportsman, I.M.C.A., etc., 3/8-1/2 mile, serious off road, 11.5 minimum compression ratio advised.	Saturday Night Special F-260/370-2-6	4400- 7600	111451° 111454°a 3	99250-16	260 270	295 305	106	28 52 65 25	.026 .028	.555 .578
Competition only, serious flat lifter restricted oval track; Late Model, Sportsman, etc., 3/8-5/8 mile, intended for 1.8 intake and 1.5 ratio exhaust rocker arms, 12.0 mini- mum compression ratio advised.	F-262/340-25-7	4400- 7800	110991° •	99250-16	262 268	294 304	107	28 54 64 24	.020 .026	
Good upper RPM torque and HP, rough idle, moderate performance usage, good upper RPM HP, 4400-4800 cruise RPM, good w/large manifold nitrous system, 11.5 to 12.5 compression ratio advised. Good w/Roots super- charger, 20 lbs. maximum boost w/8.0 maximum com- pression ratio advised.	F-300-2	4600- 8200	114701°	99250-16	264 272	300 308	112	23 61 71 21	.026 .026	.563 .581
Competition only, good upper RPM torque and HP, brack- et racing; Pro, Super Pro, Hot Rod, etc., auto trans w/race converter, oval track; Late Model, Sportsman, I.M.C.A., etc., 3/8-1/2 mile, 12.0 minimum compression ratio advised.	Saturday Night Special F-268/3814-2S-6	4600- 8000	111501° 111504°a 3	99250-16	268 276	304 312	106	31 57 67 29	.026 .026	
Competition only, good upper RPM torque and HP, 360+ cu.in., bracket racing; Quick ET, etc., auto trans w/race converter, 12.5 minimum compression ratio advised.	F-310	4800- 8200	114711° •	99250-16	272 272	310 310	108	31 61 67 25	.026 .026	
Competition only, good upper RPM HP, 370+ cu.in., bracket racing; Quick ET, etc., auto trans w/race converter, 12.5 minimum compression ratio advised.	F-276/3934-25-6	4800- 8400	111001° •	99250-16	276 284	312 320	106	34 62 70 34	.026 .026	.590 .608
Radical Competition only, good high RPM HP, 380+ cu. in., flat lifter restricted classes, stick or auto trans. w/race converter, 12.5 minimum compression ratio advised.	F-320	5000- 8600	114721°	99250-16	280 280	320 320	108	35 65 71 29	.026 .026	
Radical Competition only, good high RPM HP, 388+ cu. in., flat lifter restricted classes, stick or auto trans. w/race converter, 12.5 minimum compression ratio advised.	F-280/3994-25-8	5000- 8800	111751°	99250-16	280 288	316 324	108	35 65 75 33	.026 .026	

RPM range shown is for average usage. These cam profiles	NOTE
will RPM higher, depending upon application.	

- **IMPORTANT:** Self-aligning rocker arms cannot be used with mechanical lifter camshafts.
- **NOTE:** When using 55-56, 265 cu.in. blocks, late model cam bearings must be installed.
- IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- OTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.
- NOTE: Camshafts having standard size journals with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) are available on special order. Contact Crane's Performance Consultants for details. NOTE: Camshafts for modified standard blocks, or Oldsmobile/
 - Dart blocks, having Big Block Chevrolet size (1.948") cam bearings are available on special order. Contact Crane's
- Performance Consultants for details.
- : Camshafts specifically engineered for engines that have .875" or .904" diameter lifters are available on special order. Contact Crane's Performance Consultants for details.
- Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

56

CAMSHAFTS

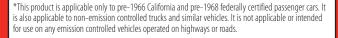
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	— ALUMINUM	ROCKERS
AND RETAINER	VALVE		STEM	STEM		AND GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	00044 444		access of the				110016 1 11		
11309-1 ^{c,d}	99846-16ª 96877-16 ^b	99915-16°	99820-16 ^b	99097-1 ^f	11621-16 ^h 11630-16 ⁱ	11975-1 ^{*k} 11984-1* ⁱ	11801C-16 ⁿ		11750-1
	908//-10	99943-16		99095-1 ⁹	95636-16 ⁱ	11984-1* 11977-1* ^m			10750-1
	96877-16 ^b	99943-16	99820-16 ^b	99097-1 ^f	11621-16 ^h	11975-1 ^{*k}	11801C-16 ⁿ		11750-1
				99095-1º	11630-16 ⁱ	11984-1* ¹			10750-1
					95636-16 ^j	11977-1 ^{*m}			
	96877-16 ^b	99943-16	99820-16 ^b	99097-1 ^f	11621-16 ^h	11975-1* ^k			11750-1
				99095-1 ⁹	11630-16 ⁱ	11984-1 ^{*I}			10750 -1
					95636-16 ⁱ	11977-1 ^{*m}			
	96877-16 ^ь	99943-16	99820-16 ^ь	99097-1 ^f	11621-16 ^h	11975-1* ^k			11750-1
				99095-1 ⁹	11630-16 ⁱ	11984-1 ^{*1}			10750-1
					95636-16 ^j	11977-1* ^m			
	96877-16 ^b	99943-16	99820-16 ^b	99097-1 ^f	11621-16 ^h	11975-1* ^k			11750-1
				99095-1 ⁹	11630-16 ⁱ	11984-1 ^{*i}			10750-1
					95636-16 ^j	11977-1 ^{*m}			
	96877-16 ^b	99943-16	99820-16 ^b	99097-1 ^f	11621-16 ^h	11975-1*k			11750 -1
				99095-1 ⁹	11630-16 ⁱ	11984-1* ¹			10750 -1
					95636-16 ^j	11977-1 ^{*m}			
	96877-16 ^b	99943-16	99820-16 ^b	99097-1 ^f	11621-16 ^h	11975-1*k			11750 -1
				99095-1º	11630-16 ⁱ	11984-1* ¹			10750-1
					95636-16 ⁱ	11977-1* ^m			
	96877-16 ^b	99943-16	99820-16 ^b	99097-1 ^f	11621-16 ^h	11975-1 ^{*k}			11750-1
				99095-1 ⁹	11630-16 ⁱ	11984-1* ¹			10750 -1
					95636-16 ^j	11977-1 ^{*m}			

- Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate а
- b Must machine cylinder heads.
- Contains standard diameter valve springs and machined steel valve stem locks (99095-1), no C machining required.
- d Standard diameter XHTCS tool steel valve springs for 1.800" assembly height.
- For standard diameter valve springs, no machining required. е
- Machined steel, heat treated. f
- g h
- Machined steel, heat treated, +.050° assembly height. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
- Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. i
- Pro Series one-piece. k
- Performance steel billet gears and roller chain set. L
- Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing.
- m
- n
- 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb (not self-aligning). 1.5 ratio, 3/8" stud, extra long slot, Nitro Carb (not self-aligning). 1.5 ratio, 3/8" stud (not self-aligning). Valve Train Stabilizer available, see page 343. 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers.
- p q

					COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/ @.0 Cam Int/	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Mechanical Roller Camsł											
Excellent low end and mid range torque and HP, good idle, daily performance usage, mild bracket racing, auto trans w/2500+ converter, 3000-3400 cruise RPM, 9.5 to 11.0 compression ratio advised.	SR-228/338-25-12 IG	2200- 6200	118541 [*] *	11515-16° 11519-16ª 11570-16°	228 236	278 280	112	7 55	41 1	.020 .020	.507 .525
Good low end & mid range torque & HP, fair idle, moder- ate performance usage, mild bracket racing, auto trans w/3000+ converter, 3400-3800 cruise RPM, good w/ plate or manifold nitrous system, 10.5 to 11.5 compres- sion ratio advised, .900" base circle for long stroke clear- ance. Good w/centrifugal or small Roots supercharger, 10 lbs. max. boost w/8.5 max. compression ratio advised.	SR-232/350-25-12.90 IG	2400- 6600	118571'ª	11515-16 11519-16 11570-16	232 240	286 294	112	9 57	43 3	.020 .020	.525 .543
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/3000+ converter, 3400-3800 cruise RPM, good w/plate or manifold nitrous system, 10.5 to 11.5 com- pression ratio advised. Good w/centrifugal or small Roots supercharger, 10 lbs. maximum boost w/8.5 maximum compression ratio advised.	SR-236/350-25-12 IG	2400- 6600	118551'ª €	11515-16° 11519-16ª 11570-16°	236 244	286 294	112	11 59	45 5	.020 .020	
Good mid range torque and HP, fair idle, bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised, .900" base circle for long stroke dearance in 388+ cu.in.	SR-240/362-2S-10.90 IG	3000- 7000	118581 [*] ª	11515-16° 11519-16ª 11570-16°	240 248	294 302	110	15 59	45 9	.020 .020	
Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, good w/manifold nitrous system, bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compress. ratio advised, .900" base cir- de for long stroke clearance. Good w/Roots supercharger, 14 lbs. max. boost w/8.0 max. compress. ratio advised.	SR-240/362-25-12.90 IG	3400- 7200	118611*ª	11515-16' 11519-16 ⁴ 11570-16'	240 248	294 302	112	13 61	47 7	.020 .020	.543 .561
Good mid range torque and HP, performance usage, bracket racing, Heavy, Pro, etc., auto trans w/race con- verter, serious off road, oval track, good mid-range torque and HP, 2-bbl or 4-bbl, 1/4-3/8 mile, 11.0 to 12.5 compression ratio advised.	TR-242/3867-25-6	3600- 7200	118131 ^{**}	11515-16 ^c 11519-16 ^d 11570-16 ^e	242 250	282 290	106	17 53	45 17	.022 .022	
Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, bracket racing, auto trans w/3500+ con- verter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised.	SR-244/362-2S-12 IG	3400- 7200	118521 [*] ª	11515-16° 11519-16ª 11570-16°	244 252	294 302	112	15 63	49 9	.020 .020	.543 .561
Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, good w/manifold nitrous system, bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised. Good w/ Roots supercharger, 14 lbs. maximum boost w/8.0 maxi- mum compression ratio advised.	SR-244/362-25-14 IG	3600- 7400	118531*ª •	11515-16' 11519-16 ⁴ 11570-16'	244 252	294 302	114	13 63	51 7	.020 .020	.543 .561
Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, serious off road, bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.75 to 12.5 compression ratio advised.	SR-248/400-25-8 IG	3600- 7400	118631 ^{*a}	11515-16° 11519-16ª 11570-16°	248 252	286 290	108	21 59	47 13	.020 .022	.600 .600

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Self-aligning rocker arms cannot be used with mechanical lifter roller camshafts.


NOTE: When using 55-56, 265 cu.in. blocks, late model cam bearings must be installed.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.

NOTE: Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. Drilling and tapping for Sander rear drive is available. SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) and SFO1 (1-8-7-2-6-5-4-3, or 4/7 3/2 swap) are offered. Optional journal sizes are Roller Bearing (1.875"), Big Block (1.949"), Large Roller Bearing/S0mm (1.969"), and S5mm (2.165") Gun drilling (where applicable) is available. Lightweight undercut journal, narrow lobe cores are offered. Lobe layouts for Buick Race/Dart, Splayed Valve, and SB2 cylinder heads are available.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

	/E TRAIN CO								
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg.
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKERS Goli Rac
	99893-16 ^f 96870-16 ^{f,g}	99953-16 99943-16º	99820-16 ^ŕ	99097-1 ^k	11630-16ª 95636-16ª	11975-1*º 11984-1*¤ 11977-1*٩			11750-1 10750-1
	99893-16 ^f 96870-16 ^{fg}	99953-16 99943-16 ^g	99820-16 ^f	99097-1 ^k	11630-16ª 95636-16ª	11975-1*º 11984-1*º 11977-1*٩			11750-1 10750-1
	99893-16 ^f 96870-16 ^{fg}	99953-16 99943-16º	99820-16 ^f	99097-1 ^k	11630-16ª 95636-16ª	11975-1°° 11984-1°¤ 11977-1°ª			11750-1 10750-1
	99893-16 ^f 96870-16 ^{fg}	99953-16 99943-16 ⁹	99820-16 ^f	99097-1 ^k	11630-16™ 95636-16"	11975-1 ^{°o} 11984-1 ^{°p} 11977-1 ^{°q}			11750- 10750-
	99893-16 ^f 96870-16 ^{fg}	99953-16 99943-16ª	99820-16 ^f	99097-1 ^k	11630-16™ 95636-16⊓	11975-1°° 11984-1°¤ 11977-1°ª			11750-1 10750-1
	99885-16 ^f 96883-16 ^{f,g}	99956-16 99675-16 ⁱ 99970-16 ⁱ	99820-16 ^f	99097-1 ^k 99087-1 ⁱ	11630-16™ 95636-16"	11975-1 [°] ° 11984-1 ^{°p} 11977-1 ^{°q}			11750- 10750-
	99893-16 ^f 96870-16 ^{fg}	99953-16 99943-16ª	99820-16 ^f	99097-1 ^k	11630-16™ 95636-16ª	11975-1 [°] º 11984-1 ^{°p} 11977-1 ^{°q}			11750- 10750-
	99893-16 ^f 96870-16 ^{fg}	99953-16 99943-16º	99820-16 ^f	99097-1 ^k	11630-16™ 95636-16⊓	11975-1 [°] º 11984-1 ^{°p} 11977-1 ^{°q}			11750-1 10750-1
	99893-16 ^f 96870-16 ^{f,g}	99953-16 99943-16º	99820-16 ^f	99097-1 ^k	11630-16 ^m 95636-16 ⁿ	11975-1*º 11984-1*¤ 11977-1*٩			11750- 10750-

Section Continued 🛰

- Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Requires cam button spacer and a **11990-1** (.489"1.D.) or **11989-1** (.500"1.D. Accel) aluminumа
- b Requires call button space and a 11990-11(489-10.1) of 11909-11(500-10). Access automatin bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Horizontal locking bar roller lifters. Vertical locking bar roller lifters. Ultra Pro Series vertical locking bar roller lifters.
- C
- d е
- f Must machine cylinder heads.
- For cylinder heads with +.100" long valves, use **99943-16** retainers. For cylinder heads with +.100" long valves, use **99970-16** retainers and **99087-1** valve stem locks. Titanium, must use **99097-1** valve stem locks, included with the retainers. g h

- Requires Crane Multi Fit valve locks. Machined steel, heat treated.
- Machined steel, heat treated, Multi Fit.
- Machined steel, heat treated, Multi Ht. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Pro Series one-piece, for use with or without pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. 1.5 ratio, 3/8" stud (not self-aligning). Valve Train Stabilizer available, see page 343. 1.5 ratio, 3/8" stud (not self-aligning), narrow body for center bolt valve covers. m
- n 0
- p
- q
- t

59

COMPLETE CAM SPECIFICATIONS								ONS			
Annlingtion	Camshaft Series/	RPM POWER		See pg. 276	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	.@.C Cam)50″ Lift	Lash Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/	Exh	Exh.	Exh.
Mechanical Roller Camsh		2000			2.40	200	40.6	- 24	47		(20
Performance usage, bracket racing, good mid-range torque and HP, Heavy, Pro, etc., auto trans w/race converter, oval track, 1/4-3/8 mile, 11.0 to 12.5 compression ratio advised.	R-248/420-252-6	3800- 7400	118741 [*] ª	11519-16 ^ª 11570-16 ^e	248 256	280 288	106	21 57		.020 .020	.630 .630
			•								
Good upper RPM torque and HP, rough idle, performance usage, bracket racing, auto trans w/3500+ converter, 4200-4600 cruise RPM, 11.0 minimum compression ratio	SR-250/374-2S-10.90 IG	3800- 7400	118591*	11515-16 ^f 11519-16 ^d 11570-16 ^e	250 258	300 308	110		50 14	.020 .020	
advised, 388+ cu.in., supercharged and/or nitrous.			€								
Good upper RPM torque and HP, rough idle, performance usage, good w/manifold nitrous system, 388+ cu.in., Pro Street, bracket racing, auto trans w/3500+ converter, 4200-4600 cruise RPM, 11.0 minimum compression ratio advised. 900° base circle for long stroke clearance. Good	SR-250/374-25-12.90 IG	3800- 7400	118691 [*]	11519-16⁴ 11570-16⁰	250 258	300 308	112	18 66	52 12	.020 .020	
w/Roots supercharger, 18 lbs. maximum boost w/8.0											
maximum compression ratio advised. Performance usage, bracket racing, good mid range torque & HP, Heavy, Pro, etc., auto trans w/race converter,	R-252/420-2S-6 R-252/420-2S-6 SF0	4000- 7600	118751*ª 118761*ª,c	11519-16 ^ª 11570-16°	252 260	284 292	106	23 59		.020 .020	.630 .630
oval track, good mid range torque and HP, 1/4-3/8 mile, serious off-road, 11.0 to 12.5 compression ratio advised.	R-232/420-23-0 3FU	7000	(110701)	11370-10	200	292		79	21	.020	.030
Performance usage, w/manifold nitrous system, good	R-252/420-25-10	4000-	118911*ª	11519-16 ^d	252	284	110	20	52	.020	.630
mid and upper RPM torque and HP, bracket racing, auto trans w/3500+ converter, 11.0 to 12.5 compression ratio advised. Good w/Roots supercharger, 18 lbs. maximum		7600	•3•	11570-16°	260	292			16	.020	.630
boost w/8.0 maximum compression ratio advised.		2000			252	202	442	40	50	000	E / 4
Rough idle, performance usage, good w/manifold nitrous system, good upper RPM torque and HP, 388+ cu.in., Pro Street, bracket racing, auto trans w/3500+ converter, 4200-4600 cruise RPM, 11.0 minimum com- pression ratio advised. Good w/Roots supercharger, 18	SR-252/374-2S-12 IG	3800- 7400	118711 ^{°b}	11515-16º 11519-16ª 11570-16º	252 260	302 310	112	19 67	53 13	.020 .020	
lbs. max. boost w/8.0 max. compression ratio advised.			*								
Competition only, oval track, 1/4 - 3/8 mile, flat top pis- tons w/7600 RPM rev limit, 12.5 minimum compression ratio advised. Lift with 1.75:1 ratio rocker arms.	R-256/4301-2S-6	4000- 7800	118971 ^{*a}	11519-16 ^d 11570-16 ^e	256 262	284 290	106	25 60	51 22	.020 .022	
			€								
Competition only, oval track, special for 360 Sprint Car,	R-256/4301-2S-6 RB RD	4000-	118811*ª	11519-16 ^d	256	284	106	25		.020	
tapped for Sander rear drive, for roller bearing journals (1.875"), 12.5 minimum compression ratio advised. Lift with 1.75:1 ratio rocker arms.		7800	•	11570-16°	262	290		60	22	.022	.753
			•								10.7
Performance usage, bracket racing, good mid range torque & HP, Pro, Super Pro, etc., auto trans w/race con- verter, oval track, good mid range torque & HP, 1/4-3/8	R-256/420-251-6	4000- 7800	118821*ª	11519-16 ^d 11570-16 ^e	256 264	288 296	106	25 61		.020 .020	.630 .630
mile, serious off road, 11.5 to 12.5 compress. ratio advised.			•								
Competition only, oval track, Sprint Car, tapped for Sander rear drive, for large roller bearing journals (1.9685"/50mm), 12.5 minimum compression ratio	R-258/452-254-8 LRB RD SFO	4000- 7800	118951 [*] ª	11519-16ª 11570-16°	258 260	287 289	108	26 63	52 17	.020 .022	
advised. Lift with 1.65:1 ratio rocker arms.			•								

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Self-aligning rocker arms cannot be used with mechanical lifter roller camshafts.

NOTE: When using 55-56, 265 cu.in. blocks, late model cam bearings must be installed.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.

NOTE: Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. Drilling and tapping for Sander rear drive is available. SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) and SFO1 (1-8-7-2-6-5-4-3, or 4/7 3/2 swap) are offered. Optional journal sizes are Roller Bearing (1.875"), Big Block (1.949"), Large Roller Bearing/50mm (1.969"), and 55mm (2.165") Gun drilling (where applicable) is available. Lightweight undercut journal, narrow lobe cores are offered. Lobe layouts for Buick Race/Dart, Splayed Valve, and SB2 cylinder heads are available.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See p
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKE GC R/
	96886-16 ^{g,h} 96885-16 ^{g,h}	99970-16 ^k 99659-16 ^w 99675-16 ^j	99820-16 ⁹	99097-1™ 99087-1 [™]	11630-16º 95636-16º	11975-1*ª 11984-1*r 11977-1*s			1175(11771
	99893-16 ^g 96870-16 ^{g,i}	99953-16 99943-16 ¹	99820-16 ⁹	99097-1 ^m	11630-16º 95636-16º	11975-1*ª 11984-1*r 11977-1*s			1175(11771
	99893-16 ⁹ 96870-16 ^{9,i}	99953-16 99943-16 ¹	99820-16 ⁹	99097-1 [™]	11630-16° 95636-16°	11975-1 ^{*q} 11984-1*r 11977-1*s			11750 11771
	96886-16 ^{g,h} 96885-16 ^{g,h}	99970-16 ^k 99659-16 ^w 99675-16 ^j	99820-16ª	99097-1™ 99087-1╹	11630-16° 95636-16º	11975-1*ª 11984-1*r 11977-1*s			11750 1177
	96886-16 ^{g,h} 96885-16 ^{g,h}	99970-16 ^k 99659-16 ^w 99675-16 ^j	99820-16 ⁹	99097-1™ 99087-1™	11630-16º 95636-16º	11975-1*۹ 11984-1*≀ 11977-1*⁵			1175) 1177
	99893-16 ^g 96870-16 ^{g,i}	99953-16 99943-16 ¹	99820-16 ⁹	99097-1 ™	11630-16º 95636-16º	11975-1 ^{*q} 11984-1* ^r 11977-1* ^s			11750 1177
	96886-16 ^{g,h} 96885-16 ^{g,h}	99970-16 ^k 99659-16 ^w 99675-16 ^j	99820-16ª	99097-1" 99087-1"	11630-16º 95636-16º	11984-1* ^r 11977-1*s			1175 1177
	96886-16 ^{g,h} 96885-16 ^{g,h}	99970-16 ^k 99659-16 ^w 99675-16 ^j	99820-16 ⁹	99097-1™ 99087-1™	11630-16º 95636-16º	11984-1*r 11977-1*s			1175 1177
	96886-16 ^{g,h} 96885-16 ^{g,h}	99970-16 ^k 99659-16 ^w 99675-16 ^j	99820-16 ⁹	99097-1™ 99087-1™	11630-16º 95636-16º	11984-1*r 11977-1*s			11750 11771
	96886-16 ^{9,h} 96885-16 ^{9,h}	99970-16 ^k	99820-16 ^g	99097-1 ^m	11630-16º	11984-1*r			1175

Section Continued 🛏

- Requires cam button spacer and a 11990-1 (.489" I.D.) or 11989-1 (.500" I.D. Accel) aluminumа
- Requires cam button spacer and a **11990-1** (.489"/1.D.) or **11989-1** (.500"/1.D. Accel) aluminum-bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Camshaft has SF0 firing order, with 4/7 swap. Vertical locking bar roller lifters. Uitra Pro Series vertical locking bar roller lifters. Horizontal locking bar roller lifters. Must machine cylinder heads. For cylinder heads. b C
- d
- e f
- g For cylinder heads with +.100"long valves, use **99970-16** retainers and **99087-1** valve stem locks. For cylinder heads with +.100"long valves, use **99943-16** retainers. Titanium, must use **99097-1** valve stem locks, included with the retainers.

- Requires Crane Multi Fit valve locks.
- k For cylinder heads with +.100" long valves.
- m
- n
- 0
- p

- u
- For cylinder heads with +.100" long valves. Machined steel, heat treated. Machined steel, heat treated, Mult Fit. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Pro Series one-piece, for use with or without pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. 1.5 ratio, 3/8" stud (not self-aligning). Valve Train Stabilizer available, see page 343. 1.5 ratio, 7/16" stud (not self-aligning), Wide Body.Valve Train Stabilizer available, see page 343. v
- Titanium, for **96886-16** valve springs. w

COMPLETE CAM SPECIFICAT								ATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/O @.05 Cam Int/E	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Aechanical Roller Camsh	afts										
Rough idle, performance usage, good upper RPM HP, 888+ cu.in., Pro Street, bracket racing, auto trans v/3500+ converter, 4600-5000 cruise RPM, 12.0 mini- num compression ratio advised.	SR-260/400-2S-8 IG	4000- 7600	118661*ª 3	11519-16ª 11570-16º	260 264	298 302	108	27 65		.020 .022	.600 .600
Performance usage, bracket racing, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/ ace converter, oval track, good mid to upper RPM torque Ind HP, 2-bbl or 4-bbl, 1/4-3/8 mile, 11.5 minimum ompression ratio advised.	R-260/420-252-6	4200- 8000	118831° ^b	11519-16 ^d 11570-16 ^e	260 264	292 296	106	27 61		.020 .020	
Competition only, oval track, special for 360 Sprint Car, .950" base circle diameter, tapped for Sander rear drive, 12.5 minimum compression ratio advised.	294-304-08RRD.95	4200- 8200	19145" ^b	11548-16º 11570-16º	260 266	294 304	108	23 62		.012 .020	.670 .630
Performance usage, bracket racing, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/ race converter, oval track, 1/4-3/8 mile, .960° base circle diameter, 11.5 minimum compression ratio advised.	R-260/4467-2S-6.96 R-260/4467-2S-6.96 SFO	4200- 8000	118411 ^{*b} 118431 ^{*b,c}	11519-16ª 11570-16°	260 268	290 306	106	26 62		.012 .022	
Performance usage, bracket racing, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/ race ocnverter, oval track, good mid to upper RPM torque and HP, 1/4-3/8 mile, 12.5 minimum compression ratio advised.	R-260/420-2-6 R-260/420-2-6 SFO	4200- 8000	118841 ^{*b} 118931 ^{*b,c} 3	11519-16 ^d 11570-16 ^e	260 270	292 302	106	27 64		.020 .020	
Competition only, oval track, Sprint Car, Modified, Super Modified, 3/8-1/2 mile dirt or asphalt, 355-406 cu.in., .950″ base circle diameter, tapped for Sander rear drive, 12.0 minimum compression ratio advised.	294-306-06 RRD.95	4200- 8000	19137° ^b	11519-16ª 11570-16º	260 270	294 306	106	26 63		.012 .030	
Competition only, oval track, good mid range torque and HP, 2-bbl or 4-bbl, 1/4-3/8 mile, 9.0 compression restrict- ed classes.	295-299-06R.98	4200- 7800	19128 ^{°b}	11519-16 ^d 11570-16 ^e	262 266	295 299	106	27 61	55 25	.012 .012	
Competition only, oval track, for 410 Sprint Car and WOO, .950" base circle diameter, tapped for Sander rear drive, lightweight gun drilled core, for roller bearing (1.875") journals. Lift w/1.8:1 rocker arms.	383-431-08R.95 LWD RB RD	4400- 8400	19146 ^{°ь}	11570-16°	264 268	294 298	108	26 64	58 24	.020 .022	
Competition only, bracket racing, good mid to upper RPM HP, Super Pro, etc., auto trans w/race converter, oval track, 3/8-1/2 mile, 12.5 minimum compression ratio advised.	R-264/420-251-6	4200- 8000	118861 ^{°b}	11519-16ª 11570-16º	264 272	296 304	106	29 65		.020 .020	.630 .630
Competition only, w/large manifold nitrous system, good mid to upper RPM torque and HP, bracket racing, auto trans w/race converter, 12.5 minimum compression ratio advised. Good w/Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised.	R-264/420-251-10 R-264/420-251-10 SFO	4200- 8200	118921 ^{*b} 118941 ^{*b,c}	11519-16 ^d 11570-16 ^e	264 272	296 304	110		58 22	.020 .020	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT:** Self-aligning rocker arms cannot be used with mechanical lifter roller camshafts.
- NOTE: When using 55-56, 265 cu.in. blocks, late model cam bearings must be installed.
- IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.
- NOTE: Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. Drilling and tapping for Sander rear drive is available. SF0 firing order (1-8-7-3-6-5-4-2, or 4/7 swap) and SF01 (1-8-7-2-6-5-4-3, or 4/7 3/2 swap) are offered. Optional journal sizes are Roller Bearing (1.875"), Big Block (1.949"), Large Roller Bearing/50mm (1.969"), and 55mm (2.165") Gun drilling (where applicable) is available. Lightweight undercut journal, narrow lobe cores are offered. Lobe layouts for Buick Race/Dart, Splayed Valve, and SB2 cylinder heads are available.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg
		1,5							, 5
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUM RO	
AND RETAINER	VALVE	DETAILEDC	STEM	STEM	DUCUDADO	AND GEAR	ROCKER		G0
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RA
	99893-16 ^f	99953-16	99820-16°	99097-1 ¹	11630-16 ⁿ	11984-1*r			1750
	96870-16 ^{f,g}	99943-16 ⁹			95636-16°	11977-1 ^{*q}		1	1771
	96886-16 ^{f,i}	99970-16 ^k	99820-16°	99097-1 ¹	11630-16 ⁿ	11984-1*r			1750
	96885-16 ^{f,i}	99659-16"		99087-1 ^m	95636-16°	11977-1 [*]		1	1771
		99675-16 ⁱ							
	96886-16 ^{f,i}	99970-16 ^k	99820-16°	99097-1 ¹	11630-16"	11984-1 [*]		1	1750
	96885-16 ^{f,i}	99659-16 ^u		99087-1 ^m	95636-16°	11977-1* ^q			1771
		99675-16 ^j							
	96886-16 ^{f,i}	99970-16 ^k	99820-16°	99097-1 ¹	11630-16 ⁿ	11984-1*r		1	1750
	96885-16 ^{f,i}	99659-16 ^u		99087-1 ^m	95636-16°	11977-1 ^{*q}		1	1771
		99675-16 ⁱ							
	96886-16 ^{f,i}	99970-16 ^k	99820-16°	99097-1 ¹	11630-16"	11984-1*r		1	1750
	96885-16 ^{f,i}	99659-16 ^u		99087-1 ^m	95636-16°	11977-1* ^q			1771
		99675-16 ^j							
	00000 10fi	00070 1 <i>c</i> k	00020 1/8	00007.1	11/20 1/0	11004 1*		1	1750
	96886-16 ^{f,i} 96885-16 ^{f,i}	99970-16 ^k 99659-16 ^u	99820-16°	99097-1 [≀] 99087-1™	11630-16" 95636-16°	11984-1* ^r 11977-1* ^q			1750 1771
	5000 3- 10 ⁷	99675-16 ⁱ		33007-1	55050-10	119/7-1		'	1//1
	96886-16 ^{f,i}	99970-16 ^k	99820-16°	99097-1 ¹	11630-16 ⁿ	11984-1*r			1750
	96885-16 ^{f,i}	99659-16 ^ª		99087-1 ^m	95636-16°	11977-1 ^{*q}		1	1771
		99675-16 ^j							
	96886-16 ^{f,i}	99970-16 ^k	99820-16°	99097-1 ¹	11630-16ª	11984-1 [*]			1750
	96885-16 ^{f,i}	99659-16"		99087-1 ^m	95636-16°	11977-1 ^{*q}		1	1771
		99675-16 ⁱ							
	96886-16 ^{f,i}	99970-16 ^k	99820-16°	99097-1 ¹	11630-16ª	11984-1*r			1750
	96885-16 ^{f,i}	99659-16"		99087-1 ^m	95636-16°	11977-1 ^{*q}		1	1771
		99675-16 ⁱ							
	96886-16 ^{f,i}	99970-16 ^k	99820-16°	99097-1 ¹	11630-16ª	11984-1*r		1	1750
	96885-16 ^{f,i}	99659-16 ^u		99087-1 ^m	95636-16°	11977-1* ^q		1	1771

Section Continued 🛏

- a Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, aluminumbronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod 11985-1 is highly recommended to prevent fuel pump lobe wear.
 b Requires cam button spacer and a 11990-1 (.489°(LD), or 11989-1 (.500°(LD. Accel) aluminumbroaction distributor drive previous distributor drive pump lobe wear.
- bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Camshaft has SF0 firing order, with 4/7 swap.
- d Vertical locking bar roller lifters.
- Ultra Pro Series vertical locking bar roller lifters. е
- f Must machine cylinder heads.
- For cylinder heads with +.100" long valves, use **99943-16** retainers.
- g h For cylinder heads with +.100" long valves.

- For cylinder heads with $+.100^{\circ}$ long valves, use **99970-16** retainers and **99087-1** valve stem locks. Titanium, must use **99097-1** valve stem locks, included with the retainers. i
- Requires Crane Multi Fit valve locks.
- Т Machined steel, heat treated.
- Machined steel, heat treated, Multi Fit. m
- Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. n
- 0 Pro Series one piece, for use with or without pushrod guideplate cylinder heads.
- Pro Series steel billet gears and roller chain set. р
- q
- Pro Series steel billet gears and roller chain set with thrust bearing. 1.5 ratio, 3/8" stud (not self-aligning). Valve Train Stabilizer available, see page 343. 1.5 ratio, 7/16" stud (not self-aligning), Wide Body.Valve Train Stabilizer available, see page 343. t
- u Titanium, for 96886-16 valve springs.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
	Camshaft Series/	rpm Power	Camshaft PART NUMBER/	See pg. 276	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.
Mechanical RollerCamsh			10100							
Competition only, oval track, Sprint Car, Modified, Super Modified, 1/2-5/8 mile dirt or asphalt, 355-406 cu.in., .950" base circle diameter, tapped for Sander rear drive, 12.5 minimum compression ratio advised.	298-311-06RRD.95	4400- 8000	19139°°	11570-16 [,]	264 273	298 311	106	27 57 64.5 28.5		.670 .615
Competition only, oval track, for 410 Sprint Car and W00, tapped for Sander rear drive, for roller bearing (1.875") journals. Lift w/1.7:1 rocker arms.	R-264/4381-25-8 RB RD	4400- 8000	118771*ª	11570-16 [.]	264 268	296 300	108	26 58 66 22		.745 .745
Competition only, oval track, for 410 Sprint Car and WOO,	R-264/4381-2S-8 LWD RD 55J	4400	118781*ª	11570-16 ^c	264	296	108	26 58	020	.745
tapped for S5mm journals. Lift w/1.7:1 rocker arms.	גככ עא עשט אייבס-ו אייבעא עשט איינען איי	8000	3	11370-10	268 268	300	100	66 22		.745 .745
Competition only, bracket racing, good upper RPM HP, Super Pro, etc., auto trans w/race converter, oval track, 2-bbl or 4-bbl, 3/8-1/2 mile, 12.5 minimum compression ratio advised.	R-268/420-251-7	4600- 8200	118871*ª	11519-16 ^d 11570-16 ^c	268 272	300 304	107	30 58 66 26	.020 .020	.630 .630
Competition only, bracket racing, good mid to upper RPM torque and HP, Super Pro, Super Gas, etc., auto trans w/race converter, .960" base circle diameter, 12.5 mini- mum compression ratio advised.	R-268/4467-25-6.96 R-268/4467-25-6.96 SFO	4400- 8200	118421 ^{*a} 118441 ^{*a,b}	11519-16ª 11570-16°	268 276	298 314	106	31 57 67 29		.670 .625
Competition only, bracket racing, good mid to upper RPM torque and HP, Super Pro, Super Gas, etc., auto trans w/race converter, 12.5 minimum compression ratio advised. Lift with 1.65:1 rocker arms.	R-268/452-25-7	4400- 8200	118791*ª	11570-16 [,]	268 272	297 301	107	31 57 67 25		.746 .746
Competition only, bracket racing, good mid to upper RPM torque and HP, Super Pro, Super Gas, etc., auto trans w/race converter, 12.5 minimum compression ratio advised.	R-270/420-258-6	4400- 8200	118881*ª	11570-16 [,]	270 276	302 308	106	32 58 67 29	.020 .020	.630 .630
Competition only, good w/large manifold nitrous system, good upper RPM torque and HP, bracket racing, auto trans w/race converter, 12.5 minimum compression ratio advised. Good w/large Roots supercharger, 24 lbs. maxi- mum boost w/8.0 maximum compression ratio advised.	R-272/4334-252-10 R-272/4334-252-10 SFO	4400- 8200	118321 ^{*a} 118331 ^{*a,b}	11570-16'	272 282	312 322	110	29 63 74 28		.650 .641
Competition only, drag racing, Super Stock, 350 cu.in., auto transmission w/race converter, lift with 1.8 intake, 1.6 exhaust rockers.	R-272/428-25-6 SFO	4600- 8200	118291 ^{*a,b}	11570-16 [,]	272 280	302 310	106	34 58 69 31		.770 .715

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Self-aligning rocker arms cannot be used with mechanical lifter roller camshafts. NOTE: When using 55-56, 265 cu.in. blocks, late model cam bear-
- ings must be installed.
- **IMPORTANT:** Adjustable Vacuum Advance Kits available. See page 313 for details.
- NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.
- **NOTE:** Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. Drilling and tapping for Sander rear drive is available. SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) and SF01 (1-8-7-2-6-5-4-3, or 4/7 3/2 swap) are offered. Optional journal sizes are Roller Bearing (1.875"), Big Block (1.949"), Large Roller Bearing/50mm

(1.969"), and 55mm (2.165") Gun drilling (where applicable) is available. Lightweight undercut journal, narrow lobe cores are offered. Lobe layouts for Buick Race/Dart, Splayed Valve, and SB2 cylinder heads are available.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CRANE VAL	/E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — GOLD RACE
	96886-16 ^{e,g} 96885-16 ^{e,g}	99970-16 ⁱ 99659-16 ^r 99675-16 ^h	99820-16°	99097-1 ^j 99087-1 ^k	11630-16 ¹ 95636-16 ^m	11984-1* ⁿ 11977-1*º			11750-16 ^p 11771-16 ^q
	96886-16 ^{e,g} 96885-16 ^{e,g}	99970-16 ⁱ 99659-16 ^r 99675-16 ^h	99820-16°	99097-1 ^j 99087-1 ^k	11630-16 [।] 95636-16™	11984-1*¹ 11977-1*⁰			11750-16 ^p 11771-16 ^q
	96886-16 ^{e,g} 96885-16 ^{e,g}	99970-16 ⁱ 99659-16 ^r 99675-16 ^h	99820-16°	99097-1 ^j 99087-1 ^k	11630-16 95636-16 ^m	11984-1*ª 11977-1*º			11750-16 ^p 11771-16 ^q
	96886-16 ^{e,g} 96885-16 ^{e,g}	99970-16 ⁱ 99659-16 ^r 99675-16 ^h	99820-16°	99097-1 ^j 99087-1 ^k	11630-16 ¹ 95636-16 ^m	11984-1*" 11977-1*°			11750-16 ^p 11771-16 ^q
	96886-16 ^{e,g} 96885-16 ^{e,g}	99970-16 ⁱ 99659-16 ^r 99675-16 ^h	99820-16°	99097-1 ^j 99087-1 ^k	11630-16 ¹ 95636-16 ^m	11984-1*" 11977-1*°			11750-16 ^p 11771-16 ^q
	96886-16 ^{e,g} 96885-16 ^{e,g}	99970-16 ⁱ 99659-16 ^r 99675-16 ^h	99820-16°	99097-1 ^j 99087-1 ^k	11630-16 ¹ 95636-16 ^m	11984-1*" 11977-1*°			11750-16 ^p 11771-16 ^q
	96886-16 ^{e,g} 96885-16 ^{e,g}	99970-16 ⁱ 99659-16 ^r 99675-16 ^h	99820-16°	99097-1 ^j 99087-1 ^k	11630-16 95636-16 ^m	11984-1*ª 11977-1*º			11750-16 ^p 11771-16 ^q
	99880-16 ^{e,f}	99675-16 ^h	99820-16°	99097-1 ^j	11630-16 ¹ 95636-16 ^m	11984-1* ⁿ 11977-1*º			11750-16 ^p 11771-16 ^q
	99880-16 ^{e,f}	99675-16 ^h	99820-16°	99097-1 ^j	11630-16 ¹ 95636-16 ^m	11984-1*" 11977-1*º			11750-16 ^p 11771-16 ^q

Section Continued 🛰

- Requires Crane Multi Fit valve locks. Requires cam button spacer and a 11990-1 (.489" I.D.) or 11989-1 (.500" I.D. Accel) aluminumа Requires cam button spacer and a **11990-1** (.489"1.D.) or **11989-1** (.500"1.D. Accel) aluminum-bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Camshaft has SF0 firing order, with 4/7 swap. Ultra Pro Series vertical locking bar roller lifters. Vertical locking bar roller lifters. Must machine cylinder heads. For cylinder heads with +.100" long valves. For cylinder heads with +.100" long valves, use **99970-16** retainers and **99087-1** valve stem locks. Titanium, must use **99097-1** valve stem locks, included with the retainers. Machined steel, heat treated. Machined steel, heat treated. Multi Fit. Machined steel, heat treated, Multi Fit. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Pro Series one piece, for use with or without pushrod guideplate cylinder heads. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. 1.5 ratio, 3/8" stud (not self-aligning). Valve Train Stabilizer available, see page 343. 1.5 ratio, 7/16" stud (not self-aligning), Wide Body. Valve Train Stabilizer available, see page 343. Titanium, for **96886-16** valve springs. b L m C d n
- е
- f
- g
- 0
- р
- q
- r

					COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration	Degrees Lobe Separation	Open/C @.05 Cam I Int/E	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
		NANGE	ETTISSIONS CODE	LIFIERS	IIII/EXII.	IIIU/EXII.	Separation	IIIU/E	XII	EXII.	EXII.
Alechanical Roller Camsh Competition only, good upper RPM torgue and HP, brack-		4600-	118801 [*] ª	11570-16 ^c	274	305	106	25	50	020	.681
et racing, 360+ cu.in., .900" base circle diameter, auto trans w/race converter, 12.5 minimum compression ratio	K-2/4/4541-25-6.90	4600- 8200		11570-16	274 282	305 313	106	35 71		.020 .022	
advised.			€								
Competition only, bracket racing, good upper RPM HP, Super Pro, Super Gas, etc., auto transmission w/race con- verter, 12.5 minimum compression ratio advised.	R-276/420-251-6	4600- 8400	118891**	11570-16 [.]	276 284	308 316	106	35 71	61 33	.020 .020	
			•								
Competition only, high RPM maximum performance applications, Super Stock/Competition Eliminator, 292- 340 cu.in., etc., stick or auto transmission w/race con-	R-276/5152-25-14 SFO 55J	6000- 9800	118991 ^{*a,b}	11570-16° 11574-16 ^d	276 292	306 326	114	29 83	67 29	.020 .026	
verter, for 55mm journals, 14.0 minimum compression ratio advised. Lift w/1.8:1 intake rocker arms.			€								
Competition only, drag racing, Super Stock, 350 cu.in., auto transmission w/race converter, lift with 1.65:1 rock-	R-278/452-252-6 SFO	4800- 8400	118961 ^{*a,b}	11570-16 [°] 11574-16 ^d	278 284	307 313	106	37 72		.020 .022	.746
er arms.		0400	•	11574-10	204	212		72	52	.022	.740
Competition only, bracket racing, good upper RPM HP,	R-280/420-25-8	5000-	118901 ^{*a}	11570-16 ^c	280	312	108	36			.630
Super Quick, Super Comp, etc., auto transmission w/race converter, 12.5 minimum compression ratio advised.		8600	•		284	316		74	30	.020	.630
Competition only, good upper RPM HP, Super Stock,	R-280/450-25-8	5000-	118361*ª	11570-16 ^c	280	320	108	35	65	.026	675
Super Quick, stick or auto transmission w/race converter, 12.5 minimum compression ratio advised.	n-200/430-23-0	8600	3	11574-16 ^d	284	324	100	73		.020	
Competition only, 370+ cu.in., Super Quick, etc., stick or	R-282/4765-252-10	5000-	118381*ª	11570-16'	282	316	110	36	66	025	.715
auto transmission w/race converter, good w/large multi- stage nitrous system, 13.0 minimum compression ratio	R-202/4/03-232-10	8600	•	11574-16 ^d	290	324	110		30	.030	
advised. Good w/large Roots supercharger, 30 lbs. maxi- mum boost w/8.0 maximum compression ratio advised.			€								
Competition only, high RPM maximum performance	R-282/4765-252-12	6000-	118451*ª	11570-16 ^c	282	316	112		68	.035	
applications, Competition Eliminator, 292-340 cu.in., etc., Super Quick w/400+ cu.in., stick or auto transmission w/	R-282/4765-252-12 SF0	9400	118461 ^{*a,b}	11574-16 ^d	290	324		82	28	.030	.757
race converter, 14.0 minimum compression ratio advised. Lift w/1.65 rocker arms.			€								
Competition only, high RPM Competition Eliminator, stick	R-282/5002-25-13 SF0	6000-	118491 ^{*a,b}	11570-16 ⁶	282	312	113		69		.825
or auto transmission w/race converter, 14.0 minimum compression ratio advised. Lift w/1.65 rocker arms.		9600	•	11574-16 ^d	290	330		83	27	.030	.776
			•								
Competition only, high RPM maximum performance applications, good w/large multi-stage nitrous system, 388+ cu.in., Super Quick, etc., stick or auto transmission	R-286/4765-253-12 R-286/4765-253-12 SFO	6000- 9800	118471 ^{*a} 118481 ^{*a,b}	11570-16° 11574-16ª	286 294	320 328	112		70 30	.035 .030	
w/race converter, 14.0 minimum compression ratio advised. Good w/large Roots supercharger, 388+ cu.in., 35 lbs. maximum boost with 7.5 maximum compression ratio advised. Lift w/1.65 rocker arms.			€								

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Self-aligning rocker arms cannot be used with mechanical lifter roller camshafts.

NOTE: When using 55-56, 265 cu.in. blocks, late model cam bearings must be installed.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core

NOTE: Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. Drilling and tapping for Sander rear drive is available. SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap) and SFO1 (1-8-7-2-6-5-4-3, or 4/7 3/2 swap) are offered. Optional journal sizes are Roller Bearing (1.875"), Big Block (1.949"), Large Roller Bearing/50mm

(1.969"), and 55mm (2.165") Gun drilling (where applicable) is available. Lightweight undercut journal, narrow lobe cores are offered. Lobe layouts for Buick Race/Dart, Splayed Valve, and SB2 cylinder heads are available.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING	See pg. 517	See pg. 550	VALVE	VALVE	5ee pg. 200	TIMING CHAIN	STEEL	— ALUMINUM	
AND RETAINER	VALVE		STEM	STEM		AND GEAR	ROCKER	ALUMINUM	GOL
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RAC
	99880-16 ^{e,f}	99675-16 ^h	99820-16°	99097-1 ^j	11630-16 ¹	11984-1* ⁿ			11771-1
				99087-1 ^k	95636-16 ^m	11977-1 [*] °			
	00005 1 cef	00056 16	00020 1/8	00007 1	11(20.14	11004 1***			11750 1
	99885-16 ^{e,f} 96883-16 ^{e,g}	99956-16 99675-16 ^h	99820-16°	99097-1 ^j 99087-1 ^k	11630-16 ¹ 95636-16 ^m	11984-1* " 11977-1*°			11750-1 11771-1
	50005 10	99970-16 ⁱ		<i>,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JJUJU 10	11777 1			11//1
	99885-16 ^{e,f}	99956-16	99820-16°	99097-1 ^j	95636-16 ^m	11984-1 [*] "			11771-1
	96883-16 ^{e,g}	99675-16 ^h		99087-1 ^k		11977-1*º			
		99970-16 ⁱ							
	99885-16 ^{e,f}	99956-16	99820-16°	99097-1 ^j	11630-16 ¹	11984-1 * ⁿ			11771 -1
	96883-16 ^{e,g}	99675-16 ^h		99087-1 ^k	95636-16 ^m	11977-1*°			
		99970-16 ⁱ							
	99885-16 ^{e,f}	99956-16	99820-16°	99097-1 ^j	11630-16 ¹	11984-1 [*]			11750 -1
	96883-16 ^{e,g}	99675-16 ^h 99970-16 ⁱ		99087-1 ^k	95636-16 ^m	11977-1 [*] °			11771-1
		99970-10							
	99880-16 ^{e,f}	99675-16 ^h	99820-16°	99097-1 ^j	11630-16 ¹	11984-1* ⁿ			11771-1
					95636-16 ^m	11977-1*°			
	99880-16 ^{e,f}	99675-16 ^h	99820-16°	99097-1 ^j	95636-16 ^m	11984-1* ⁿ 11977-1*º			11771-1
						119/7-1			
	99880-16 ^{e,f}	99675-16 ^h	99820-16°	99097-1 ^j	95636-16 ^m	11984-1* ⁿ			11771-1
						11977-1 [*] °			
	99880-16 ^{e,f}	99675-16 ^h	99820-16°	99097-1 ^j	95636-16 ^m	11984-1* ⁿ			11771-1
						11977-1 [*] °			
						44004 4*			44996
	99880-16 ^{e,f}	99675-16 ^h	99820-16°	99097-1 ^j	95636-16 ^m	11984-1* ⁿ 11977-1*º			11771-1
						117/1-1			

a Requires cam button spacer and a 11990-1 (.489" I.D.) or 11989-1 (.500" I.D. Accel) aluminum-Requires Crane Multi Fit valve locks. Requires cam button spacer and a **11990-1** (.489"1.D.) or **11989-1** (.500"1.D. Accel) aluminum-bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Camshaft has SF0 firing order, with 4/7 swap. Ultra Pro Series vertical locking bar roller lifters. Ultra Pro Series vertical locking bar roller lifters for .904" diameter lifter bores. Must machine cylinder heads. For cylinder heads with +.100" long valves. For cylinder heads with +.100" long valves, use **99970-16** retainers and **99087-1** valve stem locks. Titanium, must use **99097-1** valve stem locks, included with the retainers. Machined steel, heat treated. Machined steel, heat treated, Multi Fit. Machined steel, heat treated, Multi Fit. Heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Pro Series one-piece, for use with or without pushrod guideplate cylinder heads. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. 1.5 ratio, 7/16" stud (not self-aligning), Wide Body, Valve Train Stabilizer available, see page 343. 1.5 ratio, 3/8" stud (not self-aligning). Valve Train Stabilizer available, see page 343. b н c d m

- е
- f
- g h
- n
- 0
- р
- q

Chevrolet V-8 87-92

305 (5.0L)-350 (5.7L) cu.in.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Camsha	fts										
For low-end and mid-range performance in 87-92 cars and light trucks. Fine w/auto or manual and stock rear gears, great for 305 requiring extra low-end torque to cruise below 1800 RPM, ideal for TBI engines w/auto trans and stock converter. (50 state legal for listed appli- cations, C.A.R.B. E.O. D-225-22).	2010	500- 4200	104201	10530-16	184 194	246 256	106	(14) 18 23 9	.000 .000	.384 .407	
Designed for TPI 305 engines in 87-89 Camaros and Firebirds w/auto trans. Good all-around performance. An adjustable fuel pressure regulator is recommended for maximum performance. (50 state legal for listed applications, C.A.R.B. E.O. D-225-22).	2011	500- 4400	104204	10530-16 ⁴	184 204	246 266	108	(11) 15 35 (11)	.000 .000		
For mid and top end torque and HP. Mainly for 87-92 305 cars w/TBI and manual 4 or 5-speed. (50 state legal for listed applications, C.A.R.B. E.O. D-225-22).	2020	800- 4600	104211	10530-16 [•]	194 204	256 266	111	(14) 28 33 (9)	.000 .000		
Builds mid and upper RPM performance in 87 TPI engines with 5-speed transmission and all rear gear ratios. Also fits 88-89 305 engines w/5-speed and 2.73 or 3.27 rear gears for mid-range performance. An adjustable fuel pressure regulator is recommended for maximum performance. (50 state legal for listed applications, C.A.R.B. E.O. D-225-22).	2030	1200- 5200	104221	10530-16ª	204 214	260 270	116	(14) 38 43 9	.000 .000		
For mid & upper RPM performance in 88-89 305 engines w/5-speed and 3.45 or numerically higher rear gear ratios. An adjustable fuel pressure regulator is recommended for maximum performance. (50 state legal for listed applications, C.A.R.B. E.O. D-225-22).		1400- 5400	104225 (10530-16 ²	208 214	264 270	112	(3) 31 44 (10)	.000 .000		
For 87-89 Corvettes, Camaros and Firebirds factory equipped w/350 TPI engines. An adjustable fuel pressure regulator is recommended for maximum performance. (50 state legal for listed applications, C.A.R.B. E.O. D-225-22).	2032	1800- 5800	104224 •	10530-16 ⁴	214 220	270 276	112	0 34 47 (7)	.000 .000		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel, it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.
- NOTE: The camshafts listed above incorporate the front ignition drive pilot hole for late model applications. A long cam dowel pin is installed, which can be driven in further when required for short dowel pin application engines.
 NOTE: Mechanical roller tappet camshafts and components are
 - TE: Mechanical roller tappet camshafts and components are available on special order. Contact Crane's Performance Consultants for details.
 TE: 1988-99 (heurylet 305 and 350 V-8 engines (and some 1)
 - NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER	VALVE		VALVE STEM	VALVE STEM		TIMING CHAIN AND GEAR	STEEL ROCKER	— ALUMINUN	GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
11308-1 ⁵	99848-16 ^ь 144846-16'	99915-16		99097-1ª	10621-16° 95624-16 ^f	10975-1* ⁹	11801-16 ^{h,i} 11806-16 ^{j,i} 10800C-16 ^k	11744-16 ^{m,i}	11750-16 10750-16 10751-16 10758-16
11308-1 ^ь	99848-16 ⁶ 144846-16'	99915-16		99097-1ª	10621-16° 95624-16 ^f	10975-1 ^{*g}	11801-16 ^{h,i} 11806-16 ^{j,i} 10800C-16 ^k	11744-16 ^{m,i}	11750-16 10750-16 10751-16 10758-16
11308-1 ^ь	99848-16 ^ь 144846-16'	99915-16		99097-1ª	10621-16° 95624-16 ^f	10975-1 ^{*g}	11801-16 ^{h,i} 11806-16 ^{j,i} 10800C-16 ^k	11744-16 ^{m,i}	11750-16 10750-16 10751-16 10758-16
	96802-16' 144846-16'	99915-16		99097-1ª	10621-16° 95624-16 ^f	10975-1 ^{*g}	11801-16 ^{h,i} 11806-16 ^{j,i} 10800C-16 ^k	11744-16 ^{m,i}	11750-16 10750-16 10751-16 10758-16
	96802-16' 144846-16'	99915-16		99097-1ª	10621-16° 95624-16 [†]	10975-1 ^{°g}	11801-16 ^{h,i} 11806-16 ^{j,i} 10800C-16 ^k	11744-16 ^{m,i}	11750-16 10750-16 10751-16 10758-16
	96802-16 [.] 144846-16 [.]	99915-16		99097-1ª	10621-16° 95624-16 ^ŕ	10975-1* ^g	11801-16 ^{h,i} 11806-16 ^{j,i} 10800C-16 ^k	11744-16 ^{m,i}	11750-16 10750-16 10751-16 10758-16

For use with standard GM alignment bars. а

- Contains standard diameter valve springs, no machining required. Standard diameter valve springs, for 1.750" assembly height. b
- c d
- Machined steel, heat treated. Heavy wall, heat treated, for use with either pushrod guideplate or non-guideplate cylinder heads. e f
- g h
- Performance steel billet gears and roller chain set, for 1987-91 applications. 1.5 ratio, extra long slot (not self-aligning). In order to use these rocker arms on engines originally equipped with self-aligning rockers, hard-ened pushrod guideplates must be installed, and valve cover clearance checked. i
- 1.5 ratio, roller tip, extra long slot (not self-aligning).
- k
- 1.5 ratio, roller tip, extra long slot (not self-aligning).
 1.5 ratio, self-aligning, Nitro Carb.
 Energizer, 1.5 ratio (not self-aligning). Will not have sufficient clearance in factory cast valve covers.
 1.5 ratio (not self-aligning). Factory cast valve covers may require internal clearancing.
 1.5 ratio (not self-aligning), narrow body for center bolt valve covers.
 1.5 ratio, self-aligning narrow body for center bolt valve covers.
 1.6 ratio, self-aligning narrow body for center bolt valve covers.
 1.6 ratio, self-aligning narrow body for center bolt valve covers.
 Standard diameter PAC Enhanced valve springs for 1.750" assembly height. m
- n
- 0
- р
- q r

305 (5.0L)-350 (5.7L) cu.in. (except 5.7L LS1)

					COMPLETE CAM SPECIFICATIONS						
		rpm Power	Camshaft PART NUMBER/	See pg. 274	Degrees Duration @ .050″	Advertised Degrees Duration	l Degrees Lobe	Open/Close @ .050" Cam Lift	Lash Hot Int.	Gross Lift Int.	
11		RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.	
Hydraulic Roller Camshaf											
Brute low end torque and HP, smooth idle, daily usage, light towing, economy, also mild turbocharged, 2200- 3000 cruise RPM, marine applications: primarily used in 350 cu.in. near-stock engines for mild performance applications in heavy boats, 8.0 to 9.5 compression ratio advised.	HR-260-2-12 IG	1000- 5200	109811*ª	10530-16 ^ь 10535-16 ^ς	204 214	260 270	112	(5) 29 44 (10)		.429 .452	
	HR-206/319-25-12.90 IG	i 1000- 5200	109851°ª	10535-16'	206 214	268 276	112	(4) 30 44 (10)	.000 .000	.479 .498	
Excellent low end and mid range torque and HP, good idle, daily usage, off road, performance and fuel efficien- cy, 2600-3400 cruise RPM, marine applications: primarily used in 350 cu.in. mildly modified engines with high flow exhaust systems, for performance applications in light boats, 8.75 to 10.75 compression ratio advised. Good w/small supercharger, 8 lbs. maximum boost w/8.5 maximum compression ratio advised.	HR-276-25-12 IG	1600- 5800	109821'ª 📀	10530-16 ⁶ 10535-16 ⁶	214 222	276 284	112	0 34 48 (6)		.488 .509	
Excellent low end and mid range torque and HP, good idle, daily usage, off road, performance and fuel efficien- cy, primarily used in 383+ c.i.n. engnes, 2600-3400 cruise RPM, marine applications: for mildly modified engines with high flow exhaust systems, for perfor- mance applications in light boats, 8.75 to 10.75 compres- sion ratio advised. Good w/small supercharger, 8 lbs. maximum boost w/8.5 maximum compression ratio advised, .900" base circle for long stroke clearance.	HR-216/339-25-12.90 IG	i 1600- 5800	109671"ª	10535-16'	216 224	284 292	112	1 35 49 (5)		.509 .528	
Excellent mid range torque and HP, good idle, moderate performance usage, crate motor upgrade, mild bracket racing, auto trans w/2000+ converter, marine applica- tions: for 350 cu.in. modified engines with free-flowing above water exhaust systems for performance applica- tions in light pleasure and ski boats, including jet boats, 2800-3600 cruise RPM, 9.0 to 11.0 compression ratio advised. Good w/supercharger, 10 lbs. maximum boost w/8.0 maximum compression ratio advised.	HR-218/332-253-12 IG	1800- 6000	109861 ^{*a}	10535-16 [.]	218 226	280 288	112	2 36 50 (4)		.498 .518	
Good mid range torque and HP, fair idle, moderate per- formance usage, crate motor upgrade, mild bracket rac- ing, auto trans w/2500+ converter, marine applications: for 350+ cu.in. modified engines with free-flowing above water exhaust systems for performance applica- tions in light pleasure and ski boats, including jet boats, 3000-3800 cruise RPM, 9.5 to 11.0 compression ratio advised. Good w/supercharger, 10 lbs. maximum boost w/8.0 maximum compression ratio advised.	HR-284-25-12 IG	2000- 6200	109831"ª	10535-16'	222 230	284 292	112	4 38 52 (2)	.000 .000	.509 .528	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

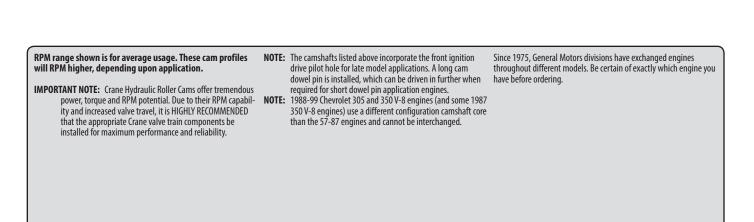
NOTE: The camshafts listed above incorporate the front ignition drive pilot hole for late model applications. A long cam dowel pin is installed, which can be driven in further when required for short dowel pin application engines.

IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel, it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.

NOTE: 1988-99 (hervrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

70



CRANE VAL	/E TRAIN COI	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	I ROCKERS — Gold Race
11309-1 ^{4,f} 11310-1 ^{e,f}	99846-16 ⁹ 99838-16 ^e 96802-16 ^h 144846-16 ^{aa}	99915-16 [;] 99944-16	99820-16°	99051-1 ¹ 99097-1™	10621-16° 95624-16 [,]	10975-1 ^{*q}	11801-16 [,] 10800C-16 [,]	11744-16 ^{u,z}	11750-16 ^{%,2} 10750-16 ^{%,} 10751-16 [×] 10758-16 ^y
11309-1 ^{4,f} 11310-1 ^{e,f}	99846-16 ^g 99838-16 ^e 96802-16 ^h 144846-16 ^{aa}	99915-16 ⁱ 99944-16	99820-16°	99051-1 99097-1™	10621-16° 95624-16°	10975-1 ^{*q}	11801-16' 10800C-16'	11744-16 ^{u,z}	11750-16 ^{v,z} 10750-16 ^{w,} 10751-16 ^x 10758-16 ^y
11309-1 ^{4,f} 11310-1€ ^{,f}	99846-16 ⁹ 99838-16° 96802-16 ^h 144846-16ªª	99915-16 ⁱ 99944-16	99820-16°	99051-1 ¹ 99097-1™	10621-16º 95624-16 ^p	10975-1°ª	11801-16' 10800C-16'	11744-16 ^{u,z}	11750-16 ^{%,2} 10750-16 ^{%,} 10751-16 ^x 10758-16 ^y
11309-1 ^{4,f} 11310-1 ^{6,f}	99846-16 ⁹ 99838-16 ^e 96877-16 ^{e,i} 144846-16 ^{aa}	99915-16 [;] 99944-16 99969-16 ^k	99820-16°	99051-1 ¹ 99097-1™ 99094-1™	95624-16°	10975-1*ª	11801-16' 10800C-16'	11744-16 ^{u,z}	11750-16 ^{%;} 10750-16 ^{%;} 10751-16 [×] 10758-16 ^y
11309-1 ^{4,f} 11310-1 ^{e,f}	99846-16 ⁹ 99838-16 ^e 96877-16 ^{e,i} 144846-16 ^{aa}	99915-16 [;] 99944-16 99969-16 ^k	99820-16°	99051-1 ¹ 99097-1 ^m 99094-1 ⁿ	10621-16° 95624-16 [°]	10975-1°ª	11801-16' 10800C-16'	11744-16 ^{uz}	11750-16 ^{%,2} 10750-16 ^{%,2} 10751-16 [×] 10758-16 ^y
11309-1 ^{4,f} 11310-1⁰ ^{,f}	99846-16 ⁹ 99838-16 ^e 96877-16 ^{e,i} 144846-16 ^{aa}	99915-16 ⁱ 99944-16 99969-16 ^k	99820-16°	99051-1 ¹ 99097-1™ 99094-1°	10621-16° 95624-16 ^p	10975-1 ^{*q}	11801-16' 10800C-16'	11744-16 ^{u,z}	11750-16 ^{v,z} 10750-16 ^{w,z} 10751-16 ^x 10758-16 ^y
							Section Col	ntinued 🛰	-
drive gear not ree b For use with stand c For use with stand stock lobe lift or d Contains standard (99095-1), no m e Must machine cyli f Valve guide machin valve lift due to l g Standard diamete h Standard diamete i For +.100" length j For standard diam k Requires Crane Mu l Machined steel, ho	ard GM alignment bar lard GM alignment bar reduced base circle dia diameter valve spring lachining required. nder heads. ining may be required imited travel with stoc r XHTCS tool steel valve chrome silicon valve sp valves. eter valve springs.	s. s. Required for use wit meters. s (99846-16), and ma to insure sufficient val- k components. e springs, no machinin orings for 1.750" assem	h camshafts having g chined steel valve ste ve guide-to-retainer o g required. bly height.	n reater than p m locks r :learance at full w x y z aa	Pro Series one-piece, Performance steel bil 1.5 ratio, extra long s 1.5 ratio, extra long s Energizer, 1.5 ratio (r 1.5 ratio (not self-ali 1.5 ratio, (not self-ali 1.5 ratio, self-alignin 1.6 ratio, self-alignin 1.n order to use these r pushrod guideplates		rod guideplate or nc n set (for 1987-91 ap aligning). t have sufficient clea e covers may require center bolt valve covers. r bolt valve covers. ginally equipped with ds must be installed, a	m-guideplate cylino pplications). arance in factory ca internal clearancin vers. n self-aligning rockea and valve cover clear	ler heads. st valve covers. g. s, hardened

71

305 (5.0L)-350 (5.7L) cu.in. (except 5.7L LS1)

					COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe	Open/ @.0 Cam Int/l	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Roller Camsha		KANGE	Emissions code	LIFTERS	IIII/EXII.	IIIU/EXII.	Separation	IIIt/I	XII	EXII.	EXII.
Good mid range torque and HP, fair idle, moderate per- formance usage, mild bracket racing, primarily used in 383+ cu.in. engines, auto trans w/2500+ converter, marine applications: for modified engines with free- flowing above water exhaust systems for performance applications in light pleasure and ski boats, including jet boats, 3000-3800 cruise RPM, 9.5 to 11.0 compression ratio advised. Good w/supercharger, 14 lbs. maximum boost w/8.0 maximum compression ratio advised, 1.040" base circle for long stroke clearance.	HR-224/345-25-14.04 IG	2200- 6400	109871'ª (10535-16 ⁶	224 232	286 294	114	3 55		.000 .000	.518 .539
Good mid range torque and HP, fair idle, performance usage, 3600-4400 cruise RPM, good with manifold nitrous system, 10.0 to 11.5 compression ratio advised. Good w/Roots supercharger, 15 lbs. maximum boost w/8.0 maximum compression ratio advised, .900" base circle for long stroke clearance.	HR-230/359-25-12.90 IG	2600- 6600	109661 ^{*a}	10535-16 ^ь	230 238	292 300	112	8 56	42 2	.000 .000	
Good mid range torque and HP, fair idle, performance usage, mild bracket racing, auto trans w/3000+ convert- er, 3800-4600 cruise RPM, good w/manifold nitrous sys- tem, 10.0 to 11.5 compression ratio advised. Good w/ Roots supercharger, 15 lbs. maximum boost, w/8.0 maxi- mum compression ratio advised.	HR-296-2S-12 IG	2800- 6800	109841*ª	10535-16 ^b	234 242	296 304	112	10 58	44 4	.000 .000	
Good mid range torque and HP, fair idle, performance usage, mild bracket racing, auto trans w/3000+ convert- er, 3800-4600 cruise RPM, good w/manifold nitrous sys- tem, 10.0 to 11.5 compression ratio advised. Good w/ Roots supercharger, 15 lbs. maximum boost, w/8.0 maxi- mum compression ratio advised, .900" base circle for long stroke clearance.	HR-234/365-25-12.90 IG	2800- 6800	109691"ª 3	10535-16 ^b	234 242	296 304	112	10 58	44 4	.000 .000	.548 .558
Rough idle, performance usage, good upper RPM torque and HP, bracket racing, auto trans w/3500+ converter, 4200-5000 cruise RPM, 10.5 to 12.0 compression ratio advised, 370+ cu.in. supercharged and/or nitrous, 1.040" base circle for long stroke clearance.	HR-302-25-10.04 IG	3200- 7200	109651*ª 3	10535-16 ^b	240 244	302 306	110	15 57	45 7		.558 .558

72

CRANE VALV	/E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	A ROCKERS — Gold Race
11309-1 ^{çe} 11310-1 ^{d,e}	99846-16 ^f 99838-16 ^d 96877-16 ^{d,h} 144846-16 ^y	99915-16 ^h 99944-16 99969-16 ⁱ	99820-16ª	99051-1 ^j 99097-1 ^k 99094-1 ⁱ	95624-16"	10975-1*°	11801-16 ^p 10800C-16 ^q	11744-16 ^{s,x}	11750-16 ^{t,} 10750-16 ^{u,} 10751-16 ^v 10758-16 ^w

11309-1 ^{c,e} 11310-1 ^{d,e}	99846-16 ^f 99838-16 ^d 96877-16 ^{d,h} 144846-16 ^y	99915-16 ^h 99944-16 99969-16 ⁱ	99820-16ª	99051-1 ^j 99097-1 ^k 99094-1 ¹	95626-16ª	10975-1°°	11801-16 ^p 10800C-16 ^q	11744-16 ^{5,x}	11750-16 ^{t,x} 10750-16 ^{u,x} 10751-16 ^v 10758-16 ^w
11309-1 ^{c,e} 11310-1 ^{d,e}	99846-16 ^f 99838-16 ^d 96877-16 ^{d,h} 144846-16 ^y	99915-16 ^h 99944-16 99969-16 ⁱ	99820-16ª	99051-1 ^j 99097-1 ^k 99094-1 ¹	10621-16 ^m 95624-16 ⁿ	10975-1*°	11801-16 ^p 10800C-16 ^q	11744-16 ^{5,x}	11750-16 ^{t,x} 10750-16 ^{u,x} 10751-16 ^v 10758-16 ^w
11309-1 ^{c,e} 11310-1 ^{d,e}	99846-16 ^f 99838-16 ^d 96877-16 ^{d,h} 144846-16 ^y	99915-16 ^h 99944-16 99969-16 ⁱ	99820-16ª	99051-1 ^j 99097-1 ^k 99094-1 ⁱ	95626-16ª	10975-1*°	11801-16 ^p 10800C-16 ^q	11744-16 ^{s.x}	11750-16 ^{t,x} 10750-16 ^{u,x} 10751-16 ^v 10758-16 ^w
11309-1 ^{c,e} 11310-1 ^{d,e}	99846-16 ^f 99838-16 ^d 96877-16 ^{d,h} 144846-16 ^y	99915-16 ^h 99944-16 99969-16 ⁱ	99820-16ª	99051-1 [;] 99097-1 ^k 99094-1 ¹	95625-16ª	10975-1*º	11801-16 ^p 10800C-16 ^q	11744-16 ^{s,x}	11750-16 ^{t,x} 10750-16 ^{u,x} 10751-16 ^v 10758-16 ^w

а	Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor
	drive gear not required.

- **b** For use with standard GM alignment bars. Required for use with camshafts having greater than stock lobe lift or reduced base circle diameters.
- Contains standard diameter valve springs (99846-16), and machined steel valve stem locks c (99095-1), no machining required.
- d
- Must machine cylinder heads. Valve guide machining may be required to insure sufficient valve guide-to-retainer clearance at full е valve lift due to limited travel with stock components.
- f Standard diameter XHTCS tool steel valve springs, no machining required.
- For +.100" length valves. q
- For standard diameter valve springs.
- Requires Crane Multi Fit valve locks.
- Machined steel, heat treated, .050" additional assembly height for 99846-16 and 96802-16 valve y springs. May interfere with self-aligning rocker arms.
- Machined steel, heat treated.

Machined steel, heat treated, Multi Fit.

Т

- Heavy wall, heat treated, for use with either pushrod guideplate or non-guideplate cylinder heads. m
- n
- 0
- р
- q
- Heavy wall, heat treated, for use with either pushrod guideplate or non-guideplate cylinder heads.
 Pro Series one-piece, for use with either pushrod guideplate or non-guideplate cylinder heads.
 Performance steel billet gears and roller chain set (for 1987-91 applications).
 1.5 ratio, extra long slot (not self-aligning).
 1.5 ratio, extra long slot, Nitro Carb (not self-aligning).
 Energizer, 1.5 ratio (not self-aligning), will not have sufficient clearance in factory cast valve covers.
 1.5 ratio (not self-aligning), narrow body for center bolt valve covers.
 15 ratio, self-aligning narrow body for center bolt valve covers.
- t
- u
- 1.5 ratio, self-aligning narrow body for center bolt valve covers. v
- 1.6 ratio, self-aligning narrow body for center bolt valve covers. W
- Х
- In order to use these rocker arms on engines originally equipped with self-aligning rockers, hardened pushrod guideplates and heat-treated pushrods must be installed, and valve cover clearance checked.
- Standard diameter PAC Enhanced valve springs for 1.750" assembly height.

305 (5.0L)-350 (5.7L) cu.in. (except 5.7L LS1)

					СОМ	PLETE C	AM SPE	CIFIC	ATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/C @ .05 Cam I Int/E	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Mechanical Roller Camsh	afts										
Excellent low end and mid range torque and HP, good idle, daily performance usage, mild bracket racing, auto trans w/2500+ converter, 3000-3400 cruise RPM, 9.5 to 11.0 compression ratio advised.	SR-228/338-25-12 IG	2200- 6200	108541*ª (3)	11570-16 ^ь	228 236	278 280	112	7 55	41 1	.020 .020	.507 .525
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, 383+ cu.in., auto trans w/3000+ converter, 3400-3800 cruise RPM, good with plate or manifold nitrous system, 10.5 to 11.5 compression ratio advised, .900" base circle for long stroke clearance. Good with centrifugal or small Roots supercharger, 10 lbs. maximum boost w/8.5 maximum compression ratio advised.	SR-232/350-25-12.90 IG	2400- 6600	108571 [*] ª	11570-16 ⁶	232 240	286 294	112	9 57	43 3		.525 .543
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/3000+ converter, 3400-3800 cruise RPM, good with plate or manifold nitrous system, 10.5 to 11.5 com- pression ratio advised. Good with centrifugal or small Roots supercharger, 10 lbs. maximum boost w/8.5 maxi- mum compression ratio advised.	SR-236/350-25-12 IG	2400- 6600	108551 [*] ª	11570-16 ^ь	236 244	286 294	112	11 59	45 5	.020 .020	.525 .543
Good mid range torque and HP, fair idle, performance usage, w/manifold nitrous system, bracket racing, 383+ cu.in, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised, .900" base circle for long stroke clearance. Good w/Roots super- charger, 14 pounds maximum boost w/8.0 maximum compression ratio advised.	SR-240/362-25-12.90 IG	3400- 7200	108611 ^{*a}	11570-16 ^ь	240 248	294 302	112	13 61	47 7	.020 .020	
Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, w/manifold notrous system, bracket rac- ing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised. Good w/ Roots supercharger, 14 pounds maximum boost w/ 8.0 maximum compression ratio advised.	SR-244/362-25-12 IG	3400- 7200	108521*ª	11570-16 ^ь	244 252	294 302	112	15 63	49 9		.543 .561

Chevrolet V-8 92-96

305 (5.0L)-350 (5.7L) cu.in. LT1

Hydraulic Roller Camshaf	fts									
Good low end torque, for 94-96 aluminum head equipped LT1 Camaros, Firebirds and Corvettes. Works in stock and mild modified engines. Boosts mid and top end without low end loss. Use 10758-16 1.6 ratio rocker arms for more power. Not for use w/stock springs. For mass air F.I. only.	2033	1500- 5700	104227 ^{*a}	10530-16' 10535-16 ^d	210 224	272 286	112	(2) 32 49 (6)	.000 .000	
For 94-95 highly modified, aluminum head LT1 Camaros, Firebirds and Corvettes. High flow heads, headers and exhaust required. Manual transmission recommended. Top end power with some low end loss. Use 10758-16 1.6 ratio rocker arms for more power. Not for use w/stock springs. For mass air F.1. only. (50 state legal for listed applications C A B & F. O. D-275-55)	2050	2400- 6400	104241ª •	10535-16 ^d	218 218	280 280	116	(2) 40 50 (12)	.000 .000	.498 .498

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capabil-ity and increased valve travel, it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.

NOTE: The camshafts listed above incorporate the front ignition drive pilot hole for late model applications. A long cam

dowel pin is installed, which can be driven in further when required for short dowel pin application engines. NOTE: 1988-99 Chevrolet 305 and 350 V-8 engines (and some 1987 350 V-8 engines) use a different configuration camshaft core than the 57-87 engines and cannot be interchanged.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

CRANE VALV	/E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	ROCKERS — Gold Race
	99893-16 ^f	99951-16	99820-16°	99097-1 ^h	11621-16 ⁱ 95638-16 ⁱ	10975-1 ^{*k}			11750-16 ^{n,} 10750-16 ^{n,}
	99893-16 ^f	99951-16	99820-16°	99097-1 ^h	95638-16 ^j	10975-1* ^k			11750-16 ^{n,} 10750-16 ^{n,}
	99893-16 ^f	99951-16	99820-16°	99097-1 ^h	11621-16 ⁱ 95638-16 ⁱ	10975-1 ^{*k}			11750-16" 10750-16"
	99893-16 ^f	99951-16	99820-16°	99097-1 ^h	95638-16 ⁱ	10975-1 ^{*k}			11750-16" 10750-16"
	99893-16 ^f	99951-16	99820-16°	99097-1 ^h	11621-16 ⁱ 95638-16 ⁱ	10975-1* ^k			11750-16" 10750-16"

11308-1° 99893-16° 99951-16° 99915-16⁹ 10621-16ⁱ 95624-16^j 10800C-16¹ 10751-16ª 10758-16' 99097-1^h 96802-16⁹ 11308-1^e 99893-16° 99951-16° 99097-1^h 10621-16ⁱ 10800C-16¹ 10751-16^q 96802-16⁹ 99915-16⁹ 95624-16^j 10758-16^r

 a Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor gear not required. b Ultra Pro Series vertical locking bar roller lifters. c For use with standard GM alignment bars. d Optional Crane long travel hydraulic roller lifters, for use with standard GM alignment bars. e For LT1 aluminum cylinder heads. f For LT1 iron cylinder heads. f Machined steel, heat treated. i Heavy wall. beat treated. 	 Performance steel billet gears and roller chain set (for 1987-91 applications). 1.5 ratio, extra long slot, Nitro Carb (not self-aligning). 1.5 ratio (not self-aligning). Factory cast valve covers may require internal clearancing. 1.5 ratio (not self-aligning), narrow body for center bolt valve covers. 1.5 ratio, self-aligning narrow body for center bolt valve covers. 1.6 ratio, self-aligning narrow body for center bolt valve covers. Valve springs and retainers must t changed to allow for increased valve travel.
--	--

Pro Series one-piece, for use with either pushrod guideplate or non-guideplate cylinder heads.

j

75

						COMPLETE CAM SP			CIFICATI	ONS		
	Ann 11-141-1	Camshaft Series/	RPM POWER		See pg. 274	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	@ .050″ Cam Lift	Lash Hot Int.	Gross Lift Int.	
	Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exn.	Separation	Int/Exh	Exh.	Exh.	
	Hydraulic Roller Camsha Great daily driver or truck towing, for stock 4.8L thru 5.7L, smooth idle, great fuel economy, good torque and HP increase, computer upgrades not required, can use stock valve springs, good w/1.8:1 rocker arms.	HR-206/294-25-14.55	1400- 5500	1449511* 3	144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	206 214	270 278	114	(6) 32 46 (12)	.000 .000		
	Good daily driver, for stock or slightly modified 4.8L thru 6.0L, light choppy idle, good fuel economy, overall torque and HP increase, computer upgrades not required, good w/1.8:1 rocker arms.	HR-210/3241-2S-14 4A	1800- 6000	1449041* (144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	210 218	272 280	114	(5) 35 47 (9)	.000 .000		
	Great daily driver, for stock 4.8L thru 6.0L, slight idle note, great fuel economy, overall torque and HP increase, computer upgrades not required, good w/1.8:1 rocker arms.	HR-210/3241-2S-16 2A	1600- 6000	1449051* (144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	210 218	272 280	116	(9) 39 47 (9)	.000 .000	.551 .551	
	Good daily driver, for stock or slightly modified 4.8L thru 6.0L, light choppy idle, good fuel economy, 10.5+ com- pression ratio advised, computer upgrades required, good w/1.8:1 rocker arms.	HR-216/3241-15	2200- 6300	1449061* •	144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	216 216	278 278	115	(2) 38 48 (12)	.000 .000		
-	Good daily driver, for stock or modified 4.8L thru 6.0L, light choppy idle, good fuel economy, 10.5+ compres- sion ratio advised, good with supercharger or nitrous, computer upgrades required.	HR-216/344-2S1-16 3A	1900- 6000	1449071* •	144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	216 222	277 283	116	(5) 41 50 (8)	.000 .000		
	Good daily driver, for stock or modified 4.8L thru 6.0L, light choppy idle, good fuel economy, good with super- charger or nitrous, computer upgrades required, good w/1.8:1 ratio rocker arms.	HR-216/3241-2S-15	2000- 6500	1449561* •	144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	216 224	278 286	115	(2) 38 52 (8)	.000 .000	.551 .551	
	Good daily driver, for stock or modified 5.7L thru 6.0L, light choppy idle, good fuel economy, 10.5+ compres- sion ratio advised, computer upgrades required.	HR-216/344-2S-14	2200- 6500	1449081* (3)	144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	216 224	277 285	114	(1) 37 51 (7)	.000 .000		
	Great daily driver, near stock idle but awesome response and mid-range and upper end power, good fuel economy. 10.5+ compression ratio advised.	HR-216/347-251-15	2000- 6500	1449351° 3	144530-16ª 144536-16 ^b 144532-16' 144533-16 ^x	216 224	272 280	115	(3.5) 39.5 50.5 (6.5)	.000 .000		
	Daily driver, for modified 5.7L thru 6.0L, light choppy idle, fair fuel economy, headers and aft cat exhaust advised, 10.5+ compression ratio advised, auto trans w/2400-2800 stall converter, computer upgrades required, good w/1.8:1 ratio rocker arms.	HR-220/3241-251-14	2400- 6500	1449011* 3	144530-16ª 144536-16 ^b 144532-16' 144533-16 ^x	220 224	282 286	114	1 39 51 (7)	.000 .000		

RPM range shown is for average usage. These cam profiles
will RPM higher, depending upon application.

IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel, it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.

NOTE: 1997-up Chevrolet 5.7L LS1/LS6, 1988-99 305 and 350 V-8 (and some 1987 350 V-8) engines, and the 1957-87 262-400 V-8 engines, each use different configuration camshaft cores, and cannot be interchanged.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

Crane Cams offers many different cam lobe profiles for the GM "LS1/LS2/LS6 Engine Family". These hydraulic roller cams are designed for torque and HP increases for trucks, to all-out competition profiles for LS1 powered race cars.

Crane's LS engine family's grinds are designed to take optimum advantage of the LS1/LS2/LS6's lighter valve train and greated reduced component inertia. This low inertia allows extraordinarily quick valve acceleration rates. This actually increases the "area beneath the lift curve" in each profile. Simply put, they begin moving the valve off its seat at a much quicker rate, to initiate earlier flow. The profiles retains and lengthens this rate of acceleration during the valve-opening cycle and as it approaches maximum valve lift. They function like a much "bigger" cam (greater duration) yet they increase low-end and mid-range torque in the most often used rpm range. Peak horsepower and torque output are enhanced throughout the applications ranging from mild street performance upgrades, serious entire rpm range. The valve lift tables were also designed to minimize horsepower-robbing harmonic frequency pulses when matched with the recommended Crane valve springs and pushrods.

CRANE VALV	/E TRAIN CO	MPONENTS					
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	— ALUMINUM ROCKERS — Gold Race
144318-1 ^y 144317-1ª 144316-1ª	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ^j 144944-16 ^k 144661-16 ^l	99818-16 ^m	99108-1" 99107-1°	144621-16º 144622-16ª 95627-16'	144984-1*₃ 144985-1*¹ 144986-1*º	
144318-1 ^y 144317-1ª 144316-1°	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ⁱ 144944-16 ^k 144661-16 ⁱ	99818-16 ^m	99108-1" 99107-1°	144621-16 ^p 144622-16 ^q 95627-16 ^r	144984-1*₃ 144985-1*¹ 144986-1*ů	
144318-1 ^y 144317-1ª 144316-1ª	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ⁱ 144944-16 ^k 144661-16 ⁱ	99818-16 ^m	99108-1" 99107-1°	144621-16 ^p 144622-16ª 95627-16'	144984-1*s 144985-1*t 144986-1*"	
144318-1 ^y 144317-1ª 144316-1ª	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ⁱ 144944-16 ^k 144661-16 ⁱ	99818-16 ^m	99108-1" 99107-1°	144621-16 ^p 144622-16ª 95627-16'	144984-1* 144985-1* 144986-1*	
144318-1 ^y 144317-1ª 144316-1ª	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ⁱ 144944-16 ^k 144661-16 ⁱ	99818-16 ^m	99108-1" 99107-1°	144621-16 ^p 144622-16ª 95627-16'	144984-1* 144985-1* 144986-1*	
144318-1 ^y 144317-1 ^d 144316-1 ^e	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ⁱ 144944-16 ^k 144661-16 ⁱ	99818-16 ^m	99108-1" 99107-1°	144621-16º 144622-16º 95627-16'	144984-1*s 144985-1*t 144986-1*u	
144318-1 ^y 144317-1ª 144316-1ª	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ^j 144944-16 ^k 144661-16 ⁱ	99818-16 ^m	99108-1" 99107-1°	144621-16 ^p 144622-16ª 95627-16'	144984-1*s 144985-1*t 144986-1*u	
144318-1 ^y 144317-1ª 144316-1ª	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ⁱ 144944-16 ^k 144661-16 ⁱ	99818-16 ^m	99108-1" 99107-1°	144621-16 ^p 144622-16ª 95627-16'	144984-1*s 144985-1*t 144986-1*u	
144318-1 ^y 144317-1ª 144316-1ª	99831-16 ^f 144838-16 ^g 144847-16 ^h	99637-16 ⁱ 99657-16 ^j 144944-16 ^k 144661-16 ^l	99818-16 ^m	99108-1" 99107-1°	144621-16 ^p 144622-16 ^q 95627-16 ^r	144984-1* ^s 144985-1*t 144986-1*u	

- a OE replacement, for use with standard GM alignment bars and standard base circle camshafts. For use with standard GM alignment bars, long body design for up to .715" valve lift and reduced b
- base circle camshafts. C
- Vertical locking bar hydraulic roller lifters, cylinder head removal is required. Contains 144838-16 dual valve springs, 144944-16 steel retainers, 144460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks. d
- е Contains 144838-16 dual valve springs, 144661-16 titanium retainers, 14460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- f Single ovate wire beehive valve springs.
- Dual valve springs for up to .680" lift, requires Crane 144944-16 or 144661-16 retainers, no g
- machining required. 2002-up cylinder heads will require Crane 144460-16 spring seats. Dual valve springs for up to .660" lift, XHTCS material, requires Crane 144944-16 or 144661-16 retainers, h no machining required. 2002-up cylinder heads will require Crane 144460-16 spring seats.
- Titanium, for 99831-16 single valve springs.
- Titanium, for 99831-16 single valve springs, requires Crane Multi Fit valve locks.
- Steel, for 144838-16 and 144847-16 dual valve springs. k
- Titanium, for 144838-16 and 144847-16 dual valve springs. L

- **m** No machining required.
- Machined steel, heat treated. n
- Machined steel, heat treated, Multi Fit. 0
- р
- Pro Series one-piece, stock length. Pro Series one-piece, for use with Crane aluminum rocker arm kits (included in **144750-16** and q 144759-16 kits).

Section Continued 🔰

- r
- Pro Series one piece, stock length -.050". Pro Series steel billet gears and double roller chain set with vernier adjustment, for LS1 and LS6, S without cam sensor trigger.
- t Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for early LS2, with single trigger cam sensor feature.
- Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for late LS2, u LS3, LS7, and L92, with four trigger cam sensor feature.
- x Vertical locking bar hydraulic roller lifters, cylinder head removal is required. For Warhawk blocks. y Contains 99831-16 beehive valve springs, 144943-16 steel retainers, 99454-16 spring seats,
 - 99818-16 valve seals, 99108-1 valve locks.

Chevrolet V-8 97-15 4.8 - 5.3 - 5.7 (346) - 6.0 - 6.2L LS1, LS2, LS3/L92, LS6 (also 99-13 Vortec 4800, 5300, 6000, 6200)

				COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Roller Camsha	fts									
Daily driver, for modified 5.7L thru 6.0L, choppy idle, fair fuel economy, headers and aft cat exhaust advised, 10.8+ compression ratio advised, auto trans w/2800- 3000 stall converter, computer upgrades required, good w/1.8:1 ratio rocker arms.	HR-222/3241-25-15 3A	2300- 6800	1449091° 3	144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	222 228	284 290	115	(1) 43 52 (4)	.000 .000	
Daily driver, for modified 5.7L thru 6.0L, choppy idle, fair fuel economy, headers and aft cat exhaust advised, 11.0+ compression ratio advised, auto trans w/3000- 3400 stall converter, computer upgrades required, good w/1.8:1 ratio rocker arms.	HR-224/3241-14	2300- 6500	1449591° 3	144530-16ª 144536-16 ^b 144532-16' 144533-16 ^x	224 224	286 286	114	3 41 51 (7)	.000 .000	
Weekend driver, for modified 5.7L thru 6.0L, choppy idle, fair fuel economy, headers and aft cat exhaust advised, 10.8+ compression ratio advised, auto trans w/2800- 3200 stall converter, computer upgrades required, good w/1.8:1 ratio rocker arms.	HR-224/3241-25-14 2A	2200- 6500	1449101° 3	144530-16ª 144536-16 ^b 144532-16 ^c 144533-16 ^x	224 228	286 290	114	0 44 50 (2)	.000 .000	.551 .551
Weekend driver, for modified 5.7L thru 7.0L, choppy idle, fair fuel economy, headers and aft cat exhaust required, 11.0+ compression ratio advised, low ratio gearing required, auto trans w/2800-3200 stall converter, com- puter upgrades required.	HR-224/347-2S-14 4A	2300- 6500	1449111° 3	144536-16 ^b 144532-16 ^c 144533-16 ^x	224 228	280 283	114	0.5 43.5 50.5 (2.5)	.000 .000	.590 .590
Weekend driver, for modified 5.7L thru 7.0L, choppy idle, fair fuel economy, headers and aft cat exhaust required, 11.0+ compression ratio advised, low ratio gearing required, auto trans w/3000-3400 stall converter, computer upgrades required.	HR-224/347-2S1-15 4A	2400- 6500	1449121°	144536-16 ^b 144532-16' 144533-16 ^x	224 232	280 287	115	0.5 44.5 53.5 (1.5)	.000 .000	.590 .590
Weekend driver, for modified 5.7L thru 7.0L, choppy idle, fair fuel economy, headers and aft cat exhaust required, 11.5+ compression ratio advised, low ratio gearing required, auto trans w/3200-3600 stall converter, computer upgrades required.	HR-228/353-13 4A	2700- 6500	1449131°	144536-16 ^b 144532-16 ^c 144533-16 ^x	228 228	290 290	113	5 43 51 (3)	.000 .000	.600 .600
Weekend driver, for modified 5.7L thru 6.0L, choppy idle, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 11.5+ compression ratio advised, low ratio gearing required, auto trans w/3200- 3600 stall converter, computer upgrades required, good w/1.8:1 ratio rocker arms.	HR-228/3241-25-12	2700- 6500	1449141° •	144530-16ª 144536-16 ^b 144532-16' 144533-16 ^x	228 232	290 294	112	7 41 43 (1)	.000 .000	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.	NOTE: 1997-up Chevrolet 5.7L LS1/LS6, 1988-99 305 and 350 V-8 (and some 1987 350 V-8) engines, and the 1957-87 262-400 V-8 engines, each use different configuration camshaft	Crane's LS engine family's grinds are designed to take optimum advantage of the LS1/LS2/LS6's lighter valve train and greated reduced component inertia. This low inertia allows extraordinarily
IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel, it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.	Cores, and cannot be interchanged. Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering. Crane Cams offers many different cam lobe profiles for the GM "LS1/ LS2/LS6 Engine Family". These hydraulic roller cams are designed for applications ranging from mild street performance upgrades, serious torque and HP increases for trucks, to all-out competition profiles for LS1 powered race cars.	quick valve acceleration rates. This actually increases the "area beneath the lift curve" in each profile. Simply put, they begin moving the valve off its seat at a much quicker rate, to initiate earlier flow. The profiles retains and lengthens this rate of acceleration during the valve-opening cycle and as it approaches maximum valve lift. They function like a much "bigger" cam (greater duration) yet they increase low-end and mid-range torque in the most often used rpm range. Peak horsepower and torque output are enhanced throughout the entire rpm range. The valve lift tables were also designed to minimize horsepower-robbing harmonic frequency pulses when matched with the recommended Crane valve springs
		and pushrods.

78

CRANE VALVE TRAIN COMPONENTS												
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 297					
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	— ALUMINUM ROCKERS — GOLD RACE					
144318-1 ^y 144317-1 ^d 144316-1°	99831-16° 144838-16 ⁹ 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 [¦] 99107-1™	144621-16ª 144622-16º 95627-16 ^p	144984-1*ª 144985-1*r 144986-1*"						
144318-1 ^y 144317-1 ^d 144316-1 ^e	99831-16° 144838-16 ⁹ 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ^ı 99107-1™	144621-16ª 144622-16º 95627-16 ^p	144984-1*ª 144985-1** 144986-1**						
144318-1 ^y 144317-1 ^d 144316-1 ^e	99831-16° 144838-16 ^g 144847-16 ^h	99637-16º 99657-16ʰ 144944-16ʲ 144661-16ʲ	99818-16 ^k	99108-1 [।] 99107-1™	144621-16ª 144622-16º 95627-16º	144984-1 ^{°q} 144985-1 ^{°r} 144986-1 ^{°u}						
144318-1 ^y 144317-1 ^d 144316-1°	99831-16° 144838-16 ^g 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 [।] 99107-1™	144621-16" 144622-16° 95627-16 ^p	144984-1 ^{°q} 144985-1 ^{°r} 144986-1 ^{°u}						
144318-1 ^y 144317-1 ^d 144316-1°	99831-16° 144838-16 ^g 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ^j	99818-16 ^k	99108-1 [।] 99107-1™	144621-16ª 144622-16º 95627-16º	144984-1* ^q 144985-1* ^r 144986-1*"						
144318-1 ^y 144317-1 ^d 144316-1 ^e	99831-16° 144838-16 ^g 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 [¦] 99107-1™	144621-16ª 144622-16º 95627-16 ^p	144984-1*ª 144985-1* ^r 144986-1* ^u						
144318-1 ^y 144317-1 ^d 144316-1°	99831-16° 144838-16 ^g 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 [¦] 99107-1™	144621-16ª 144622-16º 95627-16 ^p	144984-1*ª 144985-1* ^r 144986-1* ^u						

Section Continued 🛰

- OE replacement, for use with standard GM alignment bars and standard base circle camshafts. b For use with standard GM alignment bars, long body design for up to .715" valve lift and reduced base circle camshafts.
- Vertical locking bar hydraulic roller lifters, cylinder head removal is required. C
- d Contains 144838-16 dual valve springs, 144944-16 steel retainers, 144460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- Contains 144838-16 dual valve springs, 144661-16 titanium retainers, 14460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- f
- g
- 99616-10 Valve Seals, 29 Tude Tvalve Sectors. Single ovate wire beehive valve springs. Dual valve springs for up to .680" lift, requires Crane **144944-16** or **144661-16** retainers, no machining required. 2002-up cylinder heads will require Crane **144944-16** or **144661-16** retainers, Dual valve springs for up to .660" lift, XHICS material, requires Crane **144944-16** or **144661-16** retainers, h no machining required. 2002-up cylinder heads will require Crane 144460-16 spring seats.
- Titanium, for 99831-16 single valve springs.
- Titanium, for 99831-16 single valve springs, requires Crane Multi Fit valve locks.
- Steel, for 144838-16 and 144847-16 dual valve springs.
- Titanium, for 144838-16 and 144847-16 dual valve springs.
- No machining required. m
- Machined steel, heat treated. n

- Machined steel, heat treated, Multi Fit. 0
- Pro Series one-piece, stock length. p
- q Pro Series one-piece, for use with Crane aluminum rocker arm kits (included in 144750-16 and 144759-16 kits).
- Pro Series one piece, stock length -.050". r
- Pro Series steel billet gears and double roller chain set with vernier adjustment, for LS1 and LS6, S without cam sensor trigger.
- Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for early LS2, t with single trigger cam sensor feature.
- Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for late LS2, u LS3, LS7, and L92, with four trigger cam sensor feature.
- Vertical locking bar hydraulic roller lifters, cylinder head removal is required. For Warhawk blocks. Contains **99831-16** beehive valve springs, **144943-16** steel retainers, **99454-16** spring seats, х
- y
- 99818-16 valve seals, 99108-1 valve locks.

Chevrolet V-8 97-15 4.8 - 5.3 - 5.7 (346) - 6.0 - 6.2L LS1, LS2, LS3/L92, LS6 (also 99-13 Vortec 4800, 5300, 6000, 6200)

				COMPLETE CAM SPECIFICATIONS							
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Camsha	fts										
Weekend driver, for modified 5.7L thru 6.0L, choppy idle, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 11.5+ compression ratio advised, low ratio gearing required, auto trans w/3200- 3600 stall converter, computer upgrades required.		2400- 6500	1449601°	144536-16 ^ь 144532-16ʻ 144533-16 [×]	228 232	290 294	112	7 41 53 (1)	.000 .000	.600 .600	
Weekend driver, for modified 5.7L thru 6.0L, choppy idle, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 11.0+ compression ratio advised, low ratio gearing required, auto trans w/3200- 3600 stall converter, computer upgrades required.	HR-228/353-251-14 2A	2400- 6500	1449151°	144536-16 ^b 144532-16ʻ 144533-16 ^x	228 232	290 294	114	2 46 52 0	.000 .000	.600 .600	
Weekend driver, for modified 5.7L thru 6.0L, choppy idle, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 11.0+ compression ratio advised, low ratio gearing required, auto trans w/3200- 3600 stall converter, computer upgrades required.	HR-228/347-2S-15 0A	2400- 6500	1449161° 3	144536-16 ^b 144532-16' 144533-16 ^x	228 236	283 291	115	(2.5) 50.5 51.5 4.5	.000 .000		
Weekend driver, for turbocharged 5.7L thru 6.0L, choppy idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, low ratio gearing required, auto trans w/3200-3600 stall converter, com- puter upgrades required.	HR-232/353-25R-17 2A	2600- 6400	1449171° 3	144536-16 ^b 144532-16ʻ 144533-16 ^x	232 228	294 290	117	1 51 53 (5)	.000 .000	.600 .600	
Weekend driver, for modified 5.7L thru 6.0L, rough idle, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 11.5+ compression ratio advised, low ratio gearing required, auto trans w/3400- 4000 stall converter, computer upgrades required.	HR-232/353-251-12 4A	2900- 6500	1449181°	144536-16 ^ь 144532-16ʻ 144533-16 [×]	232 236	294 298	112	8 44 54 2		.600 .600	
Weekend driver, for modified 5.7L thru 6.0L, choppy idle, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 11.5+ compression ratio advised, low ratio gearing required, auto trans w/3600- 4000 stall converter, computer upgrades required.	HR-232/353-251-14	2900- 6500	1449331°	144536-16 ^b 144532-16' 144533-16 ^x	232 236	294 298	114	7 45 57 (1)		.600 .600	
Weekend driver, for modified 5.7L thru 6.0L, choppy idle, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 11.0+ compression ratio advised, low ratio gearing required, auto trans w/3200- 3600 stall converter, computer upgrades required, good w/1.8:1 ratio rocker arms.	HR-232/3241-251-17 3A	2600- 6600	1449191° •	144530-16ª 144536-16 ^b 144532-16' 144533-16 ^x	232 240	294 302	117	2 50 60 0	.000 .000	.551 .551	
Pro Street & Drags, for modified 5.7L - 8.0L, rough idle, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/3600- 4400 stall converter, computer upgrades required.	HR-232/353-2S-10 0A	2900- 6600	1449201°	144536-16 ^b 144532-16' 144533-16 ^x	232 240	294 302	110	6 46 50 10		.600 .600	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application. IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel, it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.	 NOTE: 1997-up Chevrolet 5.7L LS1/LS6, 1988-99 305 and 350 V-8 (and some 1987 350) V-8) engines, and the 1957-87 262-400 V-8 engines, each use different configuration camshaft cores, and cannot be interchanged. Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering. Crane Cams offers many different cam lobe profiles for the GM "LS1/LS2/LS6 Engine Family". These hydraulic roller cams are designed for applications ranging from mild street performance upgrades, serious torque and HP increases for trucks, to all-out competition profiles for LS1 powered race cars. 	Crane's LS engine family's grinds are designed to take optimum advantage of the LS1/LS2/LS6's lighter valve train and greated reduced component inertia. This low inertia allows extraordinarily quick valve acceleration rates. This actually increases the "area be- neath the lift curve" in each profile. Simply put, they begin moving the valve off its seat at a much quicker rate, to initiate earlier flow. The profiles retains and lengthens this rate of acceleration during the valve-opening cycle and as it approaches maximum valve lift. They function like a much "bigger" cam (greater duration) yet they increase low-end and mid-range torque in the most often used rpm range. Peak horsepower and torque output are enhanced throughout the entire rpm range. The valve lift tables were also designed to minimize horsepower-robbing harmonic frequency pulses when matched with the recommended Crane valve springs and pushrods.

CRANE VALV	E TRAIN CO	MPONENTS					
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	— ALUMINUM ROCKERS — GOLD RACE
144318-1 ^y 144317-1ª 144316-1°	99831-16° 144838-16º 144847-16 ^h	99637-16º 99657-16ʰ 144944-16ʰ	99818-16 ^k	99108-1 ¹ 99107-1™	144621-16ª 144622-16º 95627-16º	144984-1*ª 144985-1*' 144986-1*''	
144318-1 ^y 144317-1 ^d 144316-1 ^e	99831-16° 144838-16º 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1 ^m	144621-16ª 144622-16º 95627-16º	144984-1*9 144985-1* ^r 144986-1*"	
144318-1 ^y 144317-1ª 144316-1°	99831-16° 144838-16º 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1™	144621-16" 144622-16° 95627-16°	144984-1*٩ 144985-1*٢ 144986-1*॥	
144318-1 ^y 144317-1 ^d 144316-1°	99831-16° 144838-16º 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1™	144621-16ª 144622-16º 95627-16º	144984-1*ª 144985-1*r 144986-1*¤	
144318-1 ^y 144317-1ª 144316-1ª	99831-16° 144838-16º 144847-16 ^h	99637-16º 99657-16ʰ 144944-16ʲ 144661-16ʲ	99818-16 ^k	99108-1 ¹ 99107-1 ^m	144621-16" 144622-16° 95627-16 [®]	144984-1*ª 144985-1* ^r 144986-1*¤	
144318-1 ^y 144317-1ª 144316-1°	99831-16° 144838-16º 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1™	144621-16" 144622-16° 95627-16°	144984-1*ª 144985-1*r 144986-1*¤	
144318-1 ^y 144317-1 ^d 144316-1 ^e	99831-16° 144838-169 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1™	144621-16ª 144622-16º 95627-16₽	144984-1*9 144985-1* ^r 144986-1*"	
144318-1 ^y 144317-1 ^d 144316-1 ^e	99831-16° 144838-16º 144847-16 ^h	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1™	144621-16ª 144622-16º 95627-16º	144984-1*ª 144985-1*' 144986-1*"	

Section Continued 🧡

- OE replacement, for use with standard GM alignment bars and standard base circle camshafts. b For use with standard GM alignment bars, long body design for up to .715" valve lift and reduced
- base circle camshafts. Vertical locking bar hydraulic roller lifters, cylinder head removal is required. C
- d Contains 144838-16 dual valve springs, 144944-16 steel retainers, 144460-16 spring seats,
- 99818-16 valve seals, 99108-1 valve locks. Contains 144838-16 dual valve springs, 144661-16 titanium retainers, 14460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- f
- g
- Single ovate wire beehive valve springs. Dual valve springs for up to .680" lift, requires Crane **144944-16** or **144661-16** retainers, no machining required. 2002-up cylinder heads will require Crane **144944-16** or **144661-16** retainers, Dual valve springs for up to .660" lift, XHTCS material, requires Crane **144944-16** or **144661-16** retainers,
- h no machining required. 2002-up cylinder heads will require Crane 144460-16 spring seats. Titanium, for 99831-16 single valve springs.
- Titanium, for 99831-16 single valve springs, requires Crane Multi Fit valve locks.
- Steel, for 144838-16 and 144847-16 dual valve springs.
- Titanium, for 144838-16 and 144847-16 dual valve springs.
- No machining required. m
- Machined steel, heat treated. n

- Machined steel, heat treated, Multi Fit. 0
- Pro Series one-piece, stock length. р
- q Pro Series one-piece, for use with Crane aluminum rocker arm kits (included in 144750-16 and 144759-16 kits).
- Pro Series one piece, stock length -.050". r
- Pro Series steel billet gears and double roller chain set with vernier adjustment, for LS1 and LS6, S without cam sensor trigger.
- Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for early LS2, t with single trigger cam sensor feature.
- **u** Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for late LS2, LS3, LS7, and L92, with four trigger cam sensor feature.
- Vertical locking bar hydraulic roller lifters, cylinder head removal is required. For Warhawk blocks. х
- Contains 99831-16 beehive valve springs, 144943-16 steel retainers, 99454-16 spring seats, y 99818-16 valve seals, 99108-1 valve locks.

Chevrolet V-8 97-15 4.8 - 5.3 - 5.7 (346) - 6.0 - 6.2L LS1, LS2, LS3/L92, LS6 (also 99-13 Vortec 4800, 5300, 6000, 6200)

				COMPLETE CAM SPECIFICATIONS							
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Camsha	fts						·				
Pro Street & Drags, for modified 5.7L - 8.0L, rough idle, upgraded cylinder heads & valvetrain required, headers & aft cat exhaust required, 12.0+ compress. ratio advised, low ratio gearing required, auto trans w/3200- 3600 stall converter, computer upgrades required.	HR-236/347-25-14 OA	3000- 6800	1449211°	144536-16 ^ь 144532-16ʻ 144533-16 [×]	236 240	291 295	114	2.5 53.5 52.5 7.5	.000 .000		
Pro Street and Drags, for modified 5.7L thru 8.0L, rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/3400-4000 stall converter, computer upgrades required.	HR-236/353-25-12	3100- 6800	1449611* 3	144536-16 ^ь 144532-16' 144533-16 [×]	236 240	298 302	112	11 45 57 3	.000 .000	.600 .600	
Pro Street and Drags, for modified 5.7L thru 8.0L, rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 11.5+ compression ratio advised, low ratio gearing required, auto trans w/3200-3600 stall converter, computer upgrades required.	HR-236/347-251-15	2800- 6800	1449221*	144536-16 ^b 144532-16' 144533-16 ^x	236 244	291 299	115	6.5 49.5 60.5 3.5		.590 .590	
Pro Street and Drags, for modified 5.7L thru 8.0L, rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/3600-4400 stall converter, computer upgrades required.	HR-236/353-2-10 OA	3200- 6800	1449231*	144536-16 ^b 144532-16' 144533-16 ^x	236 246	298 308	110	8 48 53 13		.600 .600	
Pro Street and Drags, for turbocharged 5.7L thru 6.0L, choppy idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/3400-3600 stall converter, computer upgrades required.	HR-240/353-2SR-14	3300- 7000	1449241* 3	144536-16 ^ь 144532-16' 144533-16 [×]	240 236	302 298	114	11 49 57 (1)	.000 .000	.600 .600	
Pro Street and Drags, for modified 5.7L thru 8.0L, rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 11.5+ compression ratio advised, low ratio gearing required, auto trans w/3600-4400 stall converter, computer upgrades required.	HR-240/353-25-14 4A	3000- 7000	1449251°	144536-16 ^ь 144532-16' 144533-16 [×]	240 246	302 308	114	10 50 61 5		.600 .600	
Pro Street and Drags, for modified 5.7L thru 8.0L, rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/3600-4400 stall converter, computer upgrades required.	HR-246/367-2-14	3200- 7200	1449261* •	144536-16 ^b 144532-16' 144533-16 ^x	246 256	303 313	114	12.5 53.5 65.5 10.5	.000 .000	.624 .624	

1997-up Chevrolet 5.7L LS1/LS6, 1988-99 305 and 350 V-8Crane's LS engine family's grinds are designed to take optimum
advantage of the LS1/LS2/LS6's lighter valve train and greated RPM range shown is for average usage. These cam profiles **NOTE:** 1997-up Chevrolet 5.7L LS1/LS6, 1988-99 305 and 350 V-8 will RPM higher, depending upon application. V-8 engines, each use different configuration camshaft reduced component inertia. This low inertia allows extraordinarily IMPORTANT NOTE: Crane Hydraulic Roller Cams offer quick valve acceleration rates. This actually increases the "area becores, and cannot be interchanged. tremendous power, torque and RPM potential. Due neath the lift curve" in each profile. Simply put, they begin moving to their RPM capability and increased valve travel, it Since 1975, General Motors divisions have exchanged engines the valve off its seat at a much quicker rate, to initiate earlier flow. is HIGHLY RECOMMENDED that the appropriate Crane throughout different models. Be certain of exactly which engine you The profiles retains and lengthens this rate of acceleration during valve train components be installed for maximum have before ordering. the valve-opening cycle and as it approaches maximum valve lift. performance and reliability. They function like a much "bigger" cam (greater duration) yet they Crane Cams offers many different cam lobe profiles for the GM "LS1/ increase low-end and mid-range torque in the most often used rpm LS2/LS6 Engine Family". These hydraulic roller cams are designed for range. Peak horsepower and torque output are enhanced throughout applications ranging from mild street performance upgrades, serious the entire rpm range. The valve lift tables were also designed to torque and HP increases for trucks, to all-out competition profiles for minimize horsepower-robbing harmonic frequency pulses when LS1 powered race cars. matched with the recommended Crane valve springs and pushrods.

CRANE	VALVE TRAIN CO	MPONENTS					
See pg. 33	8 See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 297
VALVE SPR AND RETAI KITS		RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	— ALUMINUM ROCKERS — GOLD RACE
144318 144317 144316	1 ^d 144838-16 ^g	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ^j	99818-16 ^k	99108-1 [¦] 99107-1™	144621-16ª 144622-16º 95627-16 ^p	144984-1*ª 144985-1*ĭ 144986-1*ů	
144318 144317 144316	1 ^d 144838-16 ^g	99637-16ª 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1™	144621-16ª 144622-16º 95627-16 ^p	144984-1*ª 144985-1* ^r 144986-1*"	
144318- 144317- 144316-	1 ^d 144838-16 ^g	99637-16º 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1' 99107-1™	144621-16ª 144622-16º 95627-16º	144984-1*ª 144985-1*r 144986-1*u	
144318- 144317- 144316-	1 ^d 144838-16 ^g	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ^j	99818-16 ^k	99108-1 ¹ 99107-1 ^m	144621-16" 144622-16° 95627-16"	144984-1°ª 144985-1° ^r 144986-1° ^u	
144318- 144317- 144316-	1 ^d 144838-16 ^g	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ^j	99818-16 ^k	99108-1 ¹ 99107-1 ^m	144621-16" 144622-16° 95627-16 [®]	144984-1"ª 144985-1" ^r 144986-1" ^u	
144318 144317 144316	1 ^d 144838-16 ^g	99637-16 ⁹ 99657-16 ^h 144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1 ^m	144621-16ª 144622-16º 95627-16º	144984-1*ª 144985-1** 144986-1**	
144317- 144316-		144944-16 ⁱ 144661-16 ⁱ	99818-16 ^k	99108-1 ¹ 99107-1™	144621-16ª 144622-16º 95627-16º	144984-1*ª 144985-1*r 144986-1*"	

- **b** For use with standard GM alignment bars, long body design for up to .715" valve lift and reduced base circle camshafts.
- Vertical locking bar hydraulic roller lifters, cylinder head removal is required.
 Contains 144838-16 dual valve springs, 144944-16 steel retainers, 144460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- Post B-10 valve seals, 99 100-1 valve locks.
 Contains 144838-16 dual valve springs, 144661-16 titanium retainers, 14460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- **f** Single ovate wire beehive valve springs.
- g Dual valve springs for up to .680" lift, requires Crane 144944-16 or 144661-16 retainers, no
- machining required. 2002-up cylinder heads will require Crane **144460-16** spring seats. **h** Dual valve springs for up to .660" lift, XHTCS material, requires Crane **144944-16** or **144661-16** retainers,
- no machining required. 2002-up cylinder heads will require Crane **144460-16** spring seats. i Titanium, for **99831-16** single valve springs.
- j Titanium, for 99831-16 single valve springs, requires Crane Multi Fit valve locks.
- k Steel, for 144838-16 and 144847-16 dual valve springs.
- I Titanium, for 144838-16 and 144847-16 dual valve springs.
- **m** No machining required.
- **n** Machined steel, heat treated.

- Machined steel, heat treated, Multi Fit.
- **p** Pro Series one-piece, stock length.
- Pro Series one-piece, for use with Crane aluminum rocker arm kits (included in 144750-16 and 144759-16 kits).
- r Pro Series one piece, stock length -.050".

s

- Pro Series steel billet gears and double roller chain set with vernier adjustment, for LS1 and LS6,
- without cam sensor trigger. t Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for early LS2,
- with single trigger cam sensor feature. Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for late LS2, LS2 LS2 and LO2 with four streng composed fortune.
- LS3, LS7, and L92, with four trigger cam sensor feature. x Vertical locking bar hydraulic roller lifters, cylinder head removal is required. For Warhawk blocks.
- y Contains 99831-16 beehive valve springs, 144943-16 steel retainers, 99454-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.

Chevrolet V-8 97-15 4.8 - 5.3 - 5.7 (346) - 6.0 - 6.2L LS1, LS2, LS3/L92, LS6 (also 99-13 Vortec 4800, 5300, 6000, 6200)

				COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Mechanical Roller Camsh		NANGL	LITISSIONS COde		IIIt/ LXII.	IIIt/ LXII.	Separation		LXII.	LXII.
Serious Pro Street and Drags, for modified 5.7L thru 8.0L, very rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/3600-4000 stall converter, serious comput- er upgrades required.	R-240/3821-25-10	3500- 7500	1448051* 3	144511-16ª 144570-16 ^b 144572-16ʻ	240 244	269 273	110	14.5 45.5 56.5 7.5	.020 .022	.649 .649
Serious Pro Street and Drags, for modified 5.7L thru 8.0L, very rough idle, good with supercharger or nitrous, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 12.0+ compression ratio advised w/o supercharger, low ratio gearing required, auto trans w/3600-4600 stall converter, serious comput- er upgrades required.	R-242/353-25-14	3300- 7500	1448011* •	144511-16ª 144570-16 ^b 144572-16 ^c	242 248	273 279	114	10.5 51.5 61.5 6.5	.020 .022	
Serious Pro Street and Drags, for modified 5.7L thru 8.0L, very rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/3800-4200 stall converter, serious comput- er upgrades required.	R-244/382-25-10	3600- 7600	1448061°	144511-16ª 144570-16 ^b 144572-16ʻ	244 248	273 277	110	16.5 47.5 58.5 9.5	.020 .022	
Serious Pro Street and Drags, for modified 5.7L thru 8.0L, very rough idle, good with supercharger or nitrous, upgraded cylinder heads and valvetrain required, head- ers and aft cat exhaust required, 12.0+ compression ratio advised w/o supercharger, low ratio gearing required, auto trans w/4000-4800 stall converter, serious comput- er upgrades required.	R-248/353-25-10 0A	3600- 7600	1448021°	144511-16ª 144570-16 ^b 144572-16 ^c	248 260	279 292	110	14 54 60 20	.020 .022	.600 .600
Serious Pro Street and Drags, for modified 5.7L thru 8.0L, very rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/4000-4800 stall converter, serious comput- er upgrades required.	R-262/395-25-8	3800- 7800	1448031* (3)	144511-16ª 144570-16 ^b 144572-16ʻ	262 268	296 302	108	27 55 66 22		.671 .671
Serious Pro Street and Drags, for modified 5.0L thru 8.0L, very rough idle, upgraded cylinder heads and valvetrain required, headers and aft cat exhaust required, 12.0+ compression ratio advised, low ratio gearing required, auto trans w/5000-5500 stall converter, serious comput- er upgrades required.	R-276/420-2-14	4600- 8800	1448041*	144511-16ª 144570-16 ^b 144572-16ʻ	276 286	308 318	114	28 68 82 25	.020 .022	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: Crane Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel, it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability. NOTE: 1997-up Chevrolet 5.7L LS1/LS6, 1988-99 305 and 350 V-8 (and some 1987 350 V-8) engines, and the 1957-87 262-400 V-8 engines, each use different configuration camshaft cores, and cannot be interchanged.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

Crane Cams offers many different cam lobe profiles for the GM "LS1/ LS2/LS6 Engine Family". These roller cams are designed for applications ranging from Pro Street performance, to all-out competition profiles for LS1 powered race cars.

Crane's roller camshafts are designed to take optimum advantage of the LS1/LS2/LS6's lighter valve train and greated reduced component inertia. This low inertia allows extraordinarily quick valve acceleration rates. This actually increases the "area beneath the lift curve" in each profile. Simply put, these new Crane cams begin moving the valve off its seat at a much quicker rate, to initiate earlier flow. The profile retains and lengthens this rate of acceleration during the valve-opening cycle and as it approaches maximum valve lift. They function like a much "bigger" cam (greater duration) yet they increase low-end and mid-range torque in the most often used rpm range. Peak horsepower and torque output are enhanced throughout the entire rpm range. Crane valve lift tables were also designed to minimize horsepower-robbing harmonic frequency pulses when matched with the recommended Crane valve springs and pushrods.

See pg. 338	See pg. 317	See pg. 286	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	— ALUMINUM ROCKERS Gold Race
144316-1ª 144314-1º	144838-16 ^f 144847-16 ^g	144944-16 ^h 144661-16 ⁱ	99818-16 ^j	99108-1 ^ĸ	144621-16 ¹ 144622-16 ^m 95627-16 ⁿ	144984-1*º 144985-1*¤ 144986-1٩	
144316-1 ^d	144838-16 ^f	144944-16 ^h	99818-16 ^j	99108-1 ^k	144621-16 ¹	144984-1 [*] °	
144314-1°	144847-16 ⁹	144661-16 ⁱ			144622-16 ^m 95627-16 ⁿ	144985-1 [*] " 144986-1 ^q	
144316-1ª 144314-1º	144838-16 ^f 144847-16 ^g	144944-16 ^h 144661-16 ⁱ	99818-16 ⁱ	99108-1 ^k	144621-16 ¹ 144622-16 ^m 95627-16 ⁿ	144984-1 [*] º 144985-1 [*] º 144986-1 ^ª	
144316-1 ^ª 144314-1°	144838-16 ^f 144847-16 ^g	144944-16 ^h 144661-16 ⁱ	99818-16 ^j	99108-1 ^k	144621-16 ¹ 144622-16 ^m 95627-16 ⁿ	144984-1*º 144985-1* ^p 144986-1 ^q	
					144621-16 ¹ 144622-16 ^m	144984-1 [*] ° 144985-1 [*] P	
					95627-16°	144986-1 ^q	
					144621-16 ¹ 144622-16 ^m	144984-1 [*] ° 144985-1 [*] P	
					95627-16 ⁿ	144986-1ª	

a For use with standard GM alignment bars, long body design for up to .715" valve lift and reduced

- base circle camshafts.
- Ultra Pro Series vertical locking bar roller lifters. b
- Ultra Pro Series vertical locking bar roller lifters for Warhawk blocks.
- d Contains 144838-16 dual valve springs, 144661-16 titanium retainers, 144460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- Contains 144847-16 XHTCS dual valve springs, 144661-16 titanium retainers, 144460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks. е
- Dual valve springs, requires 144661-16 or 144944-16 retainers. f
- Dual XHTCS yalve springs, requires 144661-16 or 144944-16 retainers. Steel, for 144838-16 and 144847-16 dual valve springs. Titanium, for 144838-16 and 144847-16 dual valve springs.
- ĥ
- i.

- No machining required.
- Machined steel, heat treated.
- I. Pro Series one-piece, stock length.
- Pro Series one-piece, for use with Crane aluminum rocker arm kits (included in 144750-16 and m 144759-16 kits).
- n Pro Series one piece, stock length -.050".
- Pro Series steel billet gears and double roller chain set with vernier adjustment, for LS1 and LS6, 0 without cam sensor trigger.
 Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for early LS2,
- with single trigger can sensor feature. Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for late LS2, LS3, LS7, and L92 with four trigger can sensor feature. q

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Camsha	fts										
Good daily driver, for stock or modified LS7, light choppy idle, good fuel economy, 10.5+ compression ratio advised, computer upgrades required, auto trans w/3000-3400 stall converter.	HR-220/3333-251-14 4A	2100- 6400	2039271°	144536-16ª 144532-16 ^b 144533-16 ^z	220 238	281 299	114	0 40 57 1	.000 .000	.600 .600	
Weekend driver, for modified LS7, choppy idle, fair fuel economy, headers and aft cat exhaust advised, 11.0+ compression ratio advised, computer upgrades required, auto trans w/3400-3800 stall converter and low ratio gearing required.	HR-224/347-252-12 4A	2600- 6800	2039281*	144536-16ª 144532-16 ^b 144533-16 ^z	224 244	280 299	112	2.5 41.5 56.5 7.5	.000 .000	.625 .625	
Weekend driver, for modified LS7, choppy idle, fair fuel economy, headers and aft cat exhaust advised, 11.0+ compression ratio advised, computer upgrades required, auto trans w/3200-3600 stall converter.	HR-224/347-2S2-15 4A	2300- 6800	2039291°	144536-16ª 144532-16 ^b 144533-16 ^z	224 244	280 299	115	(0.5) 44.5 59.5 4.5	.000 .000	.625 .625	
Pro Street and Drags, for modified LS7. 1.7 rockers rec- ommended for higher RPM. Choppy to rough idle, headers and aft cat exhaust advised, 11.5+ compression ratio advised, computer upgrades required, auto trans w/3400- 4000 stall converter and low ratio gearing required.	HR-228/367-251-12 4A	2800- 7000	2039341*	144536-16ª 144532-16 ^b 144533-16 ^z	228 246	285 303	112	4.5 43.5 57.5 8.5	.000 .000	.661 .661	

Chevrolet V-8 07-15

6.2L LS3/L92/Vortec 6.2 (with three bolt timing gear)

Hydraulic Roller Camshaf	fts									
Good daily driver, light choppy idle, good fuel economy, computer upgrades required, good w/1.8:1 rocker arms.	HR-216/347-25-13 4A	2000- 6000	2019371°	144530-16 ^b 144536-16 ^a 144532-16 ^c 144533-16 ^z	216 232	272 289	113	(2.5) 38.5 51.5 0.5	.000 .000	.590 .624
Daily driver, light choppy idle, fair fuel economy, headers and aft cat exhaust advised, auto trans w/2400-2800 stall converter, computer upgrades required, good w/1.8:1 rocker arms.	HR-220/347-25-13 4A	2200- 6400	2019381°	144530-16 ^b 144536-16 ^a 144532-16 ^c 144533-16 ^z	220 236	276 293	113	(0.5) 40.5 53.5 2.5	.000 .000	
Daily driver, choppy idle, fair fuel economy, headers and aft cat exhaust advised, auto trans w/3000-3400 stall con- verter, computer upgrades required, good w/1.8:1 rocker arms.	HR-226/367-251-14	2600- 6000	2019391* 3	144530-16 ^b 144536-16 ^a 144532-16 ^c 144533-16 ^z	226 240	283 297	114	2.5 43.5 57.5 2.5		.624 .624

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel, it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.

Crane Cams offers many different cam lobe profiles for the GM "LS1/ LS2/LS6 Engine Family". These hydraulic roller cams are designed for applications ranging from mild street performance upgrades, serious torque and HP increases for trucks, to all-out competition profiles of LS1 powered race cars.

Crane's LS engine family's grinds are designed to take optimum advantage of the LS1/LS2/LS6's lighter valve train and greated reduced component inertia. This low inertia allows extraordinarily quick valve acceleration rates. This actually increases the "area beneath the lift curve" in each profile. Simply put, these cams begin moving the valve off its seat at a much quicker rate, to initiate earlier flow, and are stable at higher RPM's. Peak horsepower and torque output are enhanced throughout the entire rpm range. The profiles were also designed to minimize horsepower-robbing harmonic frequency pulses when matched with the recommended Crane valve springs and pushrods.

CRANE VALV	E TRAIN CO	MPONENTS					
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	— ALUMINUM ROCKERS — PRO SERIES STUD MOUNT
	99832-16 ^f	99976-16 ⁱ	99818-16°	99107-1°		144986-1 [°] "	
	99832-16 ^f	99976-16 ⁱ	99818-16°	99107-1°		144986-1 [*] "	
	99832-16 ^f	99976-16 [;]	99818-16°	99107-1°		144986-1 ^{°u}	
			99918-16°	99108-1°		144986-1*"	

144317-1ª 144316-1º	99831-16 ⁹ 144838-16 ^h 144847-16 ⁱ	99637-16 ^k 99657-16 ^l 144944-16 ^m 144661-16 ⁿ	99818-16°	99108-1° 99107-19	144621-16' 144622-16' 95627-16'	144984-1 [™] 144985-1 [™] 144986-1 [™]
144317-1ª 144316-1º	99831-16º 144838-16 ^h 144847-16 ⁱ	99637-16 ^k 99657-16 ^l 144944-16 ^m 144661-16 ⁿ	99818-16°	99108-1° 99107-1°	144621-16' 144622-16' 95627-16'	144984-1°″ 144985-1°‴ 144986-1°″
144317-1ª 144316-1º	99831-16ª 144838-16 ^h 144847-16 ⁱ	99637-16 ^k 99657-16 ^l 144944-16 ^m 144661-16 ⁿ	99818-16°	99108-1 ^p 99107-1 ^q	144621-16' 144622-16' 95627-16'	144984-1° ^v 144985-1° ^w 144986-1° ^u

- OE replacement, for use with standard GM alignment bars and standard base circle camshafts. b For use with standard GM alignment bars, long body design for up to .715" valve lift and reduced base circle camshafts.
- Vertical locking bar hydraulic roller lifters, cylinder head removal is required. C
- d Contains 144838-16 dual valve springs, 144944-16 steel retainers, 144460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- e Contains 144838-16 dual valve springs, 144661-16 titanium retainers, 144460-16 spring seats, 99818-16 valve seals, 99108-1 valve locks.
- Single ovate wire beehive valve springs, 1.450" dia., LS3 and L92 cylinder heads will require machining.
- Single ovate wire beehive valve springs. g h
- Dual valve springs for up to .680° lift, XHTCS material, requires Crane **144944-16** or **144661-16** retainers, no machining required. 2002-up cylinder heads will require Crane **144946-16** spring seats. Dual valve springs for up to .660° lift, XHTCS material, requires Crane **144944-16** or **144661-16** retainers, i
- no machining required. 2002-up cylinder heads will require Crane 144460-16 spring seats. Steel, requires Crane Multi Fit valve locks.
- Titanium, for 99831-16 single valve springs.
- L Titanium, for Crane 99631-16 single valve springs, requires Crane Multi Fit valve locks.

- Steel, for 144838-16 and 144847-16 dual valve springs. m
- Titanium, for Crane 144838-16 and 144847-16 dual valve springs. n
- 0 No machining required.
- Machined steel, heat treated, Multi Fit. р
- Machined steel, heat treated. q
- Pro Series one piece, stock length.
- Pro Series one piece, for use with Crane aluminum rocker arms kits (included in 144750-16 and S 144759-16 kits).
- t
- u
- Pro Series one piece, stock length -.050". Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for late LS2, LS3, LS7, and L92, with four trigger cam sensor features. Pro Series steel billet gears and double roller chain set with vernier adjustment, for LS1 and LS6, v
- without cam sensor trigger. w Pro Series steel billet gears and double roller chain set with 9 keyway crank sprocket, for early LS2, with single trigger cam sensor feature.
- z Vertical locking bar hydraulic roller lifters, cylinder head removal is required. For Warhawk blocks.

1958–1965 348-409-427 (Z11) V8

Introduced in 1958, the "W" series engines were considered to be Chevrolet's first big block power plants, referred to as Mark 1 engines within GM. Available in many power levels, from mild truck usage to multiple carbureted performance, they are noted by their offset valves, angled deck surfaces (not perpendicular to the cylinder bores), and having no combustion chambers in the cylinder heads, but instead the "chamber" was contained within the piston domes and cylinder bores. The lifter bores in the block are inline, not canted. This engine family is designated by Crane Cams' 15 prefix. The camshaft bearing journal diameters are the same as the small block V8 family (1.868"), as is the firing order of 1-8-4-3-6-5-7-2. Engines were offered with camshafts in both hydraulic and mechanical flat faced lifter configurations. Rocker arms are adjustable stamped steel 1.75:1 ratio with ball pivots, mounted on 3/8" studs.

The 427 cu.in. Z11 limited production option was intended for drag racing only, with a unique two-piece aluminum dual four barrel intake manifold. The camshafts and valve train components remained the same basic configuration as the 348-409.

We offer hydraulic, hydraulic roller, mechanical, and mechanical roller camshafts, lifters, and most valve train components, including needle bearing roller tip rocker arms, and heat treated chromemoly tubular pushrods, for these engines. With more aftermarket components becoming available, interest in these engines is increasing, primarily in the restoration, muscle car, and street rod areas.

1963 Mark 2 427 V8

The legendary "Mystery Motor" was intended specifically for NASCAR usage, and was an evolution of the W series. The cylinder deck surfaces were made perpendicular to the bores, the combustion chambers are incorporated into the cylinder heads, and the canted valve configuration (called "Porcupine" in the press) was now employed, although the lifter bores were still inline. The camshaft journals remained at 1.868" diameter. The valve layout of the cylinder heads was changed, so special camshafts having a different lobe layout are required.

If you are extremely fortunate enough to have one of these rare pieces, we can custom produce roller camshafts, and supply roller lifters and many other valve train components for it.

1967-1990 396-402-427-454 V8

In 1965, the first of the Mark IV engines appeared, in a 396 cu.in. configuration. In 1966, a 427 cu.in version was added. The cylinder blocks were completely different from the earlier W series, with staggered lifter bores and larger camshaft journals (1.948"). The canted valve cylinder heads were now incorporated into production. The rocker arm ratio of the adjustable stamped steel units is 1.7:1. This engine is referred by Crane Cams' 13 prefix for camshafts and components. Additional displacement versions were added throughout the years, with production line vehicle installation of the Mark IV engines ceasing in 1995 (including the Gen V iteration).

One unique feature of the camshafts used only in the 1965 and 1966 engines, was the oil groove machined into the center of the rear cam journal (3/16" wide and 7/64" deep). This was required to supply the lifter galleries and top end of the engine with oil. This was revised in 1967 by changing the machining configuration on the blocks where the rear cam bearing presses in. A different rear cam bearing was used, and the camshaft no longer required the groove. Due to a performance magazine article published in the late 1960's, an urban legend appeared (and continues today), stating if you used an early grooved camshaft in a later engine, a massive internal oil leak would occur. This is not true, there is no problem using a 1965-1966 type grooved cam in a later block. If you do have an early block with its original configuration cam bearings, the camshaft must have the groove in the rear journal. This option is available from us on request.

The Mark IV engines were equipped from the factory with camshafts having either hydraulic or mechanical flat faced lifter configurations. Certain industrial and marine versions had gear drive, reverse rotation, and gear drive reverse rotation camshafts installed. Make sure of exactly what camshaft your application requires if you have other than a standard rotation, conventional timing chain drive engine.

We offer cast hydraulic and mechanical lifter camshafts with standard bearing journals having the standard firing order (1-8-4-3-6-5-7-2) and also the optional SFO suffix firing order (1-8-7-3-6-5-4-2).

Crane Cams' retrofit hydraulic roller and mechanical roller camshafts are produced in house from steel billet material, heat treated, and finish ground in a variety of versions.

Our retrofit hydraulic roller lifters do not require any block machining, are a drop-in configuration, and incorporate a vertical locking bar. Mechanical roller lifters are also drop-in, and are available in both horizontal and vertical locking bar versions. In 2005 we increased the bar height of our roller lifters, so that most of today's blocks having taller than stock lifter bosses should have sufficient locking bar to block clearance (the height of the pushrod seat did not change). This should always be checked prior to final assembly, as machining variances in the blocks and different camshaft base circle diameters may result in unwanted contact.

For street and endurance applications, we offer hydraulic and mechanical roller camshafts equipped with a cast iron distributor drive gear and rear journal installed on the steel camshaft. These are noted by an IG suffix (Iron Gear), allowing the use of a standard type distributor gear for long term reliability.

There are a number of journal size options available for the roller camshafts, including: Standard (1.948"); Roller Bearing (1.968"/50mm) – RB suffix; Big Bearing (2.125") – BB suffix; 55mm (2.165") – 55J suffix; 60mm (2.362") – 60J suffix. Other sizes are available on request. Camshafts having larger than stock journals incorporate a step ground on the front journal, so that a standard size camshaft sprocket can be used.

Standard firing order (1-8-4-3-6-5-7-2) and SFO (1-8-7-3-6-5-4-2) firing order hydraulic roller and mechanical roller camshafts are offered, along with other custom options for 180 degree crankshafts and other unique situations.

In some applications where large diameter camshafts are being used, this may result in the lifter sitting too high in the lifter bore for proper oiling to occur. We currently offer specific roller lifters to maintain proper oil flow. Check the Roller Lifter pages for part numbers and applications.

Drilling and tapping the rear cam journal for the Sander accessory drive is offered (RD suffix), as is gun drilling the camshaft for lightness and reduced torsional deflection (DR suffix).

1991–1995 Gen V 454 V8

This is one of the more misunderstood variations of the basic Mark IV engine configuration. During these years, Chevrolet was offering the Gen V 454 just about exclusively in truck applications, with some marine use occurring. The engine block was updated for provisions to install a camshaft thrust plate, and hydraulic roller lifter guidebars, although a hydraulic camshaft and flat faced lifters were installed. The front of the camshaft was slightly stepped down at the front, requiring a special cam sprocket, but the normal cam bolt pattern was retained. Some of these blocks had provisions for a mechanical fuel pump, while others did not. The rocker arms were no longer adjustable, as a stepped stud net-lash system was employed.

At this time, a number of different aftermarket engine suppliers began offering their own iterations of the Mark IV, which they sometimes called the "Mark V", but were not the same as the factory items. These were basically engines assembled from Mark IV type OEM or aftermarket components, and could be loosely thought of as independently continued Mark IV production. Caution needs to be used when ordering replacement components for these engines, as they could become confused with the factory Gen V items.

Most of our 13 prefix camshafts and components as used in the Mark IV engines can be applied to the Gen V. A Mark IV style timing set will be required. We offer special rocker arm studs, **99152-16**, that will thread into the Gen V cylinder heads, 3/8" – 16 on the bottom, with a conventional 7/16" – 20 threaded top, permitting the use of adjustable Mark IV type rocker arms, while using the Gen V pushrod guideplates.

The availability of aftermarket components and complete engines for the now legendary Big Block, in it's many versions, assures it's popularity for some time to come. Crane Cams will continue to produce new product offerings for this very prolific power plant.

1996–2000 Gen VI 454 (7.4L) – 502 (8.2L) V8

The upgrades that Chevrolet hinted at in the Gen V engine, achieved production status in the Gen VI. This engine family is designated by Crane Cams' 16 prefix camshafts and components. A hydraulic roller camshaft was installed, incorporating a reduced diameter bolt pattern on the stepped journal front, accommodating the installed thrust plate, and hydraulic roller lifters were now standard equipment. A new timing set was required for the new configuration camshaft. and reduced depth under the standard front cover allowed room for only a single row roller timing chain. There is no provision for a mechanical fuel pump. The rocker arms were still the non-adjustable net-lash style, which could again be converted to an adjustable configuration by using our 99152-16 rocker arm studs and Mark IV type rocker arms. Cam bearing diameter was maintained at 1.948", as was the 1-8-4-3-6-5-7-2 firing order.

We offer steel billet hydraulic roller and mechanical roller camshafts that incorporate the Cast Iron distributor drive gear and rear camshaft journal (IG suffix) for these engines.

Versions of these basic engines continue to be available through the GM Performance Parts catalog, equipped with various cylinder head combinations. Gen V blocks with Mark IV type heads being a popular assembly. Be sure of what components are needed when ordering.

2001–2008 8.1L (Vortec 8100) V8

What appears to be the final factory production Big Block, received additional upgrades in its latest version. This is a distributorless engine, incorporating a new hydraulic roller camshaft (having a 1-8-7-2-6-5-4-3 firing order), new timing set (incorporating a cam position sensor), relocated lifter oil galleries, and a different net lash rocker arm system (with the cylinder heads now tapped with 10mm threads). Our 26 prefix is used for these camshafts and components.

Crane Cams' steel billet hydraulic roller camshafts for these engines are equipped with cast iron distributor drive gears and rear journals (IG suffix) for oil pump drive gear compatibility. The 26 and 16 prefix (Gen VI) camshafts can be interchanged, with appropriate engine changes required for their different firing orders.

Due to the relocated lifter oil galleries, different lifters are required. We offer our steel billet bodied **26535-16** hydraulic roller lifters for use with the factory alignment bars to allow the use of higher than stock lift camshafts.

The rocker arms can be converted to an adjustable configuration by using our **99155-16** rocker arm studs. These have 10mm threads on the bottom, and 7/16" – 20 on the top, for use with the Mark IV style rocker arms.

Chevrolet V-8 58-65

					COMPLETE CAM SPECIFICATIONS				1		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Degrees Duration	Degrees	Cam Lift	e Lash Hot Int. Exh.	Lift Int.	
Hydraulic Lifter Camshaft					IIIt/ LAII.	IIIt/ LAII.	Separation		EAH.	EAN.	
	H-200/2717-2-10	800- 4400	150061	99277-16	200 210	264 274	110	(5) 25 40 (10)		.475 .502	
Good low and mid range torque, good idle, daily per- formance usage, mild bracket racing, 3000-3400 cruise RPM, 9.0 to 10.5 compression ratio advised.	H-218/300-25-12	1800- 5400	150291	99277-16	218 230	288 300	112	2 36 52 (12)		.525 .543	
Good mid range torque, fair idle, moderate perfor- mance usage, good mid-range HP, hydraulic substitute for 409 HP mechanical camshaft, 3200-3600 cruise RPM, 9.5 to 11.0 compression ratio advised.	H-224/3090-2-12	2200- 6000	150301	99277-16	224 234	294 304	112	539 540		.541 .569	
Fair idle, moderate performance usage, good mid and upper RPM torque and HP, hydraulic substitute for 425 HP mechanical camshaft, 3600–4000 cruise RPM, 10.0 to 11.5 compression ratio advised.	H-230/3101-25-14	2800- 6400	150311	99277-16	230 234	292 296	114	6 44 56 (2)		.543 .551	
Moderate performance usage, rough idle, good mid and upper RPM torque and HP, bracket racing, auto trans w/2500+ converter, 3800-4200 cruise RPM, good for increased displacement stroked engines, 10.5 to 12.0 compression ratio advised.	H-236/325-2-10	3000- 6000	150171	99277-16	236 246	296 306	110	13 43 58 0		.569 .588	
Hydraulic Roller Camshaf	<u>its — Retrofi</u>	t									
	HR-218/332-25-10	1600- 5600	159511ª	11532-16	218 226	280 288	110	4 34 48 (2)			
Fair idle, moderate performance usage, good mid range torque and HP, auto trans w/2000+ converter, 3000-3800 cruise RPM, 9.5 to 11.0 compression ratio advised.	HR-224/319-25-10	2000- 6000	159521ª	11532-16	224 230	280 286	110	7 37 50 0		.558 .574	
Fair idle, performance usage, good mid-range torque and HP, 3600-4400 cruise RPM, 10.0 to 11.5 compres- sion ratio advised.	HR-230/352-25-12	2600- 6600	159531°	11532-16	230 234	292 296	112	8 42 54 0			

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

VALVE SPRING AND RETAINER KITS	VALVE SPRINGS 96873-16 ^b	RETAINERS 99957-16	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER	ALUMINUM	- ROCKERS Gold
	96873-16 ^ь	00057-16				ASSEMIDLI	ARMS	ENERGIZER	RACE
	96873-16 ^b	00057-16							
		77737-10	99822-16 ⁶	99098-1°	15621-16 ^d 15634-16°			13744-16 ⁱ	15750-10 13750-10
	96873-16 ^ь	99957-16	99822-16 ^b	99098-1 ⁴	15621-16 ^d 15634-16 ^e			13744-16 ⁱ	15750-1 13750-1
	96873-16 ^ь	99957-16	99822-16 ^b	99098-1°	15621-16 ^d 15634-16 ^e			13744-16 ⁱ	15750-1 13750-1
	96873-16 ^b	99957-16	99822-16 ^b	99098-1 [°]	15621-16 ^d 15634-16°			13744-16 ⁱ	15750-1 13750-1
					15634-16° 15621-16 ^d				13) 15)

96873-16 ⁶	99969-16	99822-16 ^ь	99098-1 [.]	15630-16 ^r 15640-16 ^g	13744-16 ⁱ	15750-16 [;] 13750-16 ^k
96873-16 ^b	99969-16	99822-16 ^b	99098-1 [,]	15630-16 ^r 15640-16 ^g	13744-16 ⁱ	15750-16 [;] 13750-16 ^k
96873-16 ^ь	99969-16	99822-16 ^b	99098-1 [,]	15630-16 ^r 15640-16 ^g	13744-16 ⁱ	15750-16 ⁱ 13750-16 ^k

Requires cam button spacer and **11990-1** aluminum-bronze distributor drive gear Must machine cylinder heads Machined steel, heat treated 5/16" diameter, heavy wall, heat treated 3/8" diameter, heavy wall, heat treated Pro Series one-piece, 5/16" diameter

a b

c d

e f

- g Pro Series one-piece, 3/8" diameter
 i Energizer 1.7 ratio, 7/16"stud
 j 1.7 ratio, 3/8" stud
 k 1.7 ratio, 7/16" stud

Chevrolet V-8 58-65

					COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range		See pg. 273	Degrees Duration @ .050″ Int/Exh.	Degrees Duration	Degrees Lobe	Cam Lift	e Lash Hot Int. Exh.	Lift Int.	
Mechanical Lifter Camsh	afts										
Excellent low and mid range torque, good idle, daily usage, 2800-3400 cruise RPM, 8.5 to 9.75 compression ratio advised.	F-228/3067-2-10	2500- 5800	150811"	99250-16	228 238	268 278	110	939 544		.537 .560	
Replacement for Factory Mark IV 409 HP 409 cu.in. camshaft.	BluePrinted 3796077	3000- 6200	150421	99250-16	234 234	280 280	116.5	(.5) 54.5 52.5 1.5		.434 .434	
Replacement for Factory Mark VI 425 HP 409 cu.in. camshaft.	BluePrinted 3830690	3200- 6500	150431	99250-16	237 241	274 281	113.5	5 52 54 7		.504 .515	
Replacement for Factory Mark VII 430 HP Z-11 cam- shaft.	BluePrinted 3837735	3800- 7000	150441	99250-16	250 250	296 296	113.5	11.5 58.5 58.5 11.5		.555 .555	
Performance usage, good mid and upper RPM torque and HP, bracket racing, auto trans w/3000+ converter, 11.5 minimum compression ratio advised.	F-256/3412-2-10	3800- 7200	151341°	99250-16	256 266	292 302	110	21 55 66 20		.617 .634	
Mechanical Roller Camsh	afts										
Good low and mid range torque, fair idle, moderate performance usage, 3200-3600 cruise RPM, auto trans w/2000+ converter, 10.5 to 11.5 compression ratio advised.	SR-236/350-25-12	2600- 5800	158511"*	15519-16	236 244	286 294	112	11 45 59 5	.020 .020		
Good mid range torque and HP, fair idle, performance usage, bracket racing, auto trans w/2500+ converter, 11.0 to 12.0 compression ratio advised.	SR-244/362-25-10	3000- 6200	158171**	15519-16	244 252	294 302	110	17 47 61 11.5			
Good upper RPM torque and HP, performance usage, bracket racing, auto trans w/3500+ converter, good for increased displacement stroked engines, 11.5 min- imum compression ratio advised.	SR-252/374-25-12	3400- 6800	158711 ^{*a}	15519-16	252 260	302 310	112	19 53 67 13			
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	_	_	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS – Gold Race
	96873-16 ^ь	99957-16	99822-16 ^b	99098-1'	15621-16ª 15634-16°				15750-16 13750-16
	96873-16 ^ь	99957-16	99822-16 ^b	99098-1 [,]	15621-16 ^d 15634-16°				15750-16 13750-16
	96873-16 ^b	99957-16	99822-16 ^b	99098-1°	15621-16 ^d 15634-16 ^e				15750-16 13750-16
	96873-16 ^b	99957-16	99822-16 ^b	99098-1°	15621-16 ^d				15750-16
					15634-16°				13750-16
	96873-16 ^b	99957-16	99822-16 ^b	99098-1 [.]	15621-16 ^d 15634-16 ^e				15750-10 13750-10

96870-16 ⁶	99969-16	99822-16 ^ь	99098-1 [,]	15621-16ª 15634-16°	15750-16 ⁹ 13750-16 ^h
96870-16 ⁶	99969-16	99822-16 ^ь	99098-1°	15621-16 ^d 15634-16 ^e	15750-16º 13750-16 ^h
96870-16 ^ь	99969-16	99822-16 ^ь	99098-1 [.]	15621-16 ^d 15634-16 ^e	15750-16 ⁹ 13750-16 ^h

Requires cam button spacer and **11990-1** aluminum-bronze distributor drive gear Must machine cylinder heads Machined steel, heat treated 5/16" diameter, heavy wall, heat treated а

b

c d

- a)/8" diameter, heavy wall, heat treated
 a)/8" diameter, heavy wall, heat treated
 a)/8" stud
 b)/1.7 ratio, 7/16" stud

Chevrolet V-8 67-95

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.		Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf	ts										
Brute low end torque, smooth idle, daily usage, fuel economy, 1200-2000 cruise RPM, 8.0 to 9.25 compression ratio advised.	H-248-2	600- 4200	133971	99277-16	192 204	248 260	110	(9) 21 37 (13)		.453 .484	
Improves torque and HP throughout entire power range. Proven for towing in Dualies, Crew Cabs, SS454s and Suburbans. (50 state legal, 94 and earlier, C.A.R.B. E.O. D-225-51).	2020	800- 4400	134112ª	99277-16	202 210	262 270	110	(4) 26 40 (10)	.000 .000		
Brute low end torque, smooth idle, daily usage, off road, towing, 1600-2200 cruise RPM, 8.0 to 9.5 com- pression ratio advised.	Energizer 260 H10	1000- 4500	10303° 103032° ^b 3	99277-16	204 204	260 260	110	(3) 27 37 (13)	.000 .000	.484 .484	
Excellent low end torque and HP, smooth idle, daily usage, off road, towing, economy, also mild turbo- charged, 2200-2600 cruise RPM, 8.0 to 9.5 compres- sion ratio advised. (50 state legal, 94 and earlier, C.A.R.B. E.O. D-225-51).	H-260-2	1000- 4800	133901 133902ª •	99277-16	204 216	260 272	112	(5) 29 45 (9)		.484 .515	
Good low end torque and HP, smooth idle, daily usage, fuel economy, light towing, off road, 2200-2700 cruise RPM, 8.5 to 10.0 compression ratio advised.	Energizer 266 H10	1200- 4800	10304 [*] 103042 ^{*b}	99277-16	210 210	266 266	110	0 30 40 (10)		.499 .499	
Primarily for SS454, increased mid range to top-end HP and torque, especially 3500 RPM and up, slight decrease below 2500 RPM in stock engine. Excellent with aftermarket intake, performance heads, headers and free-flow exhaust. Good idle, daily usage, off road, towing, economy, good low and mid range torque and HP, 2400-2800 cruise RPM 8.5 to 10.0 com- pression ratio advised. (50 state legal, 94 and earlier, C.A.R.B. E.O. D-225-51).	2030	1200- 5000	133931 134122 ^a	99277-16	210 218	266 274	114	(4) 34 48 (10)	.000 .000		
Replacement for factory 350 HP 396 cu.in. camshaft.	BluePrinted 3883986	1200- 4600	969391	99277-16	214 218		115	(3) 37 49 (11)	.000 .000	.461 .480	
Good mid range torque and HP, good idle, daily usage, off road, highway towing, fuel efficiency plus perfor- mance, 2600-3000 cruise RPM, 8.75 to 10.0 compres- sion ratio advised.	Energizer 272 H10	1400- 5000	10305* 103052* ^b	99277-16	216 216	272 272	110	3 33 43 (7)		.515 .515	
Excellent mid range torque and HP, good idle, daily usage and off road, towing, performance and fuel effi- ciency, good w/small plate nitrous system, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio advised. Good w/centrifugal or small Roots supercharger, 8 lbs. maximum boost w/8.5 maximum compression ratio advised.	H-272-2	1600- 5400	133941° 133942°ª	99277-16 99377-16	216 228	272 284	112	1 35 51 (3)		.515 .510	

RPM range shown is for average usage. These cam profiles	
will RPM higher, depending upon application.	

- IMPORTANT NOTE: 1991-95 Gen V engines can use these camshafts and components if lifter preload is checked, or 99152-16 rocker arm studs (no machining required) and appropriate rocker arms.
 IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- NOTE: In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.
- NOTE: Camshafts with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap), are available on special order. Contact Crane's Performance Consultants for details.
- IMPORTANT NOTE: Some 1973 thru 1981 454 cu.in. engines were equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our **99459-8** Spring Seat Spacers or 4 of **99948-2** valve spring retainers (on the exhaust valves only) to prevent excessive valve spring shimming when eliminating the rotators. Some later

engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our 99459-8 Spring Seat Spacers or our **99948-16** valve spring retainers to prevent excessive valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	A ROCKERS — Gold Race
13308-1ª 13309-1º	99839-16ª 96801-16°	99948-16 99957-16 ^f		99098-1 ⁹	13634-16 ^h 13640-16 ⁱ	13975-1 ^{*j} 13984-1* ^k 13977-1* ⁱ	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16 ^{»,} 13763TR-16
13308-1ª 13309-1º	99839-16ª 96801-16°	99948-16 99957-16 ^f		99098-1 ⁹	13634-16 ^h 13640-16 ⁱ	13975-1* ^j 13984-1* ^k 13977-1* ¹	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16 ^{»,} 13763TR-16
13308-1ª 13309-1º	99839-16ª 96801-16°	99948-16 99957-16 [†]		99098-1 ⁹	13634-16 ^h 13640-16 ⁱ	13975-1 ^{*j} 13984-1* ^k 13977-1* ¹	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16% 13763TR-16
13308-1 ^ª 13309-1°	99839-16ª 96801-16°	99948-16 99957-16 ^f		99098-1 ⁹	13634-16 ^h 13640-16 ⁱ	13975-1* ^j 13984-1* ^k 13977-1* ⁱ	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16º/ 13763TR-16
13308-1ª 13309-1°	99839-16ª 96801-16°	99948-16 99957-16 ^f		99098-1 ⁹	13634-16 ^h 13640-16 ⁱ	13975-1" ^j 13984-1" ^k 13977-1" ⁱ	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16 [%] 13763TR-16
13308-1ª 13309-1º	99839-16ª 96801-16°	99948-16 99957-16 ^f		99098-1 ^g	13634-16 ^h 13640-16 ⁱ	13975-1 ^{*;} 13984-1*k 13977-1* ¹	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16% 13763TR-16
13308-1ª 13309-1°	99839-16ª 96801-16°	99948-16 99957-16 ^f		99098-1º	13634-16 ^h 13640-16 ⁱ	13975-1 ^{*;} 13984-1* ^k 13977-1* ¹	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16 [%] 13763TR-16
13308-1 ^d 13309-1°	99839-16ª 96801-16°	99948-16 99957-16 ^f		99098-1 ⁹	13634-16 ^h 13640-16 ⁱ	13977-1* 13975-1*j 13984-1*k 13977-1* ^j	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16º 13763TR-16
13308-1ª 13309-1°	99839-16ª 96801-16°	99948-16 99957-16 ^f		99098-1º	13634-16 ^h 13640-16 ⁱ	13975-1 ^{*j} 13984-1 ^{*k} 13977-1 ^{*l}	13800-16 ^{m,n}	13744-16 ^{n,p}	13750-16° 13763TR-10

Section Continued 🛰

- Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate.
- Cam and Lifter Kit, includes assembly lubricant. b
- Optional Hi Intensity hydraulic lifters, see page 272 for details. C
- Contains standard diameter valve springs, no machining required. **NOTE:** 1980 and later truck 366, 402, 427 and 454 engines have a short valve spring assembly height and should use **99837-16** standard diameter valve springs and **99957-16** retainers, contained in **13309-1** spring and d retainer kit.
- For 1980-95 truck 366, 402, 427 and 454 engines with short valve spring assembly height, contains е standard diameter valve springs. For 1980-95 truck 366, 402, 427 and 454 engines with short valve spring assembly height.
- f
- Machined steel, heat treated. g
- ĥ Heavy wall, heat treated, 3/8" diameter.

- Pro Series one-piece, 3/8" diameter.
- Performance steel billet gears and roller chain set.
- Pro Series steel billet gears and roller chain set.
- Т m
- Pro Series steel billet gears and roller chain set with thrust bearing. 1.7 ratio, 3/8" stud, long slot for 1.560" maximum 0.D. valve springs. 1991-95 engines require the installation of **99152-16** 7/16" rocker arm studs (no machining n
- required) and factory pushrod guideplates. Energizer, 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. 1.7 ratio, 7/16" stud. Wide Body. Valve Train Stabilizer available, see page 343.
- р
- q r

Chevrolet V-8 67-95

					COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Fxh	Degrees Lobe Separation	Open/Clo @ .050 Cam Lit Int/Ex	t Int.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf		TUTIOE	Emissions couc	En TERS	int, Exil.		Separation	IIIQ EX	EXII.	EXII.	
Good mid range torque and HP, fair idle, performance usage, serious off road, mild bracket racing w/heavy car, 9.5 to 10.75 compression ratio advised.	H-222/3114-251-8	1800- 5600	130201°	99277-16 99377-16		278 290	108	83 50		.529 .525	
Good mid range torque and HP, good idle, daily per- formance usage, mild bracket racing, 3000-3400 cruise RPM, marine applications, primarily used in up to 350 HP near-stock engines for mild performance applications w/standard marine exhaust systems, 9.5 to 10.75 compression ratio advised.	H-278-2	2000- 5800	133801* 133802*a 3	99277-16 99377-16		278 290	114	2 4 56 (2		.529 .525	
Fair idle, moderate performance usage, good mid range to upper RPM torque and HP, mild bracket rac- ing, Street, Heavy, Pro ET, Street ET, etc., auto trans w/2500+ converter, 3000-3400 cruise RPM, oval track; Street Stock, Enduro, Hobby, etc., 1/4-3/8 mile, serious off road, 9.5 to 11.0 compression ratio advised.	Energizer 282 H08	2200- 5600	10307* 103072* ^b	99277-16 99377-16		282 282	108	7 3 43		.533 .533	
Good mid range torque & HP, fair idle, moderate per- formance usage, mild bracket racing, auto trans w/2500+ converter, good w/plate or manifold nitrous system, marine applications; primarily used in 350+ HP mildly modified engines with free-flowing above water exhaust systems for performance applications, responds well to improved cylinder heads. 3200-3600 cruise RPM, 9.5 to 11.5 compression ratio advised. Good w/centrifugal or Roots supercharger, 10 lbs. max. boost w/8.5 max. compression ratio advised.	H-286-2	2400- 6200	134241* 134242** •	99277-16 99377-16		286 296	112	6 4 55		.534 .553	
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised.	Energizer 284 H12	2800- 6200	10306° 103062° ^b 3	99277-16 99377-16		284 284	112	74 51(3	.000 .000	.544 .544	
Fair idle, standard camshaft for Mercruiser 400, 405, 420, 425 HP & 525SC-454 cu.in. engines, applicable to 350, 365, 370 HP mildly modified engines with free- flowing above water exhaust systems for performance applications, 9.5 to 11.5 compression ratio advised.	H-228/312-25-14 T1.2	2800- 6600	132561°	99277-16 99377-16		298 306	114	54. 57(1		.530 .551	
Good mid range to upper RPM torque and HP, rough idle, moderate performance usage, mild bracket rac- ing, auto trans w/2500+ converter, 3600-4000 cruise RPM, 9.75 to 11.0 compression ratio advised.	H-230/318-2-10	3000- 6600	130211° 3	99277-16 99377-16		290 300	110	10 4 55		.541 .559	
Performance usage, good mid and upper RPM torque and HP, bracket racing; Heavy, Pro ET, Super ET, etc., auto trans w/3000+ converter, oval track; Street Stock, Enduro, Hobby, etc., 3/8-1/2 mile,10.0 to 11.5 compression ratio advised.	Saturday Night Special H-236/325-2-10	3000- 6600	134551° 134554°a 3	99277-16 99377-16		296 306	110	13 4 58 5		.553 .571	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT NOTE:** 1991-95 Gen V engines can use these camshafts and components if lifter preload is checked, or if converted to use adjustable rocker arms by installing **99152-16** rocker arm studs (no machining required) and appropriate rocker arms. **IMPORTANT:** Adjustable Vacuum Advance Kits available. See page
- 313 for details.
- NOTE: In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.

NOTE: Camshafts with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap), are available on special order. Contact Crane's Performance Consultants for details.

IMPORTANT NOTE: Some 1973 thru 1981 454 cu.in. engines were equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our **99459-8** Spring Seat Spacers or 4 of **99948-2** valve spring retainers (on the exhaust valves only) to prevent excessive valve spring shimming when eliminating the rotators. Some later engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our **99459-8** Spring Seat Spacers or our 99948-16 valve spring retainers to prevent excessive valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER	VALVE		VALVE STEM	VALVE STEM		TIMING CHAIN AND GEAR	STEEL ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
13308-1° 13309-1 ^ŕ	99839-16° 96801-16 ^f	99948-16 99957-16 ^h		99098-1 ^k	13634-16 ¹ 13640-16 ^m	13975-1* ⁿ 13984-1*º 13977-1* ^p	13800-16 ^{q,r}	13744-16 ^{r,v}	13750-16 [.] 13763TR-16
13308-1° 13309-1 ^f	99839-16° 96801-16 ^f	99948-16 99957-16 ^h		99098-1 ^k	13634-16 ¹ 13640-16 ^m	13975-1 ^{°n} 13984-1°° 13977-1 ^{°p}	13800-16 ^{q,r}	13744-16**	13750-16 ^{,,} 13763TR-16
13308-1° 13309-1 ^f	99839-16° 96801-16 ^f	99948-16 99957-16 ^h		99098-1 ^k	13634-16 ¹ 13640-16 ^m	13975-1° ⁿ 13984-1°º 13977-1° ^p	13800-16 ^{4,r}	13744-16 ^{,,}	13750-16 ^{.,} 13763TR-16
13308-1° 13309-1 ^ŕ	99839-16° 96801-16 ^f	99948-16 99957-16 ^h		99098-1 ^k	13634-16 ¹ 13640-16 ^m	13975-1* 13984-1* 13977-1*	13800-16 ^{q,r}	13744-16**	13750-16 [%] 13763TR-16
13308-1° 13309-1 ^r	99839-16° 96801-16 ^f	99948-16 99957-16 ^h		99098-1 ^k	13634-16 ¹ 13640-16 ^m	13975-1* 13984-1* 13977-1*	13800-16 ^{q.r}	13744-16 ^{r,v}	13750-16 ^{7,w} 13763TR-16 ⁷
	99893-16 99896-16 ^g	99954-16 99955-16 ⁱ	99822-16 ⁱ	99098-1 ^k	13634-16 [¦] 13640-16 [™]	13975-1* ⁿ 13984-1*º 13977-1* ^p	13801-16 ^{r,s} 13801C-16 ^{r,t}	13744-16 ^{r.v}	13750-16 ^{г.»} 13763TR-16
	99893-16 99896-16 ^g	99954-16 99955-16 ⁱ	99822-16 ⁱ	99098-1 ^k	13634-16 [¦] 13640-16™	13975-1*¤ 13984-1*° 13977-1*¤	13801-16 ^{r,s} 13801C-16 ^{r,t}	13744-16 ^{r.v}	13750-16 ^{4,4} 13763TR-16
	99893-16 99896-16ª	99954-16 99955-16 ⁱ	99822-16 ^j	99098-1 ^k	13634-16 ¹ 13640-16 ^m	13975-1* ⁿ 13984-1*º 13977-1* ^p	13801-16 ^{r,s} 13801C-16 ^{r,t}	13744-16 ^{,,}	13750-16 ^{r,} 13763TR-10

- Cam and Lifter Kit, includes installation lubricants and Cam Sprocket Bolt Locking Plate. а
- Cam and Lifter Kit, includes assembly lubricant. b
- Optional HI Intensity hydraulic lifters, see page 272 for details. d
- Contains standard diameter valve springs, no machining required. NOTE: 1980 and later truck 366, 402, 427 and 454 engines have a short valve spring assembly height and should use **99837-16** standard diameter valve springs and **99957-16** retainers, contained in **13309-1** spring and е retainer kit.
- f For 1980-95 truck 366, 402, 427 and 454 engines with short valve spring assembly height, contains standard diameter valve springs. Optional harmonic frequency optimized valve springs for street, marine, and endurance applica-
- g tions. Requires 99955-16 retainers.
- For 1980-95 truck 366, 402, 427 and 454 engines with short valve spring assembly height.
- For 99896-16 valve springs.
- Must machine cylinder heads.
- Machined steel, heat treated.

- Heavy wall, heat treated. 1
- Pro Series one-piece, 3/8" diameter. m
- Performance steel billet gears and roller chain set. n
- Pro Series steel billet gears and roller chain set. 0
- Pro Series steel billet gears and roller chain set with thrust bearing. р
- q
- Tratio, 7/16" stud, long slot for 1.560" maximum 0.D. valve springs.
 1.7 ratio, article value slot for 1.560" maximum 0.D. valve springs.
 1.7 ratio, extra long slot for 1.560" maximum 0.D. valve springs.
 1.7 ratio, Nitro Carb, extra long slot for 1.560" maximum 0.D. valve springs.
 1.7 ratio, Nitro Carb, extra long slot for 1.560" maximum 0.D. valve springs.
- t
- Energizer, 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. V
- W
- x 1.7 ratio, 7/16" stud, Wide Body. Valve Train Stabilizer available, see page 343.

Chevrolet V-8 67-95

396-402-427-454 cu.in.

					COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	@ .050′ Cam Lift	t Int.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf	ts										
Fair idle, performance usage, good mid range HP, mild bracket racing, auto trans w/3000+ converter, marine performance for 500+ cu.in. modified engines w/ center riser type exhaust system & 4" outlets, requires large oval or rectangular port cylinder heads for per- formance applications, 3800-4200 cruise RPM, good w/ manifold nitrous system, 10.0 to 11.5 compression ratio advised. Good w/ Roots supercharger, 15 lbs. max. boost w/8.0 max. compression ratio advised.		3000- 6800	134561 [°]	99277-16 99377-16 ⁶	236 246	296 306	114	9 47 62 4	.000	.553 .571	
Rough idle, performance usage, good mid range HP, bracket racing, auto trans w/3000+ converter, 3800- 4200 cruise RPM, 10.0 to 11.5 compression ratio advised. Good w/Roots supercharger, 15 lbs. max. boost w/8.0 max. compression ratio advised.	Energizer 294-304 H14	3200- 6800	10313* •	99277-16 99377-16 ⁶	238 248	294 304	114	10 48 63 5		.569 .595	
Rough idle, performance usage, good mid to upper RPM torque and HP, bracket racing, auto trans w/3200+ converter, marine performance, 3800-4200 cruise RPM, 10.5 to 11.75 compression ratio advised.	H-240/329-25-12	3000- 6800	130221°	99277-16 99377-16 ⁶	240 246	300 306	112	13 47 60 6	5 .000	.559 .571	
Rough idle, performance usage, good upper RPM torque and HP, Pro Street 500+ cu.in., bracket racing, auto trans w/3500+ converter, marine performance, 4000-4400 cruise RPM, good w/manifold nitrous sys- tem, 11.0 to 12.5 compression ratio advised. Good w/ Roots supercharger, 16 lbs. maximum boost w/8.0 maximum compression ratio advised.	H-242/322-2-14	3200- 7000	130231* •	99277-16 99377-16 ^ь	242 252	322 332	114	12 50 65 7		.547 .566	
Performance usage, good upper RPM torque and HP, bracket racing; Heavy, Pro ET, Super ET, etc., auto trans w/3500+ converter, also oval track; Street Stock, Enduro, Hobby, etc., 3/8-1/2 mile, 10.5 to 12.0 com- pression ratio advised.	Saturday Night Special 328 H08	3400- 6800	133101° 133104°a 3	99277-16 99377-16 ^ь	246 246	328 328	108	17 49 53 13		.567 .567	
Rough idle, performance usage, good upper RPM HP, bracket racing, auto trans w/3500+ converter, marine performance, 4000-4400 cruise RPM, good w/ mani- fold nitrous system, 10.5 to 12.0 compression ratio advised. Good w/Roots supercharger, 18 lbs. max. boost w/8.0 max. compression ratio advised.	H-306-2	3400- 7000	134571°	99277-16 99377-16 ⁶	246 254	306 314	112	16 50 64 10		.571 .585	
Performance usage, good mid & upper RPM HP, for large displacement engines (500 cu.in.+), bracket rac- ing, auto trans w/race converter, good w/large mani- fold nitrous system, radical marine performance, 10.75 to 12.5 compression ratio advised. Good w/large Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised.	H-248/3500-25-14	3600- 7000	130241°	99277-16 99377-16 ⁶	248 256	304 312	114	15 53 67 9		.595 .595	
Performance usage, good mid & upper RPM HP, for large displacement engines (500 cu.in.+), bracket rac- ing, auto trans w/race converter, also w/large mani- fold nitrous system, marine performance, 10.5 to 12.0 compression ratio advised. Good w/large Roots super- charger, 22 lbs. maximum boost w/8.0 maximum compression ratio advised.	H-254/344-2S-14	3800- 7200	130721°	99277-16 99377-16 ^ь	254 262	314 322	114	18 56 70 12		.585 .600	
Performance usage, good upper RPM HP, for large dis- placement engines (500 cu.in.+), bracket racing, auto trans w/race converter, also nitrous and radical marine performance, 11.5 min. compression ratio advised.		4000- 7200	130731* 3	99277-16 99377-16 ^ь	262 270	322 330	114	22 60 74 16		.600 .615	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: 1991-95 Gen V engines can use these camshafts and components if lifter preload is checked, or if converted to use adjustable rocker arms by installing 99152-16 rocker arm studs (no machining required) and appropriate rocker arms.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

NOTE: In order to use these cams in 65-66 engines, you must

groove the center of the rear cam bearing journal, 3/16"

- wide and 7/64" deep. **NOTE:** Camshafts with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap), are available on special order. Contact Crane's Performance Consultants for details.
- IMPORTANT NOTE: Some 1973 thru 1981 454 cu.in. engines were equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our 99459-8 Spring Seat Spacers or 4 of 99948-2 valve spring retainers (on the exhaust valves only) to prevent excessive valve spring shimming when eliminating the rotators. Some later

engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our **99459-8** Spring Seat Spacers or our 99948-16 valve spring retainers to prevent excessive valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	A ROCKI G R
	99893-16 99896-16'	99954-16 99955-16⁴	99822-16°	99098-1 ^f	13634-16º 13640-16 ^h	13975-1" 13984-1" 13977-1"k	13801-16 ^{l,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	1375(13763
	99893-16 99896-16'	99954-16 99955-16ª	99822-16°	99098-1 ^f	13634-16 ^g 13640-16 ^h	13975-1"i 13984-1"j 13977-1"k	13801-16 ^{l,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	13750 13763
	99893-16 99896-16'	99954-16 99955-16 ^d	99822-16°	99098-1 ^f	13634-16 ⁹ 13640-16 ^h	13975-1*i 13984-1*j 13977-1*k	13801-16 ^{l,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	13750 13763
	99893-16 99896-16'	99954-16 99955-16ª	99822-16°	99098-1 ^f	13634-16ª 13640-16 ^h	13975-1* ⁱ 13984-1* ^j 13977-1* ^k	13801-16 ^{I,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	13750 13763
	99893-16 99896-16'	99954-16 99955-16ª	99822-16°	99098-1 ^f	13634-16 ^g 13640-16 ^h	13975-1*i 13984-1*j 13977-1*k	13801-16 ^{l,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	1375(13763
	99893-16 99896-16'	99954-16 99955-16ª	99822-16°	99098-1 ^f	13634-16 ⁹ 13640-16 ^h	13975-1" ⁱ 13984-1" ^j 13977-1" ^k	13801-16 ^{i,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	1375 13763
	99893-16 99896-16'	99954-16 99955-16 ^d	99822-16°	99098-1 ^f	13634-16 ⁹ 13640-16 ^h	13975-1 ^{*i} 13984-1 ^{*j} 13977-1* ^k	13801-16 ^{l,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	1375(13763
	99893-16 99896-16'	99954-16 99955-16 ^d	99822-16°	99098-1 ^f	13634-16 ⁹ 13640-16 ^h	13975-1"i 13984-1"j 13977-1"k	13801-16 ^{l,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	13750 13763
	99893-16 99896-16'	99954-16 99955-16⁴	99822-16°	99098-1 ^f	13634-16 ⁹ 13640-16 ^h	13975-1*i 13984-1*j	13801-16 ^{l,m} 13801C-16 ^{m,n}	13744-16 ^{m,p}	13750 13763

- а
- b
- Cam and lifter kit, includes installation lubricants. Optional HI Intensity hydraulic lifters, see page 272 for details. Optional harmonic frequency optimized valve springs for street, marine, and endurance applica-tions. Requires **99955-16** retainers. For **99896-16** valve springs. Must machine cylinder heads. Machined teal, host tracted C
- d
- Machined steel, heat treated. f
- Heavy wall, heat treated.
- g h Pro Series one-piece, 3/8" diameter.
- Performance steel billet gears and roller chain set. i

- j Pro Series steel billet gears and roller chain set.
 k Pro Series steel billet gears and roller chain set with thrust bearing.
 l 1.7 ratio, extra long slot for 1.560" maximum 0.D. valve springs.
 m 1991-95 engines require the installation of 99152-16 7/16" rocker arm studs (no machining required) and factory pushrod guideplates.
 n 1.7 ratio, Nitro Carb, extra long slot for 1.560" maximum 0.D. valve springs.
 p Energizer, 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343.
 q 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343.
 r 1.7 ratio, 7/16" stud. Wide Body. Valve Train Stabilizer available, see page 343.

Chevrolet V-8 67-95

						COMPLETE CAM SPECIFICATIONS						
	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Η	ydraulic Roller Camshai	fts — Retrofit										
Bi	ute low end torque, smooth idle, daily usage, fuel conomy, 1200-2000 cruise RPM, 8.0 to 9.25 compres- on ratio advised.	HR-204/286-2-12 IG	800- 4600	139601*ª	13532-16 ^ь	204 214	260 270	112	(5) 29 44 (10)		.486 .512	
of 30 in ap	ccellent low end torque & HP, good idle, daily usage, ff road, towing, performance & fuel efficiency, 2600- 000 cruise RPM, marine applications: primarily used 454 cu.in. near-stock engines for mild performance oplications w/ free-flowing above water exhaust sys- ms. 8.75 to 10.5 compression ratio advised.	ZHR-276-25-10 IG	1200- 5000	139001*ª 3	13532-16 ^b	214 222	276 284	110	2 32 46 (4)	.000 .000		
pl 10 Re	ood low end torque & HP, good idle, daily usage, w/ ate nitrous system, 2600-3000 cruise RPM, 8.75 to 0.5 compression ratio advised. Good w/centrifugal or pots supercharger, 8 lbs. max. boost w/8.5 max. mpression ratio advised.	HR-214/325-2S-12 IG	1200- 5200	139351*ª ()	13532-16 ^b	214 222	276 284	112	0 34 48 (6)	.000 .000		
26 ac ga	ood low end torque and HP, good idle, daily usage, 500-3000 cruise RPM, 8.75 to 10.5 compression ratio dvised. Crate motor upgrade. Good w/small centrifu- al or Roots supercharger, 8 lbs. maximum boost /8.5 maximum compression ratio advised.	HR-218/3001-2S-14 IG	1400- 5200	139611*ª (3)	13532-16 ^b	218 224	278 284	114	(1) 39 50 (6)	.000 .000		
da	ood low end and mid range torque and HP, fair idle, aily usage, off road, 2600-3000 cruise RPM, 9.0 to).5 compression ratio advised.	HR-222/339-2S-10 IG	1600- 5400	139761*ª 3	13532-16 ^b	222 230	284 292	110	636 500		.576 .598	
pe w sy fie 34 a0	ccellent mid range torque and HP, fair idle, moderate erformance usage, mild bracket racing, auto trans /2500+ converter, good w/plate or manifold nitrous stem, marine applications: for 454-502 cu.in. modi- ed engines in performance applications with after- iarket high flow above water exhaust systems. 3000- 100 cruise RPM, 9.5 to 11.0 compression ratio dvised. Good w/centrifugal or Roots supercharger, 10 s. maximum boost w/8.5 compression ratio advised.	ZHR-288-25-12 IG	1800- 5600	139011**	13532-16 ^ь	226 234	288 296	112	6 40 54 0	.000 .000	.587 .610	
pe w cu w te	ood mid range torque and HP, fair idle, moderate erformance usage, mild bracket racing, auto trans /2500+ converter, marine applications: for 502+ .in. modified engines in performance applications ith aftermarket high flow above water exhaust sys- ms. 3200-3600 cruise RPM, 9.75 to 11.25 compres- on ratio advised.	HR-230/352-251-14 IG	2000- 5800	139771°ª	13532-16 ^b	230 236	292 298	114	6 44 57 (1)	.000 .000		
us sy ca fo sy si	ood mid range torque & HP, fair idle, performance sage, mild bracket racing, good w/manifold nitrous stem, auto trans w/3000+ converter, marine appli- tions: for 454-502+ cu.in. modified engines in per- rmance applications w/ aftermarket dry pipe exhaust stems. 3400-3800 cruise RPM, 10.0 to 11.5 compres- on ratio advised. Good w/Roots supercharger, 15 lbs. ax. boost w/8.0 max. compression ratio advised.	ZHR-296-25-12 IG	2200- 6000	139021"ª	13532-16 ^ь	234 242	296 304	112	10 44 58 4		.610 .632	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT:** Adjustable Vacuum Advance Kits available. See page 313 for details.
- **NOTE:** In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16"
- wide and 7/64" deep. **NOTE:** The 1991-95 Gen V engines can use these camshafts and components if they are converted to adjustable rocker arms by installing 99152-16 rocker arm studs (no machining required) and appropriate rocker arms. Custom length

pushrods can also be made to achieve correct lifter preload if standard non-adjustable rocker arms are retained. See page

- 353 for checking your hydraulic lifter preload. **NOTE:** Camshafts with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap), are available on special order. Contact Crane's Performance Consultants for details.
- IMPORTANT NOTE: Some 1973 thru 1981 454 cu.in. engines were equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our **99459-8** Spring Seat Spacers or 4 of **99948-2** valve spring retainers (on the exhaust valves only) to prevent excessive valve spring shimming when eliminating the rotators. Some later

engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our 99459-8 Spring Seat Spacers or our 99948-16 valve spring retainers to prevent excessive valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUI Energizer	M ROCKERS – Gold Race
	99896-16 99832-16ª	99955-16 99976-16'	99822-16'	99098-1ª	13628-16° 13642-16° ^{,f} 13629-16 ^g 13643-16 ^{fg}	13975-1" ^h 13984-1" ⁱ 13977-1" ^j	13801-16 ^{k,i}	13744-16 ^{i,n}	13750-16 ^{1,} 13763TR-16
	99896-16 99832-16ª	99955-16 99976-16'	99822-16 [,]	99098-1ª	13628-16° 13642-16° ^{,f} 13629-16 ⁹ 13643-16 ^{f,g}	13975-1* ^h 13984-1* ⁱ 13977-1 ^{*j}	13801-16 ^{k,I}	13744-16 ^{l,n}	13750-16 ¹ 13763TR-1
	99896-16 99832-16ª	99955-16 99976-16'	99822-16'	99098-1 ^ª	13628-16° 13642-16° ^{,f} 13629-16 ⁹ 13643-16 ^{f,g}	13975-1 ^{°h} 13984-1° ⁱ 13977-1 ^{°j}		13744-16 ^{i,n}	13750-16 ¹ 13763TR-10
	99896-16 99832-16ª	99955-16 99976-16'	99822-16 [.]	99098-1 ^ª	13628-16° 13642-16° ^{,f} 13629-16 ⁹ 13643-16 ^{f,g}	13975-1* ^h 13984-1* ⁱ 13977-1* ^j		13744-16 ^{I,n}	13750-16 ¹ 13763TR-10
	99896-16 99832-16ª	99955-16 99976-16'	99822-16 [.]	99098-1ª	13628-16° 13642-16 ^{e,f} 13629-16 ⁹ 13643-16 ^{f,g}	13975-1* ^h 13984-1* ⁱ 13977-1* ^j		13744-16 ^{l,n}	13750-16 ¹ 13763TR-1
	99896-16 99832-169	99955-16 99976-16'	99822-16 [,]	99098-1ª	13628-16° 13642-16°,f 13629-16 ⁹ 13643-16 ^{fg}	13975-1* 13984-1* 13977-1*j		13744-16 ^{i,n}	13750-16 ¹ 13763TR-1
	99896-16 99832-169	99955-16 99976-16'	99822-16 [,]	99098-1ª	13628-16° 13642-16°,f 13629-16 ⁹ 13643-16 ^{fg}	13975-1* ^h 13984-1*i 13977-1* ^j		13744-16 ^{i,n}	13750-16 ⁴ 13763TR-14
	99896-16 99832-16ª	99955-16 99976-16'	99822-16 ⁴	99098-1ª	13628-16 ^e 13642-16 ^{e,f} 13629-16 ^g 13643-16 ^{f,g}	13975-1 ^{*h} 13984-1 ^{*i} 13977-1 ^{*j}		13744-16 ^{l,n}	13750-16 ¹ 13763TR-1

Section Continued 👐

- а Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear.
- b Vertical locking bar hydraulic roller lifters, no machining required.
- Must machine cylinder heads. Machined steel, heat treated. C
- d
- Heavy wall, heat treated, for standard deck height blocks. е
- f
- Pro Series, one piece. Heavy wall, heat treated, for +.400" deck height "Tall Blocks". Performance steel billet gears and roller chain set.
- g h
- Pro Series steel billet gears and roller chain set. i

- Pro Series steel billet gears and roller chain set with thrust bearing.
- 1.7 ratio, extra long slot for 1.560" maximum 0.D. valve springs. 1991-95 engines require the installation of **99152-16** 7/16" rocker arm studs (no machining required) and factory pushrod guideplates.
- Energizer, 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. n
- 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. 0
- 1.7 ratio, 7/16" stud, Wide Body. Valve Train Stabilizer available, see page 343. р
- Ovate wire beehive spring, requires **99976-16** retainers. Steel, for **99832-16** beehive springs.
- q r

					COMPLETE CAM SPECIFICATIONS					1	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Lift Int.	
Hydraulic Roller Camsha	fts — Retrofit										
Good mid range torque and HP, fair idle, performance usage, bracket racing, good with manifold nitrous sys- tem, auto trans w/3000+ converter, 3400-3800 cruise RPM, best in 502+ cu.in. engines. 10.0 to 11.5 com- pression ratio advised. Good w/supercharger, 16 lbs. max. boost w/8.0 max. compression ratio advised.	HR-236/359-2S-14 IG	2200- 6000	139671°ª	13532-16 ^ь	236 244	298 306	114	9 47 61 3		.610 .632	
Excellent mid range to upper RPM torque & HP, rough idle, performance usage, bracket racing, auto trans w/3000+ converter, 3600-4000 cruise RPM, marine usage: for 500+ modified engines w/dry aftermarket exhaust. 10.5 to 12.0 compression ratio advised.	HR-240/365-2S-12 IG	2600- 6200	139681°ª	13532-16 ^b	240 248	302 310	112	13 47 61 7	.000	.621 .632	
Good mid range to upper RPM torque, rough idle, per- formance usage, bracket racing, auto trans w/3500+ converter, marine performance for 480+ cu.in. modi- fied engines in performance applications with after- market dry pipe exhaust systems, or tube headers, 3600-4000 cruise RPM, for 500+ cu.in. engines. 10.5 to 12.0 compression ratio advised.	HR-244/372-25-10 IG	2800- 6200	139781°ª	13532-16 ^ь	244 256	306 318	110	17 47 63 13		.632 .632	
Good mid range to upper RPM torque & HP, rough idle, performance usage, bracket racing, auto trans w/3500+ converter, marine performance for 500+ cu.in. modified engines in performance applications w/aftermarket dry pipe exhaust systems, or tube headers, good w/manifold nitrous system, 3800-4200 cruise RPM, for 500+ cu.in. engines. 10.5 to 12.5 com- pression ratio advised. Good w/Roots supercharger, 18 lbs. max. boost w/8.0 max. compression ratio advised.	HR-306-25-14 IG	3000- 6400	139651**	13532-16 ⁶	244 256	306 318	114	13 51 67 9		.632 .632	
Good mid range to upper RPM torque and HP, rough idle, performance usage, Pro Street, bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, for 500+ cu.in. engines. 11.0 to 12.5 compression ratio advised. Good w/Roots supercharger, 18 lbs. max. boost w/8.0 max. compression ratio advised.	HR-246/400-2S-14 IG	3200- 6400	139791*ª	13532-16 ⁶	246 254	316 324	114	13.5 52.5 65.5 8.5		.680 .680	
Good mid range to upper RPM torque, rough idle, per- formance usage, bracket racing, auto trans w/3500+ converter, 3600-4000 cruise RPM, for 500+ cu.in. engines. 11.0 to 12.5 compression ratio advised.	HR-248/372-25-10 IG	3000- 6400	139801*ª	13532-16 ^b	248 256	310 318	110	19 49 63 13			
Excellent upper RPM torque and HP, performance usage, bracket racing, good w/manifold nitrous sys- tem, auto trans w/3500+ converter, best in 540+ cu. in. engines. 11.0 to 12.5 compression ratio advised. Good w/supercharger, 20 lbs. maximum boost, w/8.0 maximum compression ratio advised.	HR-248/372-25-14 IG	3200- 6400	139691*ª	13532-16 ⁶	248 256	310 318	114	15 53 67 9	.000 .000		
Performance usage, bracket racing, good w/manifold nitrous system, auto trans w/race converter, best in 540+ cu.in. engines. 11.5 to 13.0 compression ratio advised. Good w/supercharger, 20 lbs. maximum boost, w/8.0 maximum compression ratio advised.	HR-250/400-251-14 IG	3200- 6400	139811'ª 3	13532-16 ⁶	250 258	320 328	114	15.5 54.5 68 10			

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT:** Adjustable Vacuum Advance Kits available. See page 313 for details.
- **NOTE:** In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16"
- wide and 7/64" deep. **NOTE:** The 1991-95 Gen V engines can use these camshafts and components if they are converted to adjustable rocker arms by installing 99152-16 rocker arm studs (no machining required) and appropriate rocker arms. Custom length

pushrods can also be made to achieve correct lifter preload if standard non-adjustable rocker arms are retained. See page

- 353 for checking your hydraulic lifter preload. **NOTE:** Camshafts with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap), are available on special order. Contact Crane's Performance Consultants for details.
- IMPORTANT NOTE: Some 1973 thru 1981 454 cu.in. engines were equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our **99459-8** Spring Seat Spacers or 4 of **99948-2** valve spring retainers (on the exhaust valves only) to prevent excessive valve spring shimming when eliminating the rotators. Some later

engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our 99459-8 Spring Seat Spacers or our 99948-16 valve spring retainers to prevent excessive valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUN	
AND RETAINER	VALVE		STEM	STEM		AND GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	00006.16	00055 4/	00000 16	00000.11	12620 160	42075 4*h			12750 1 4
	99896-16 99832-16⁰	99955-16 99976-16ª	99822-16 °	99098-1 ^d	13628-16° 13642-16° ^{,f}	13975-1 ^{*h} 13984-1* ⁱ		13744-16 ^{k,m}	13750-16 13763TR-1
	99032-10 ^r	99970-10 ¹			13629-16 ⁹	13977-1*j		15/44-10	12/0214-1
					13643-16 ^{f,g}	13777-11			
	99896-16	99955-16	99822-16 ^c	99098-1 ^d	13628-16°	13975-1 ^{*h}			13750-16 ¹
	99832-16 ^p	99976-16 ⁴			13642-16 ^{e,f}	13984-1 ^{*i}		13744-16 ^{k,m}	13763TR-1
					13629-16 ⁹	13977-1 ^{*j}			
					13643-16 ^{f,g}				
	99896-16	99955-16	99822-16 [.]	99098-1 ^d	13628-16°	13975-1*h			13750-16
	99832-16 ^p	99976-16 ⁴			13642-16 ^{e,f}	13984-1 ^{*i}		13744-16 ^{k,m}	13763TR-1
					13629-16 ⁹ 13643-16 ^{f,g}	13977-1 * ^j			
					12042-10				
	00006 16	00055 1/	00033 1/(99098-1ª	12/20 1/4	13975-1 ^{*h}			13750-16
	99896-16 99832-16 ^p	99955-16 99976-16୩	99822-16 ^c	99098-1-	13628-16° 13642-16° ^{,f}	13975-1 " 13984-1* ⁱ		13744-16 ^{k,m}	
	99032-10 [.]	33370-10			13629-16 ⁹	13977-1 ^{*j}		13744-10	137031R-1
					13643-16 ^{f,g}				
	99896-16	99955-16	99822-16 [.]	99098-1 ⁴	13628-16°	13975-1 ^{*h}			13750-16 ¹
					13642-16 ^{e,f}	13984-1 ^{*i}		13744-16 ^{k,m}	13763TR-1
					13629-16 ⁹	13977-1 ^{*j}			
					13643-16 ^{f,g}				
	99896-16	99955-16	99822-16 ^c	99098-1 ^d	13628-16°	13975-1 ^{*h}			13750-16
	99832-16 ^p	99976-16 ⁹			13642-16 ^{e,f}	13984-1 ^{*i}		13744-16 ^{k,m}	13763TR-1
					13629-16 ⁹	13977-1 ^{*j}			
					13643-16 ^{f,g}				
	99896-16 99832-16⁰	99955-16 99976-16ª	99822-16 [.]	99098-1 ⁴	13628-16° 13642-16 ^{e,f}	13975-1 ^{*h} 13984-1* ⁱ		13744-16 ^{k,m}	13750-16 13763TR-1
	370JZ-10	<i>JJJ</i> /0 ⁻ 10 ⁻			13629-169	13977-1 ^{*j}		137 44-107	13703 IN-1
					13643-16 ^{f,g}				
	99896-16	99955-16	99822-16 ^c	99098-1ª	13628-16°	13975-1 ^{*h}			13750-16
					13642-16 ^{e,f}	13984-1 ^{*i}		13744-16 ^{k,m}	
					13629-16 ⁹	13977-1 ^{*j}			

Section Continued 🛰

- Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, а aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear.
- Vertical locking bar hydraulic roller lifters, no machining required. b
- Must machine cylinder heads. Machined steel, heat treated. C
- d
- Heavy wall, heat treated, for standard deck height blocks. е
- f
- Pro Series, one piece. Heavy wall, heat treated, for +.400" deck height "Tall Blocks". Performance steel billet gears and roller chain set. g h

- Pro Series steel billet gears and roller chain set.
- k
- Pro Series steel billet gears and roller chain set with thrust bearing. 1991-95 engines require the installation of **99152-16** 7/16" rocker arm studs (no machining required) and factory pushrod guideplates.
- Energizer, 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. m
- 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. n
- 1.7 ratio, 7/16" stud, Wide Body. Valve Train Stabilizer available, see page 343. 0
- Ovate wire beehive spring, requires **99976-16** retainers. Steel, for **99832-16** beehive springs. p q

						COMPLETE CAM SPECIFICATIONS						
	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274 LIFTERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
H	lydraulic Roller Camsha	fts — Retrofit										
P b a e p	erformance usage, good upper RPM torque & HP, racket racing, good w/large manifold nitrous system, uto trans w/3500+ converter, best in 540+ cu.in. ngines w/prepared cylinder heads. 12.0 min. com- ression ratio advised. Good w/large supercharger, 22 ss. max. boost w/8.5 max. compression ratio advised.	HR-254/400-25-14 IG	3400- 6600	139701*ª	13532-16 ⁶	254 262	324 332	114	17.5 56.5 69.5 12.5	.000 .000	.680 .680	
t v	ood upper RPM torque and HP, bracket racing, auto rans w/3500+ converter, best in 540+ cu.in. engines //prepared cylinder heads. 12.0 minimum compres- ion ratio advised.	HR-256/372-2S-10 IG	3400- 6600	139821*ª	13532-16 ^b	256 264	318 326	110	23 53 67 17	.000 .000		
ii V C C	erformance usage, good upper RPM HP, bracket rac- 19, good w/large manifold nitrous system, auto trans 1/3500+ converter, marine performance, 4000-4400 ruise RPM, for 540+ cu.in. engines. 11.0 minimum ompression ratio advised. Good w/large Roots super- harger, good upper RPM HP, 480+ cu.in., 22 lbs. max. oost w/8.0 max. compression ratio advised.	HR-318-2S-14 IG	3600- 6600	139661*ª	13532-16 ⁶	256 264	318 326	114	19 57 71 13	.000 .000		
fi 4 n s	ompetition only, bracket racing, good w/large mani- old nitrous system, auto trans w/race converter, 000-4400 cruise RPM, for 540 + cu.in. engines. 12.0 nin. compression ratio advised. Good w/large Roots upercharger, good upper RPM HP, 480 + cu.in., 22 lbs. nax. boost w/8.0 max. compression ratio advised.	HR-258/4001-25-14 IG	3600- 6600	139831*ª	13532-16 ^b	258 266	328 336	114	19.5 58.5 71.5 14.5	.000 .000		
iı e	ompetition only, bracket, Super Gas, Super Comp rac- ng, auto trans w/race converter, best in 540+ cu.in. ngines w/prepared cylinder heads, 12.5 minimum ompression ratio advised.	HR-262/400-2S2-14 IG	3800- 6600	139841*ª	13532-16 ^b	262 266	332 336	114	21.5 60.5 71.5 14.5	.000 .000		
ir e n ra	ompetition only, bracket, Super Gas, Super Comp rac- ig, auto trans w/race converter, best in 572+ cu.in. ngines w/prepared cylinder heads, good w/large nanifold nitrous system, 12.5 minimum compression atio advised. Good w/large supercharger, 26 lbs. max. oost w/8.5 max. compression ratio advised.	HR-262/400-251-14 IG	3800- 6600	139711°ª	13532-16 ⁶	262 270	332 340	114	21.5 60.5 73.5 16.5	.000 .000		
a	ompetition only, best in 572+ cu.in. high torque pplications: drag, marine, radical Pro Street, 13.0 inimum compression ratio advised.	HR-264/420-2S-15 IG	4000- 6800	139861*ª 3	13532-16 ^b	264 272	328 336	115	21 63 75 17	.000 .000		
R la p II	ompetition only, best in 572+ cu.in., high torque and PM applications: drag, radical Pro Street, good w/ arge manifold nitrous system, 13.0 minimum com- ression ratio advised. Good w/large supercharger, 28 ps. maximum boost w/9.0 maximum compression atio advised.	HR-270/400-25-14 IG	4400- 6800	139851*ª •	13532-16 ^b	270 282	340 347	114	25.5 64.5 79 23	.000 .000	.680 .680	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT:** Adjustable Vacuum Advance Kits available. See page 313 for details.
- **NOTE:** In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16"
- wide and 7/64" deep. **NOTE:** The 1991-95 Gen V engines can use these camshafts and components if they are converted to adjustable rocker arms by installing 99152-16 rocker arm studs (no machining required) and appropriate rocker arms. Custom length

pushrods can also be made to achieve correct lifter preload if standard non-adjustable rocker arms are retained. See page

- 353 for checking your hydraulic lifter preload. **NOTE:** Camshafts with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap), are available on special order. Contact Crane's Performance Consultants for details.
- IMPORTANT NOTE: Some 1973 thru 1981 454 cu.in. engines were equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our **99459-8** Spring Seat Spacers or 4 of **99948-2** valve spring retainers (on the exhaust valves only) to prevent excessive valve spring shimming when eliminating the rotators. Some later

engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our **99459-8** Spring Seat Spacers or our 99948-16 valve spring retainers to prevent excessive valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE Springs	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	1 ROCKERS — Gold Race
	99896-16	99955-16	99822-16 [.]	99098-1ª	13628-16° 13642-16° ^{,f} 13629-16 ^g 13643-16 ^{fg}	13975-1° ^h 13984-1° ⁱ 13977-1° ^j			13750-16 ^{k,} 13763TR-16
	99896-16 99832-16 ^p	99955-16 99976-16ª	99822-16 ⁴	99098-1ª	13628-16° 13642-16° ^{,f} 13629-16 ⁹ 13643-16 ^{f,g}	13975-1* ^h 13984-1* ⁱ 13977-1 ^{*j}		13744-16 ^{k,m}	13750-16 ^{k,} 13763TR-16
	99896-16 99832-16 ^p	99955-16 99976-16ª	99822-16 [.]	99098-1ª	13628-16 ^e 13642-16 ^{e,f} 13629-16 ^g 13643-16 ^{f,g}	13975-1° ^h 13984-1° ⁱ 13977-1° ^j		13744-16 ^{k,m}	13750-16 ^{k,} 13763TR-16
	99896-16	99955-16	99822-16 ^c	99098-1ª	13628-16 ^e 13642-16 ^{e,f} 13629-16 ^g 13643-16 ^{fg}	13975-1° ^h 13984-1° ⁱ 13977-1° ^j			13750-16 ^{k,} 13763TR-16
	99896-16	99955-16	99822-16 ^c	99098-1ª	13628-16 ^e 13642-16 ^{e,f} 13629-16 ^g 13643-16 ^{fg}	13975-1* ^ħ 13984-1* ⁱ 13977-1* ^j			13750-16 ^{k,} 13763TR-16
	99896-16	99955-16	99822-16 [.]	99098-1ª	13628-16 ^e 13642-16 ^{e,f} 13629-16 ^g 13643-16 ^{f,g}	13975-1° ^h 13984-1° ⁱ 13977-1° ^j			13750-16 ^{k,} 13763TR-16
	99896-16	99955-16	99822-16 [,]	99098-1 ^ª	13628-16 ^e 13642-16 ^{e,f} 13629-16 ^g 13643-16 ^{f,g}	13975-1 ^{°h} 13984-1° ⁱ 13977-1 ^{°j}			13750-16 ^{k,} 13763TR-16
	99896-16	99955-16	99822-16 [,]	99098-1ª	13628-16 ^e 13642-16 ^{e,f} 13629-16 ^g 13643-16 ^{f,g}	13975-1* ^h 13984-1* ⁱ 13977-1* ^j			13750-16 ^{k,} 13763TR-16

а Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear.

- b Vertical locking bar hydraulic roller lifters, no machining required.
- Must machine cylinder heads. Machined steel, heat treated. C
- d
- Heavy wall, heat treated, for standard deck height blocks. е
- f
- Pro Series, one piece. Heavy wall, heat treated, for +.400" deck height "Tall Blocks". Performance steel billet gears and roller chain set.
- g h

Pro Series steel billet gears and roller chain set.

- k
- Pro Series steel billet gears and roller chain set with thrust bearing. 1991-95 engines require the installation of **99152-16** 7/16" rocker arm studs (no machining required) and factory pushrod guideplates.
- Energizer, 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. m
- 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. n
- 1.7 ratio, 7/16" stud, Wide Body. Valve Train Stabilizer available, see page 343. Ovate wire beehive spring, requires **99976-16** retainers. Steel, for **99832-16** beehive springs. 0
- p q

					COMPLETE CAM SPECIFICATIONS							
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273 LIFTERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	@ .0 Cam	Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Mechanical Lifter Camsh	afts											
Excellent low end and mid range torque and HP, fair idle, moderate performance usage, bracket racing w/ heavy car, off road, auto trans w/2000+ converter, 3200-3600 cruise RPM, 10.5 to 11.5 compression ratio advised.	F-238/3200-2-8	2600- 6200	131101°ª	99250-16	238 248	300 310	108	16 57		.022 .022		
Good low end and mid range torque and HP, fair idle, moderate performance usage, bracket racing, auto trans w/2000+ converter, also w/plate or manifold nitrous system, 3400-3800 cruise RPM, 10.5 to 11.5 compression ratio advised. Good w/centrifugal or Roots supercharger, 10 lbs. maximum boost w/8.5 maximum compression ratio advised.	F-304-2	2800- 6600	133841	99250-16	238 248	304 314	114	10 63	48 5	.022 .022		
Replacement for factory 375 HP 396 cu.in., 425 HP 427 cu.in., 435 HP 427 cu.in., 460 HP 454 cu.in. camshaft.	BluePrinted 3863143	3000- 6400	969961 ()	99250-16	242 242		114	13 61	49 1	.024 .028		
Good low end and mid range torque and HP, fair idle, moderate performance usage, bracket racing, auto trans w/2000+ converter, 3600-4000 cruise RPM, 10.5 to 11.5 compression ratio advised.	F-244/3454-25-8	3200- 6600	131111° (3)	99250-16	244 252	280 288	108	18 58		.026 .026		
Good mid range torque and HP, fair idle, moderate performance usage, bracket racing, auto trans w/2500+ converter, good w/plate or manifold nitrous system, 3600-4000 cruise RPM, 10.75 to 12.0 com- pression ratio advised. Good w/centrifugal or Roots supercharger, 14 lbs. maximum boost w/8.5 maxi- mum compression ratio advised.	F-244/3454-2S-14	3400- 6800	131121°	99250-16	244 252	280 288	114	12 64	52 8	.026 .026	.587 .608	
Good mid range torque & HP, rough idle, moderate performance usage, auto trans w/2500+ converter, 3800-4200 cruise RPM, bracket racing: Pro E.T., Super E.T., Super Pro, Hot Rod, auto trans w/race converter; oval track; Street Stock, Modified, etc., 1/4-3/8 mile, & marine performance usage in 454-502 cu.in. modified engines w/aftermarket high flow above water exhaust systems. 11.0 to 12.0 compression ratio advised.	Saturday Night Special F-314-2	3400- 7000	134781° 134784°ª •	99250-16	248 258	314 324	110	19 64	49 14	.022 .022		
Good mid range torque and HP, performance usage, fair idle, bracket racing, auto trans w/3000+ convert- er, 4000-4400 cruise RPM, 11.25 to 12.25 compression ratio advised.	F-252/3574-2S-8	3600- 7000	131131°	99250-16	252 260	288 296	108	21 61	51 19	.026 .026	.608 .628	
Good mid range torque and HP, performance usage, fair idle, bracket racing, auto trans w/3000+ convert- er, 4000-4400 cruise RPM, good w/manifold nitrous system, 11.5 to 12.5 compression ratio advised. Good w/Roots supercharger, 18 lbs. max. boost w/8.0 max. compression ratio advised.	F-252/3574-2S-14	3600- 7200	131271°	99250-16	252 260	288 296	114	16 68		.026 .026		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT NOTE: 1991-95 Gen V engines can use these cam-shafts and components if they are converted to adjustable rocker arms by machining the cylinder heads for **99157-16** Performance Consultants for details. 7/16" screw-in studs and **13650-1** pushrod guideplates, and **IMPORTANT NOTE:** Some 1973 thru 1981 454 cu.in. engines were installing appropriate rocker arms.
- IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- **NOTE:** In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.
- **NOTE:** Camshafts with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap), are available on special order. Contact Crane's Performance Consultants for details.
- equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our 99459-8 Spring Seat Spacers or 4 of 99948-2 valve spring retainers (on the exhaust valves only) to prevent excessive valve

spring shimming when eliminating the rotators. Some later engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our **99459-8** Spring Seat Spacers or our **99948-16** valve spring retainers to prevent excessive when centre shirming when eliminations the net to the valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKERS – Gold Race
	99893-16	99954-16	99822-16 ^ь	99098-1'	13634-16ª 13640-16°	13975-1* ^f 13984-1* ^g 13977-1* ^h	13801-16 ^{i,j} 13801C-16 ^{j,k}		13750-16 ^{i,} 13763TR-16
	99893-16	99954-16	99822-16 ^b	99098-1°	13634-16ª 13640-16º	13975-1* ^f 13984-1* ^g 13977-1* ^h	13801-16 ^{i,j} 13801C-16 ^{j,k}		13750-16 ^{i,} 13763TR-16
	99893-16	99954-16	99822-16 ^b	99098-1 [,]	13634-16 ^d	13975-1*f	13801-16 ^{i,j}		13750-16 ^{i,}
					13640-16°	13984-1 ^{*9} 13977-1 ^{*h}	13801C-16 ^{j,k}		13763TR-16
	99893-16	99954-16	99822-16 ^b	99098-1°	13634-16 ^d 13640-16 ^e	13975-1* ^f 13984-1* ^g 13977-1* ^h	13801-16 ^{i,j} 13801C-16 ^{j,k}		13750-16 ⁱ 13763TR-1
	99893-16	99954-16	99822-16 ^b	99098-1 '	13634-16ª 13640-16°	13975-1* ^f 13984-1* ^g 13977-1* ^h	13801-16 ^{i,j} 13801C-16 ^{j,k}		13750-16 ⁱ 13763TR-1
	99890-16	99974-16	99822-16 ^ь	99098-1°	13634-16ª 13640-16º	13975-1* ^f 13984-1* ^g 13977-1* ^h			13750-16 ⁱ 13763TR-10
	99890-16ª	99974-16	99822-16 ^b	99098-1 °	13634-16ª 13640-16°	13975-1*f 13984-1*g 13977-1*h			13750-16 [;] 13763TR-1(
	99890-16ª	99974-16	99822-16 ^b	99098-1 [,]	13634-16 ^d 13640-16 ^e	13975-1 ^{°f} 13984-1 ^{*g} 13977-1 ^{*h}			13750-16 [;] 13763TR-1

Section Continued 🔰

а

- b
- c d
- e f
- g h
- Cam and lifter kit, includes installation lubricants. Must machine cylinder heads. Machined steel, heat treated. Heavy wall, heat treated. Pro Series, one piece. Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set.

- i 1.7 ratio, extra long slot for 1.560" maximum 0.D. valve springs.
 j 1991-95 engines require the installation of 99157-16 7/16" rocker arm studs and 13650-1 pushrod guideplates (machining required).
 k 1.7 ratio, Nitro Carb, extra long slot for 1.560" maximum 0.D. valve springs.
 m 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343.
 n 1.7 ratio, 7/16" stud. Wide Body. Valve Train Stabilizer available, see page 343.

Chevrolet V-8 67-95

396-402-427-454 cu.in.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Annlination	Camshaft Series/	RPM POWER		See pg. 273	Degrees Duration @ .050″	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Lift Int.	
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	int/Exh.	Separation	Int/Exh	Exh.	Exh.	
Mechanical Lifter Camsho Good mid range and upper RPM torque and HP, rough	afts F-326-2	3800-	134261*	99250-16	252	326	110	21 51	022	.554	
idle, performance usage, bracket racing, auto trans w/3000+ converter, 4000-4400 cruise RPM 11.5 to 12.5 compression ratio advised.	F-320-2	7400- 7400	134201	99230-10	262	326 336	ΠU	66 16		.554 .554	
Good mid range and upper RPM torque and HP, per- formance usage, bracket racing, auto trans w/race converter, marine performance usage in 500+ cu.in. modified engines with aftermarket dry pipe exhaust system or tube headers, also replacement cam for Mercruiser 575 HP 540 cu.in. engines. 11.5 to 12.5 compression ratio advised.	F-256/3634-25-8	4000- 7400	131311° •	99250-16	256 264	292 300	108	23 53 63 21	.026 .026	.618 .638	
Good mid range and upper RPM torque and HP, per- formance usage, auto trans w/3000+. converter, 4200- 4600 cruise RPM, bracket racing; Pro, Pro E.T., Super E.T., Super Pro, Hot Rod, auto trans w/race converter; oval track; Street Stock, Modified, etc., 3/8-1/2 mile, 11.5 to 12.5 compression ratio advised.	Saturday Night Special F-290-2	4000- 7500	134691° 134694°ª €	99250-16	256 266	290 300	110	23 53 68 18		.580 .600	
Strong mid range torque and HP, performance usage, bracket racing, auto trans w/race converter, oval track; Street Stock, Modified, etc., 3/8-1/2 mile, marine, rad- ical performance usage in 540+ cu.in. modified engines with ported cylinder heads and tube headers, 12.0 minimum compression ratio advised.	F-260/3694-25-8	4200- 7600	131441*	99250-16	260 268	296 304	108	25 55 65 23		.628 .648	
Rough idle, performance usage, good upper RPM HP, 480+ cu.in., Pro Street, bracket racing, auto trans w/3500+ converter, 4400-4800 cruise RPM, also good w/manifold nitrous system, good upper RPM HP, 12.0 minimum compression ratio advised. Good w/large Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised.	F-260/3694-25-14	4200- 7800	131281 [°]	99250-16	260 268	296 304	114	19 61 71 17		.628 .648	
Replacement for factory 430 HP 427 cu.in. (2nd design L88), ZL1 427 cu.in., LS7 454 cu.in. camshaft.	BluePrinted 3959180	4400- 7200	131141°	99250-16	262 272		110	24 58 69 23	.022 .024		
Replacement for 400 HP 427 cu.in. (1st design L88) camshaft.	BluePrinted 3925535	4400- 7200	968561	99250-16	264 269		112	24 60 70.5 18.5		.560 .580	
Moderate competition only, good upper RPM torque and HP, bracket racing: Super Pro, Hot Rod, auto trans w/race converter, oval track; Street Stock, Modified, etc., 3/8–1/2 mile. 12.0 minimum compression ratio advised.	Saturday Night Special F-310-2	4400- 7800	134761° 134764°a €	99250-16	266 276	310 320	110	28 58 73 23		.600 .620	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

installing appropriate rocker arms.

- IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- NOTE: In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.

equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our 99459-8 Spring Seat Spacers or 4 of 99948-2 valve spring retainers (on the exhaust valves only) to prevent excessive valve

spring shimming when eliminating the rotators. Some later engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our **99459-8** Spring Seat Spacers or our **99948-16** valve spring retainers to prevent excessive valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS – Gold Race
	99890-16	99974-16	99822-16 ^ь	99098-1 [.]	13634-16ª 13640-16°	13975-1* ^f 13984-1* ^g 13977-1* ^h			13750-16 ^{i,} 13763TR-16
	99890-16	99974-16	99822-16 ^ь	99098-1°	13634-16 ^d 13640-16 ^e	13975-1 ^{°f} 13984-1 ^{°g} 13977-1 ^{°h}			13750-16 ^{i,} 13763TR-16
	99890-16	99974-16	99822-16 ^b	99098-1°	13634-16 ^d 13640-16°	13975-1 ^{*f} 13984-1 ^{*g} 13977-1 ^{*h}			13750-16 ^{i,} 13763TR-16
	99890-16	99974-16	99822-16 ^b	99098-1°	13634-16⁴ 13640-16⁰	13975-1 ^{°f} 13984-1 ^{°g} 13977-1° ^h			13750-16 ^{j.} 13763TR-1(
	99890-16	99974-16	99822-16 ⁶	99098-1 °	13634-16 ^d 13640-16 ^e	13975-1* ^r 13984-1* ^g			13750-16 ⁱ 13763TR-10
	99893-16	99954-16	99822-16 ⁶	99098-1'	13634-16 ^d	13977-1 ^{*h}	13801-16 ^{i,j}		13750-16 ^j
	JJ0JJ-10	<i>}</i>	<u> </u>	77070 -1	13640-16°	13984-1*9 139877-1* ^h	13801C-16 ^{j,k}		13763TR-1
	99893-16	99954-16	99822-16 ^ь	99098-1'	13634-16 ^d 13640-16 ^e	13975-1*f 13984-1*g 13977-1*h	13801-16 ^{i,j} 13801C-16 ^{j,k}		13750-16 13763TR-1
	99890-16	99974-16	99822-16 ^b	99098-1'	13634-16 ^d 13640-16 ^e	13975-1*f 13984-1* ^g 13977-1* ^h			13750-16 13763TR-1

а

- b
- c d
- e f
- g h
- Cam and lifter kit, includes installation lubricants. Must machine cylinder heads. Machined steel, heat treated. Heavy wall, heat treated. Pro Series, one piece. Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set.

- i 1.7 ratio, extra long slot for 1.560" maximum 0.D. valve springs.
 j 1991-95 engines require the installation of 99157-16 7/16" rocker arm studs and 13650-1 pushrod guideplates (machining required).
 k 1.7 ratio, Nitro Carb, extra long slot for 1.560" maximum 0.D. valve springs.
 m 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343.
 n 1.7 ratio, 7/16" stud. Wide Body. Valve Train Stabilizer available, see page 343.

Chevrolet V-8 67-95

396-402-427-454 cu.in.

					СОМ	PLETE C	AM SPE	CIFICAT	IONS		1
	Camshaft Series/	RPM Power	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Clos @ .050" Cam Lift	Hot	Gross Lift Int.	
Application	Grind Number	RANGE	Emissions Code	LIFTERS			Separation		Exh.	Exh.	
Mechanical Lifter Camsho	afts										
Moderate competition only, good upper RPM HP, 454+ cu.in., bracket racing, auto trans w/race con- verter, also good w/large manifold nitrous system, 12.0 minimum compression ratio advised. Good w/ large Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised.	F-266/3528-2-14	4400- 8000	131151'	99250-16	266 276	302 312	114	22 64 75 21		.600 .620	
Moderate competition only, good upper RPM HP, bracket racing, auto trans w/race converter, 12.0 mini- mum compression ratio advised.	F-268/3814-25-8	4600- 7800	131541*	99250-16	268 276	304 312	108	29 59 69 27		.648 .669	
Moderate competition only, good upper RPM HP, 460+ cu.in. bracket racing, auto trans w/race convert- er, 12.5 minimum compression ratio advised.	F-270/3867-2S-10	4600- 8000	131161"	99250-16	5 270 276	300 312	110	29 61 71 25		.657 .620	
Moderate competition only, good upper RPM HP, bracket racing, auto trans w/race converter, 12.5 mini- mum compression ratio advised.	F-316-2	4800- 8000	134771*	99250-16	272 280	316 324	110	30 62 74 26		.659 .679	
Competition only, good upper RPM HP, 500+ cu.in., bracket racing, auto trans w/race converter, also good w/large manifold nitrous system, 12.5 minimum com- pression ratio advised. Good w/large Roots super- charger, 22 lbs. maximum boost w/8.0 maximum compression ratio advised.	F-272/3874-2S-14	4600- 8200	131291°	99250-16	5 272 280	308 316	114	26 66 78 22		.659 .679	
Competition only, good upper RPM HP, bracket racing, auto trans w/race converter, 12.5 minimum compres- sion ratio advised.	F-276/3934-2S-8 F-276/3934-2S-8 SFO	4800- 8200	131641° 131171° •••	99250-16	276 284	312 320	108	34 62 74 30		.669 .689	
Radical competition only, good high RPM HP, flat tap- pet restricted classes, 540+ cu.in., 13.0 minimum compression ratio advised.	F-280/3994-25-10	5000- 8400	131761*	99250-16	280 288	316 324	110	33 67 77 31		.679 .699	
Radical competition only, good high RPM HP, flat tappet restricted classes, 540+ cu.in., good w/manifold ntrous system, 13.0 minimum compression ratio advised. Good w/Roots supercharger, 26 lbs. maximum boost w/8.5 maximum compression ratio advised.	F-280/3994-25-14	5200- 8400	131181*	99250-16	5 280 288	316 324	114	30 70 82 26		.679 .699	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT NOTE: 1991-95 Gen V engines can use these cam-shafts and components if they are converted to adjustable rocker arms by machining the cylinder heads for **99157-16** 7/16" screw-in studs and **13650-1** pushrod guideplates, and **IMPORTANT NOTE:** Some 1973 thru 1981 454 cu.in. engines were installing appropriate rocker arms.
- IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
- NOTE: In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.
- **NOTE:** Camshafts with SFO firing order (1-8-7-3-6-5-4-2, or 4/7 swap), are available on special order. Contact Crane's
- equipped with exhaust valve rotators. In these instances when using dual valve springs, use either our 99459-8 Spring Seat Spacers or 4 of 99948-2 valve spring retainers (on the exhaust valves only) to prevent excessive valve

spring shimming when eliminating the rotators. Some later engines were equipped with rotators on both the intake and exhaust valves. For these applications when using dual valve springs, use either 2 of our **99459-8** Spring Seat Spacers or our **99948-16** valve spring retainers to prevent excessive when centre shirming when eliminations the net to the valve spring shimming when eliminating the rotators.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	— ALUMINUN	ROCKERS
AND RETAINER	VALVE		STEM	STEM		AND GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	99890-16	99974-16	99822-16ª	99098-1 ^ь	13634-16 ^c	13975-1*°			13750-16 ^h
					13640-16 ^d	13984-1*f			13763TR-16
						13977-1 [*] 9			
	99890-16	99974-16	99822-16ª	99098-1 ^ь	13634-16 [,]	13975-1 [*] e			13750-16 ^{h,j}
	JJ0J0-10	JJJ74-10	JJ022-10	JJ0J0-1	13640-16 ^d	13984-1* ^f			13763TR-16
						13977-1* ⁹			
	99890-16	99974-16	99822-16ª	99098-1 ^b	13634-16 ^c	13975-1*e			13750-16 ^{h,}
					13640-16 ^d	13984-1*f			13763TR-16
						13977-1 ^{*9}			
	99890-16	99974-16	99822-16ª	99098-1 ^b	13634-16 [,]	13975-1*e			13750-16 ^{h,}
					13640-16 ^d	13984-1 ^{*f}			13763TR-16
						13977-1 [*] 9			
	99890-16	99974-16	99822-16ª	99098-1 ^ь	13634-16 ⁶	13975-1 [*]			13750-16 ^h
					13640-16 ^d	13984-1*f			13763TR-1
						13977-1 [*] 9			
	99890-16	99974-16	99822-16ª	99098-1 ^ь	13634-16	13975-1*e			13750-16 ^{h,}
					13640-16 ^d	13984-1*f			13763TR-1
						13977-1* ⁹			
	99890-16ª	99974-16	99822-16ª	99098-1 ^b	13634-16 [,]	13975-1*e			13750-16 ^h
					13640-16 ^d	13984-1*f			13763TR-1
						13977-1* ⁹			
	99890-16ª	99974-16	99822-16ª	99098-1 ^ь	13634-16	13975-1*e			13750-16 ^h
					13640-16 ^d	13984-1* ^f 13977-1* ^g			13763TR-1

- a Must machine cylinder heads.
 b Machined steel, heat treated.
 c Heavy wall, heat treated.
 d Pro Series, one piece.
 e Performance steel billet gears and roller chain set.
 f Pro Series steel billet gears and roller chain set.

- g Pro Series steel billet gears and roller chain set with thrust bearing.
 h 1991-95 engines require the installation of 99157-16 7/16" rocker arm studs and 13650-1 pushrod guideplates (machining required).
 j 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343.
 k 1.7 ratio, 7/16" stud. Wide Body. Valve Train Stabilizer available, see page 343.

Chevrolet V-8 67-95

396-402-427-454 cu.in.

						СОМ	PLETE C	AM SPE	CIFI	CATI	ONS		
	Anglington	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 276	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	@ .0 Cam)50″ Lift	Lash Hot Int.	Gross Lift Int.	
	Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/	Exh	Exh.	Exh.	
1	Mechanical Roller Camsh Excellent low end and mid range torque and HP, good		2000	420554*	42540.44	220	200	112	10	46	020	505	
	idle, moderate performance usage, marine perfor- mance, mild bracket racing, auto trans w/3000+ con- verter, good with plate nitrous system, 3400-3800 cruise RPM, 10.5 to 11.5 compression ratio advised. Good w/supercharger, 10 lbs, maximum boost w/8.5 maximum compression ratio advised.	SK-238/350-25-12 IG	2800- 6600	138551*ª 3	13519-16' 13570-16 ^d	238 246	288 296	112	60	46 6	.020 .020		
	Good low end and mid range torque and HP, fair idle,	SR-246/362-25-10 IG	3000-	138601*ª	13519-16	246	296	110		48	.020		
	moderate performance usage, marine performance, radical off road, bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 com- pression ratio advised.		6800	•	13570-16 ^d	254	304		62	12	.020	.636	
	Excellent mid range torque & HP; fair idle, moderate performance usage, marine performance, good w/man- ifold nitrous system, mild bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised. Good w/supercharger, 16 lbs. max. boost w/8.0 max. compress. ratio advised.	SR-246/362-25-14 IG	3200- 6800	138781*ª	13519-16° 13570-16ª	246 254	296 304	114	14 66	52 8	.020 .020	.615 .636	
	Excellent mid range torque & HP, fair idle, perfor-	R-246/420-2-14 IG	3200-	138141*	13519-16 [,]	246	278	114	12	53	.020	71/	
	mance usage, good w/manifold nitrous system, mild bracket racing, auto trans w/3500+ converter, 10.5 to 12.0 compression ratio advised. Good w/supercharger, 16 lbs. max. boost w/8.0 max. compress. ratio advised.	n-240/420-2-14 IQ	7000	3	13570-16 ^d	256	288	114		10	.020		
_	Good mid range torque and HP, performance usage, bracket racing, Heavy, Pro, etc., auto trans w/race con- verter, 11.0 to 12.5 compression ratio advised.	R-250/420-2S-10	3200- 7000	138871° ^b	13519-16° 13570-16ª	250 258	282 290	110		51 15	.020 .020		
	Good mid range to upper RPM torque & HP, rough idle,	SR-254/374-2S-12 IG	3400-	138631 ^{*a}	13519-16 [,]	254	304	112	20	54	.020	.636	
	performance usage, marine performance, bracket rac- ing, auto transmission w/4000+ converter, 4200-4600 cruise RPM, 11.0 minimum compression ratio advised, 480+ cu.in., mild supercharged and/or nitrous.		7200	•	13570-16 ^d	262	312		68	14	.020	.636	
	Performance usage, good low and mid range torque and HP, bracket racing, auto trans w/3500+ converter, 11.0 to 12.5 maximum compression ratio advised. Good w/manifold nitrous system. Good w/Roots supercharger, 18 lbs. maximum boost w/8.0 maxi- mum compression ratio advised.	R-254/420-251-12 IG	3600- 7200	138101°ª	13519-16 ^c 13570-16 ^d	254 262	286 294	112	19 67	55 15	.020 .020		
	Good mid range to upper RPM torque & HP, rough idle, performance usage, 480+ cu.in., radical marine per- formance, Pro Street, bracket racing, auto trans w/3500+ converter, 4200-4600 cruise RPM, 11.0 min. compression ratio advised. Good w/manifold nitrous system. Good w/Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised.	SR-254/374-25-14 IG	3600- 7200	138791*ª	13519-16 ^c 13570-16 ^d	254 262	304 312	114		56 12		.636 .636	
	Performance usage, bracket racing, good mid range torque and HP, Heavy, Pro, etc., auto trans w/race con- verter, 11.0 to 12.5 compression ratio advised.	R-254/420-2-10	3800- 7200	138881* ^b	13519-16° 13570-16ª	254 264	286 296	110	21 66	53 18	.020 .020		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

 hese cam profiles ation.
 NOTE:
 Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. SFO firing order (4/7 swap) is offered. Optional journal sizes are: Roller Bearing (1.968"), 2.125", and 55mm (2.165"). Gun drilling (where applicable)
 Since 1975, General M throughout different n have before ordering.

 can use these camic systicable.
 Since 1975, General M
 Since 1975, General M

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.
 IMPORTANT NOTE: 1991-95 Gen V engines can use these camshafts and components if they are converted to adjustable rocker arms by machining the cylinder heads for 99157-16 7/16" screw-in studs and 13650-1 pushrod guideplates, and installing appropriate rocker arms.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

 ^{2.125&}quot;, and 55mm (2.165"). Gun drilling (where applicable is available. Camshafts for the GM DRCE family of V-8's are also offered in 55mm and 60mm journal versions.
 NOTE: In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295 See
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM ROCK (Energizer f
	99876-16° 96883-16° ^{,f} 99832-16 ^w	99955-16 99676-16ª 99678-16 ^h 99976-16 ^x	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1™	13634-16" 13640-16°	13975-1 ^{°p} 13984-1 ^{°q} 13977-1 ^{°r}		1375 1376
	99876-16° 96883-16° ^{,f} 99832-16 ^w	99955-16 99676-16 ^g 99678-16 ^h 99976-16 ^x	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1™	13634-16" 13640-16°	13975-1 ^{°p} 13984-1 ^{°q} 13977-1 ^{°r}		1375 1376
	99876-16° 96883-16°, ^f 99832-16 ^w	99955-16 99676-16ª 99678-16 ^h 99976-16 ^x	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1™	13634-16ª 13640-16º	13975-1"¤ 13984-1"٩ 13977-1"r		1375 1376
	96886-16°	99970-16 99676-16ª 99678-16 ^h	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1™	13634-16" 13640-16°	13975-1*¤ 13984-1*¤ 13977-1*r		1375 13763
	96886-16°	99970-16 99676-16ª 99678-16 ^h	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1™	13634-16ª 13640-16º	13975-1* ^p 13984-1* ^q 13977-1*r		1375 13763
	99876-16° 96883-16°, ^f 99832-16 ^w	99955-16 99676-16ª 99678-16 ^h 99976-16 ^x	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1™	13634-16ª 13640-16º	13975-1* ^p 13984-1*q 13977-1* ^r		1375 1376
	96886-16°	99970-16 99676-16ª 99678-16 ^h	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1™	13634-16ª 13640-16º	13975-1*¤ 13984-1*¤ 13977-1*r		1375) 13763
	99876-16° 96883-16 ^{e,f} 99832-16 ^w	99955-16 99676-16ª 99678-16 ^h 99976-16 ^x	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1 ^m	13634-16ª 13640-16°	13975-1" ^p 13984-1"q 13977-1" ^r		1375 1376
	96886-16°	99970-16 99676-16 ⁹ 99678-16 ^h	99822-16 ^{e,i} 99820-16 ^{e,j}	99098-1 ^k 99094-1 ⁱ 99097-1 ^m	13634-16" 13640-16°	13975-1* ^p 13984-1*q 13977-1*r		1375 13763

Section Continued

- Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Requires cam button spacer and a **11990-1** (.489"I.D.) or **11989-1** (.500"I.D. Accel) aluminum-bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump purched **11965** 1 is highly recommended to prevent fuel pumps, fuel pump purched **11965** 1 is highly recommended to prevent fuel pump. Fuel pump а
- b pushrod 11985-1 is highly recommended to prevent fuel pump lobe wear.
- Vertical locking bar roller lifters.
- Ultra Pro Series vertical locking bar roller lifters. d
- Must machine cylinder heads. е
- f For supercharged applications, use 99679-16 or 99678-16 retainers.
- Titanium for 3/8" dia. valve stems, must use 99098-1 valve stem locks, included with the retainers. g
- Titanium for 11/32" dia. valve stems, must use 99097-1 valve stem locks, included with the retainers.
- For 3/8" dia. valve stems.
- For 11/32" dia. valve stems.
- Machined steel, heat treated for 3/8" dia. valve stems.

- Machined steel, heat treated, for 11/32" diameter valve stems, Multi Fit. 1 Machined steel, heat treated for 11/32" dia. valve stems.
- m
- Heavy wall, heat treated. n
- 0
- Pro Series one-piece. Performance steel billet gears and roller chain set. р
- Pro Series steel billet gears and roller chain set. q
- Pro Series steel billet gears and roller chain set with thrust bearing.
- 1991-95 engines require the installation of 99157-16 7/16" rocker arm studs and 13650-1 pushrod s guideplates (machining required).
- 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343.
- V 1.7 ratio, 7/16" stud, Wide Body. Valve Train Stabilizer available, see page 343.
- w Ovate wire beehive spring, requires 99976-16 retainers.
- x Steel, for 99832-16 beehive springs.

Chevrolet V-8 67-95

					СОМ	PLETE C	AM SPE	CIFI	CATI	ONS		
	Camshaft Series/	rpm Power	Camshaft PART NUMBER/	See pg. 276	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	.@.0 Cam)50″ Lift	Hot Int.	Lift Int.	
		RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/	Exh	Exh.	Exh.	
Performance usage, good upper RPM torque and HP, radical marine performance, bracket racing, auto trans w/race converter, 12.0 min. compression ratio advised.	R-258/420-251-14 IG	4000- 7200	138681*ª	13519-16⁴ 13570-16⁰	258 262	290 294	114					
Performance usage, bracket racing, good mid range torque and HP, Heavy, Pro, etc., auto trans w/race con- verter, 12.0 minimum compression ratio advised.	R-258/420-25-8	4000- 7200	138891* ^b	13519-16ª 13570-16º	258 266	290 298	108					
Good upper RPM HP, rough idle, performance usage, marine performance, bracket racing, auto trans w/4000+ converter, 4400-4800 cruise RPM, 11.5 mini- mum compression ratio advised, 540+ cu.in. Good w/ large manifold nitrous system. Good w/large Roots supercharger, 22 lbs. maximum boost w/8.0 maximum compression ratio advised.	SR-262/374-251-14 IG	4200- 7400	138641*ª	13519-16 ^d 13570-16 ^e	262 270	312 320	114					
Performance usage, good mid range torque and HP, 480+ cu.in., bracket racing, auto trans w/4000+ con- verter, 11.5 minimum compression ratio advised. Good w/large manifold nitrous system. Good w/large Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised.	R-262/420-251-14 IG	4200- 7600	138131 ^{*a}	13519-16 ^d 13570-16 ^e	262 270	294 302	114					
Performance usage, bracket racing, w/heavy car, good mid range torque and HP, Pro, Super Pro, oval track, Modified, etc., auto trans w/race converter, 12.0 mini- mum compression ratio advised.	R-262/420-2-6	4200- 7200	138801* ^b	13519-16ª 13570-16º	262 272	294 304	106					
Performance usage, bracket racing, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/ race converter, oval track, Modified, etc., 12.0 mini- mum compression ratio advised.	R-262/420-2-10	4200- 7400	138811 ^{*b}	13519-16⁴ 13570-16⁰	262 272	294 304	110					
Performance usage, bracket racing w/heavy car, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/race converter, oval track, Modified, etc., 12.0 minimum compression ratio advised.	R-268/420-25-8 R-268/420-25-8 SFO	4400- 7600	138831* ^b 138671* ^{b,c}	13519-16ª 13570-16º	268 272	300 304	108					
Competition only, good upper RPM HP, 480+ cu.in., bracket racing, auto trans w/race converter, good w/ large manifold nitrous system, 12.5 minimum com- pression ratio advised. Good w/large Roots super- charger, 22 lbs. maximum boost w/8.0 maximum compression ratio advised.	R-270/420-2S2-14	4400- 7800	138661* ^b	13519-16⁴ 13570-16⁰	270 278	302 310	114					
Performance usage, bracket racing, good mid to upper RPM torque and HP, Super Pro, etc., auto trans w/race converter, oval track, Super Modified, 12.5 minimum compression ratio advised.	R-272/420-251-10	4400- 7800	138841* ^b	13519-16ª 13570-16º	272 278	304 310	110					
Competition only, bracket racing, good upper RPM torque and HP, Super Pro, Super Gas, Super Comp, auto transmission w/race converter, 12.5 minimum com- pression ratio advised.	R-274/4334-25-10 R-274/4334-25-10 SFO	4600- 8000	138291*b 138301*b,c 3	13519-16 ^d 13570-16 ^e 13574-16 ^f	274 284	314 324	110					
	Performance usage, good upper RPM torque and HP, radical marine performance, bracket racing, auto trans w/race converter, 12.0 min. compression ratio advised. Performance usage, bracket racing, good mid range torque and HP, Heavy, Pro, etc., auto trans w/race con- verter, 12.0 minimum compression ratio advised. Good upper RPM HP, rough idle, performance usage, marine performance, bracket racing, auto trans w/4000+ converter, 4400-4800 cruise RPM, 11.5 mini- mum compression ratio advised, 540+ cu.in. Good w/ large manifold nitrous system. Good w/large Roots supercharger, 22 lbs. maximum boost w/8.0 maximum compression ratio advised. Performance usage, good mid range torque and HP, 480+ cu.in., bracket racing, auto trans w/4000+ con- verter, 11.5 minimum compression ratio advised. Good w/large manifold nitrous system. Good w/large Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised. Performance usage, bracket racing, w/heavy car, good mid range torque and HP, Pro, Super Pro, oval track, Modified, etc., auto trans w/race converter, 12.0 mini- mum compression ratio advised. Performance usage, bracket racing, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/ race converter, oval track, Modified, etc., 12.0 minimum compression ratio advised. Performance usage, bracket racing w/heavy car, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/race converter, oval track, Modified, etc., 12.0 minimum compression ratio advised. Competition only, good upper RPM HP, 480+ cu.in., bracket racing, auto trans w/race converter, good w/ large manifold nitrous system, 12.5 minimum com- pression ratio advised. Performance usage, bracket racing, good mid to upper RPM torque and HP	ApplicationGrind NumberMechanical Roller CamshaftsPerformance usage, good upper RPM torque and HP, radical marine performance, bracket racing, auto trans w/race converter, 12.0 min. compression ratio advised.R=258/420-251-14 IGPerformance usage, bracket racing, good mid range torque and HP, Heavy, Pro, etc., auto trans w/race con- verter, 12.0 minimum compression ratio advised.R=258/420-25-8Good upper RPM HP, rough idle, performance usage, marine performance, bracket racing, auto trans w/4000 + converter, 40400 cruise RPM, 11.5 mini- mum compression ratio advised, 540 + cu.in. Good w/ large manifold nitrous system. Good w/large Roots supercharger, 22 lbs. maximum boost w/8.0 maximum compression ratio advised.R=262/420-251-14 IGPerformance usage, good mid range torque and HP, 480 + cu.in., bracket racing, auto trans w/4000 + con- verter, 11.5 minimum compression ratio advised.R=262/420-251-14 IGPerformance usage, bracket racing, w/heavy car, good mid range torque and HP, Pro, Super Pro, oval track, Modified, etc., auto trans w/race converter, 12.0 mini- mum compression ratio advised.R=262/420-25-8Performance usage, bracket racing, w/heavy car, good mid range torque and HP, Pro, Super Pro, oval track, Modified, etc., auto trans w/race converter, 12.0 mini- mum compression ratio advised.R=268/420-25-8Performance usage, bracket racing w/heavy car, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/race converter, oval track, Modified, etc., 12.0 minimum compression ratio advised.R=268/420-25-8Competition only, good upper RPM HP, 480 + cu.in., bracket racing, auto trans w/race converter, good w// large manifold nitrous system, 12.5 minimum compression rati	ApplicationCamshaft Series/ Grind NumberPOWER RANGEMechanical Roller CamshaftPerformance usage, good upper RPM torque and HP, radical marine performance, bracket racing, auto trans w/race converter, 12.0 min. compression ratio advised.R-258/420-251-14 IG 4000- 7200Performance usage, bracket racing, good mid range torque and HP, Heavy, Pro, etc., auto trans w/race conv verter, 12.0 minimum compression ratio advised.R-258/420-25-8 4000- 7200Good upper RPM HP, rough idle, performance usage, marine performance, bracket racing, auto trans w/race onverter, 400-008 cruise RPM, 11.5 mini- mum compression ratio advised. 540+ cuin. Good w/large Bood cruise RPM 11.5 mini- mum compression ratio advised. 540+ cuin. Good w/large Rood w/large Roods uspercharger, 22 lbs. maximum boost w/8.0 maximum compression ratio advised.R-262/420-251-14 IG 4200- 7600Performance usage, good mid range torque and HP, R00+ cuin, bracket racing, whoavy car, good maximum compression ratio advised.R-262/420-251-14 IG 4200- 7600Performance usage, bracket racing, wheavy car, good maximum compression ratio advised.R-262/420-25-8 8-26/420-25-8Performance usage, bracket racing, good mid to upper RPM torque and HP, Po, Super Pro, vol track, Modified, etc., 12.0 mini- mum compression ratio advised.R-268/420-25-8 8-268/420-25-8Performance usage, bracket racing, good mid to upper RPM torque and HP, Po, Super Pro, etc., auto trans w/race converter, oval track, Modified, etc., 12.0 minimum compression ratio advised.R-268/420-25-8 8-268/420-25-8Performance usage, bracket racing, good mid to upper RPM torque and HP, Po, Super Pro, etc., auto trans w/race conv	ApplicationCamshaft Series/ Grind NumberPOWER RANCEPART NUMBER/ Emissions CodeMechanical Roller Camshaft Series/ radial marine performance usage, pood upper RPM torque and HP, radial marine performance, bracket racing, auto trans w/race converter, 12.0 min. compression ratio advised.R-258/420-25-14 IG 72004000- 7200138681° *Performance usage, bracket racing, good mid range torque and HP, Heavy, Pro, etc., auto trans w/race converter, 12.0 min. mum compression ratio advised.R-262/374-251-14 IG 70004000- 7000138641°* *Good upper RPM HP, rough idle, performance usage, marine performance, bracket racing, auto trans w/4000+ converter, 4400-4800 cuise RPM, 115 mini- mum compression ratio advised.R-262/420-251-14 IG 70004200- 7000138641°* *Performance usage, bracket racing, with trans w/4000+ converter, 12.0 mini- mum compression ratio advised.R-262/420-251-14 IG 70004200- 7000138131°* *Performance usage, bracket racing, w/heavy car, good mid range torque and HP, Pro, Super Pro, oval track, Modified, etc., rato trans w/race converter, 0.20 mini- mum compression ratio advised.R-262/420-25-8 Re26/20-25-84200- 7000Performance usage, bracket racing, w/heavy car, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/race cancet tracing w/heavy car, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/race cancet tracing w/heavy car, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/race cancet tracing w/heavy car, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/race cancet tracing w/heavy car, good mid to upper RPM torqu	ApplicationCamshaft Series/ Grind NumberCamshaft Series/ POWER PMRT NUMBER/ PMRT NUMBER/ PMRT NUMBER/ PMRT NUMBER/ MRT NUMBER/ TANCE Emissions Code LIFTERSMechanical Roller Camshaft Series/ diala maine performance usage, bracket racing, good mid range torque and HP, Reavy, Pro, etc., auto trans wirace converter, 12.0 min. compression ratio advised.R-258/420-251-14 IG R-258/420-25-84000- 7200138661** (13570-16*)Performance usage, bracket racing, good mid range torque and HP, Reavy, Pro, etc., auto trans wirace converter, 12.0 min. mum compression ratio advised.R-262/374-251-14 IG R-258/420-25-84000- 7000138641** 13519-164 13570-16*Good upper RPM HP, rough idle, performance usage, marine performance, bracket racing, auto trans wi/4000+ converter, 12.0 min. mum compression ratio advised.R-262/420-251-14 IG R-262/420-251-14 IG R-262/420-251-14 IG A000- R-262/420-251-14 IG A000- R-262/420-251-14 IG A000- R-262/420-251-14 IG A000- R-262/420-251-14 IG A000- R-262/420-251-14 IG A000- R-262/420-251-14 IG A000- R-262/420-250- R-262/420-250- R-262/420-250- R-262/420-250- R-262/420-250- R-262/420-250- R-262/420-250- R-268/420-25-8 	Application Camshaft Series/ 	Application Camshaft Series/ Grind Number PPW PANCE Camshaft Series/ Gamshaft Mumber Ser gg. 27 Degrees (puration) Advertised Duration Method Internet Advection Camshaft Series/ Grind Number Method Internet Advection Ser gg. 27 Degrees (puration) Advertised Duration) Method Internet Advection Series (Signature) Series (Sign	Application Carnshaft Series/ Grind Number PPW PWER Carnshaft PMVER Carnshaft PMVER Degrees PMRT NUMBER/ PMRT NUMER/ PMRT NUMBER/ PMRT NUMBER/ PMRT NUMBER/ PMRT NUMER/ P	Application Gamshaft Series/ Grind Number/ Medical Industry efformance: UseQuity Outper MM Review Instrumed Automation performance: UseQUITY Outper MM Review Instrumed Automation Performation Instrumed Aut	Application Gamshaft Series/ Grind Number PPWE RMKE Camshaft RNUME RMKE Series 276 List Series Degrees built Series Advertised Degrees built Series Open- built Series	PMPM Camshaft Series/ Grind Number PMM (MREP) Camshaft Series/ (MREP) Durk MREP/ (MREP) Durk MREP/ (MREP)	Application Canshaft Series/ Grid Number RPM RWR Canshaft PMVRR RWR Canshaft PMVRR RWR Canshaft PMVRR RWR Canshaft PMVRR PMR NUMBEV Degrees UITERS Advertised purstion Degrees purstion Advertised purstion Performance usage, point dramation performance usage

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page

NOTE: Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. SFO firing order (4/7 swap) have before ordering. is offered. Optional journal sizes are: Roller Bearing (1.968"), 2.125", and 55mm (2.165"). Gun drilling (where applicable) is available. Camshafts for the GM DRCE family of V-8's are

- IMPORIANT: Adjustable vacuum Advance KIS available. See page 313 for details.
 IMPORTANT NOTE: 1991-95 Gen V engines can use these camshafts and components if they are converted to adjustable rocker arms by machining the cylinder heads for 99157-16 7/16" screw-in studs and 13650-1 pushrod guideplates, and installing appropriate rocker arms
 NOTE: In order to use these cams in 65-66 engines, you must arrow the center of the rear cam bearing journal 3/16 installing appropriate rocker arms.
 - groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you

	LVE TRAIN CO		-	-	-	-		-	-
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUN	A BUCKEBS
AND RETAINER			STEM	STEM		AND GEAR	ROCKER	ALOMINON	GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
N13	51 Millios	REIMINENS	SERES	LUCIUS	1 USHNUDS	ASSEMBEN	Antimo	LINENGIZEN	MACL
	96886-16 ⁹	99970-16	99822-16 ^{9,k}	99098-1 ^m	13634-16 ^p	13975-1*r			13750-16 ⁴
	20000-10-	99676-16 ⁱ	99820-16 ^{9,1}	99094-1"	13640-16 ^q	13984-1*s			13763TR-10
		99678-16 ⁱ	33020-10 ^s	99094-1 99097-1°	13040-10	13977-1 ^{*t}			1370311-10
	96886-16 ⁹	99970-16	99822-16 ^{9,k}	99098-1 ^m	13634-16 ^p	13975-1 [*]			13750-16 ^u
		99676-16 ⁱ	99820-16 ^{9,1}	99094-1"	13640-16 ^q	13984-1*			13763TR-10
		99678-16 ⁱ		99097-1°		13977-1 ^{*t}			
	99876-16 ⁹	99955-16	99822-16 ^{g,k}	99098 -1™	13634-16 ^p	13975-1*r			13750-16 ^{u,}
	96883-16 ^{g,h}	99676-16 ⁱ	99820-16 ^{9,1}	99094-1 "	13640-16 ^q	13984-1 [*]			13763TR-16
		99678-16 ^j		99097-1°		13977-1 ^{*t}			
	96886-16 ⁹	99970-16	99822-16 ^{g,k}	99098-1 ^m	13634-16 ^p	13975-1 [*] '			13750-16 ^{u,}
		99676-16 ⁱ	99820-16 ^{9,1}	99094-1"	13640-16 ^q	13984-1*			13763TR-16
		99678-16 ⁱ	···	99097-1°		13977-1*t			
	96886-16 ⁹	99970-16	99822-16 ^{9,k}	99098-1 ^m	13634-16 ^p	13975-1*r			13750-16 ^w
		99676-16 ⁱ	99820-16 ^{9,1}	99094-1"	13640-16 ^q	13984-1*s			13763TR-16
		99678-16 ^j		99097-1°		13977-1 ^{*t}			
	99876-16 ⁹	99955-16	99822-16 ^{g,k}	99098-1 ^m	13634-16 ^p	13975-1*r			13750-16 ^{u,}
	96883-16 ^{g,h}	99676-16 ⁱ	99820-16 ^{9,1}	99094-1 ⁿ	13640-16 ^q	13984-1*			13763TR-10
	20002-10	99678-16 ⁱ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99097-1°	1501010	13977-1 ^{*t}			157 05111 1
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	96886-16 ^g	99970-16	99822-16 ^{9,k}	99098-1 ^m	13634-16 ^p	13975-1*r			13750-16 ^{u,}
		99676-16 ⁱ	99820-16 ^{9,1}	99094-1"	13640-16 ^q	13984-1 [*]			13763TR-16
		99678-16 ⁱ		99097-1°		13977-1 ^{*t}			
	96886-16 ⁹	99970-16	99822-16 ^{9,k}	99098-1 ^m	13634-16 ^p	13975-1*r			13750-16 ⁴
	20000 10	99676-16 ⁱ	99820-16 ^{9,1}	99094-1"	13640-16 ^q	13984-1*5			13763TR-16
		99678-16 ⁱ	JJ020 10	99097-1°	15010 10	13977-1*t			
	96886-16 ⁹	99970-16	99822-16 ^{g,k}	99098-1 ^m	13634-16 ^p	13975-1*r			13750-16 ^w
		99676-16 ⁱ	99820-16 ^{9,1}	99094-1"	13640-16 ^q	13984-1*s			13763TR-16
		99678-16 ^j		99097-1°		13977-1 ^{*t}			
	96886-16 ⁹	99970-16	99822-16 ^{g,k}	99098-1 ™	13634-16 ^p	13975-1*r			13750-16 ^u
	961226-16 ^{9,y}	99676-16 ⁱ	99820-16 ^{9,1}	99094-1"	13640-16 ^q	13984-1 [*]			13763TR-1
		99678-16 ^j		99097-1°		13977-1 ^{*t}			
		99661-16 ^z							

a Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel

- C
- d
- е
- Ultra Pro Series vertical locking bar roller lifters for .904" diameter lifter bores. f
- Must machine cylinder heads.
- For supercharged applications, use 99679-16 or 99678-16 retainers. ĥ
- Titanium for 3/8" dia. valve stems, must use **99098-1** valve stem locks, included with the retainers.
- Titanium for 11/32" dia. valve stems, must use **99097-1** valve stem locks, included with the retainers.
- For 3/8" dia. valve stems.
- For 11/32" dia. valve stems.

- m Machined steel, heat treated for 3/8" dia. valve stems.
- Machined steel, heat treated, for 11/32" diameter valve stems, Multi Fit. n
- Machined steel, heat treated for 11/32" dia. valve stems. 0
- Heavy wall, heat treated. р
- q
- Pro Series one-piece. Performance steel billet gears and roller chain set.
- S t.
- Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set. 1991-95 engines require the installation of **99157-16** 7/16" rocker arm studs and **13650-1** pushrod u guideplates (machining required). 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343. 1.7 ratio, 7/16" stud, Wide Body. Valve Train Stabilizer available, see page 343.

Section Continued

- w
- X
- Requires 99661-16 titanium retainers.
- y z Titanium, requires Crane Multi Fit valve stem locks.

aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fu pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Requires cam button spacer and a **11990-1** (.489"I.D.) or 11989-1 (.500"I.D. Accel) aluminum-bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Camshaft has SFO firing order, with 4/7 swap. Vertical locking bar roller lifters. Ultra Pro Series vertical locking bar roller lifters. b

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Mechanical Roller Camsh		NANGL	LITISSIONS COde		IIII/ LXII.	IIIt/ LXII.	Separation		LAII.	LAII.
Competition only, good upper RPM HP, 500+ cu.in., bracket racing, auto trans w/race converter, good w/ large manifold nitrous system, 12.5 minimum com- pression ratio advised. Good w/large Roots super- charger, 24 lbs. maximum boost w/8.0 maximum compression ratio advised.	R-274/4334-25-14 R-274/4334-25-14 SFO	4600- 8200	138351*a 138361*a,b ©	13570-16ª 13574-16º	274 284	314 324	114	26 68 79 25		.737 .726
Radical competition only, good upper RPM HP, 500+ cu.in., bracket racing, Pro Street, auto trans w/race converter, intended for large manifold nitrous system, 12.5 minimum compression ratio advised.	R-274/5002-2S-14 SFO	4600- 8600	138931 ^{*a,b}	13570-16 ^d 13574-16 ^e	274 300	304 331	114	28 66 89 31	.020 .016	
Competition only, good upper RPM torque and HP, 540+ cu.in., bracket racing w/heavy car, auto trans w/race converter, marine performance, good w/manifold nitrous system, 12.5 minimum compression ratio advised. Good w/large Roots supercharger, 24 lbs. maxi- mum boost w/8.0 maximum compression ratio advised.	R-276/420-251-14 R-276/420-251-14 IG	4600- 8200	138451*ª 138461*¢	13570-16 ^d 13574-16 ^e	276 280	308 312	114	28 68 78 22	.020 .020	
Competition only, bracket racing, good upper RPM torque and HP, Super Pro, Super Gas, Super Comp, etc., 427-468 cu.in., auto trans w/race converter, 12.5 min- imum compression ratio advised.	R-278/420-25-10	4600- 8000	138851°ª	13570-16 ^d 13574-16 ^e	278 282	310 314	110	33 65 75 27	.020 .020	
Competition only, good upper RPM torque and HP, 540+ cu.in., bracket racing, auto trans w/race con- verter, good w/manifold nitrous system, 12.5 mini- mum compression ratio advised. Good w/large Roots supercharger, 26 lbs. maximum boost w/8.0 maxi- mum compression ratio advised.	R-278/420-2-14 IG	4600- 8200	138471* ⁽	13570-16ª 13574-16º	278 288	310 320	114	29 69 82 26		.714 .714
Competition only, bracket racing, good upper RPM HP, Super Pro, Super Comp, etc., 454+ cu.in., auto trans w/ race converter, 12.5 minimum compression ratio advised.	R-282/420-2-12	4800- 8200	138861*ª (3)	13570-16 ^d 13574-16 ^e	282 292	314 324	112	33 69 81 31	.020 .020	
Radical competition only, good upper RPM HP, 540+ cu.in., bracket racing, Pro Street, auto trans w/race converter, intended for large manifold nitrous system, 13.5 minimum compression ratio advised.	R-282/490-252-13 SFO	4800- 8600	138941 ^{*a,b}	13570-16 ^d 13574-16 ^e	282 304	318 339	113	33 69 88.5 35.5	.026 .022	
Competition only, drag racing Super Stock, 396–427 high compression. Lift with 1.75 intake, 1.7 exhaust rockers.	R-282/5002-25-10 SFO	5000- 8200	138711 ^{*a,b}	13570-16 ^d 13574-16 ^e	282 286	312 330	110	36 66 78 28	.020 .030	.875 .800
Competition only, good upper RPM HP, single 4-bbl, Comp. Elim., 427+ cu.in., strong mid range for 540+ cu. in. Super Gas and Super Comp, auto transmission w/race converter, 13.0 minimum compression ratio advised.	R-284/456-251-10 R-284/456-251-10 SFO	4800- 8200	138591 ^{*a} 138701 ^{*a,b}	13570-16 ^d 13574-16 ^e	284 292	324 332	110	35 69 79 33	.026 .026	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

IMPORTANT NOTE: 1991-95 Gen V engines can use these camshafts and components if they are converted to adjustable rocker arms by machining the cylinder heads for **99157-16** 7/16" screw-in studs and **13650-1** pushrod guideplates, and installing appropriate rocker arms.

NOTE: Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. SFO firing order (4/7 swap) have before ordering. is offered. Optional journal sizes are: Roller Bearing (1.968°), 2.125", and 55mm (2.165"). Gun drilling (where applicable) is available. Camshafts for the GM DRCE family of V-8's are

also offered in 55mm and 60mm journal versions. **NOTE:** In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you

116

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER	VALVE		VALVE	VALVE		TIMING CHAIN AND GEAR	STEEL ROCKER	— ALUMINUM	GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	96886-16 ^f 96848-16 ^{f,g} 961226-16 ^{f,w}	99970-16 99676-16 ^h 99678-16 ⁱ 99661-16 ^y	99822-16 ^{9,j} 99820-16 ^{g,k}	99098-1' 99094-1" 99097-1"	13634-16º 13640-16 ^p	13975-1*ª 13984-1*r 13977-1*s			13750-16 ⁴ 13763TR-1
	96848-16 ^{f,g} 961356 ⁻ 16 ^x	99676-16 ^h 99678-16 ⁱ 99663-16 ^z	99822-16 ^{g,j} 99820-16 ^{g,k}	99098-1 ¹ 99097-1 ⁿ	13640-16 ^p	13984-1*r 13977-1*s			13763TR-10
	96886-16 ^f 96848-16 ^{f,g}	99970-16 99676-16 ^h 99678-16 ⁱ	99822-16 ^{g,j} 99820-16 ^{g,k}	99098-1 ¹ 99094-1™ 99097-1"	13634-16° 13640-16 ^p	13975-1°ª 13984-1°r 13977-1°s			13750-16 ^t 13763TR-10
	96886-16 ^f 96848-16 ^{f,g}	99970-16 99676-16 ^h	99822-16 ^{9,j}	99098-1 ¹ 99094-1 ^m	13634-16°	13975-1*ª 13984-1*'			13750-16 ^t
	90848-10"	99678-16 ⁱ 99678-16 ⁱ	99820-16 ^{g,k}	99094-1" 99097-1"	13640-16 ^p	13984-1* 13977-1*s			13763TR-10
	96886-16 ^f 96848-16 ^{f,g}	99970-16 99676-16 ^h 99678-16 ⁱ	99822-16 ^{g,j} 99820-16 ^{g,k}	99098-1 ¹ 99094-1 ^m 99097-1 ⁿ	13634-16° 13640-16 ^p	13975-1*ª 13984-1*r 13977-1*s			13750-16 ⁴ 13763TR-10
	96886-16 ^f 96848-16 ^{f,g}	99970-16 99676-16 ^h 99678-16 ⁱ	99822-16 ^{9,j} 99820-16 ^{9,k}	99098-1 ¹ 99094-1 ^m 99097-1 ⁿ	13634-16º 13640-16 ^p	13975-1*ª 13984-1*r 13977-1*s			13750-16 ^t 13763TR-10
	96848-16 ^{f,g} 961356 ⁻ 16 ^x	99676-16 ^h 99678-16 ⁱ 99663-16 ^z	99822-16 ^{g,j} 99820-16 ^{g,k}	99098-1 ¹ 99097-1"	13640-16 ^p	13984-1*r 13977-1*s			13763TR-10
	96848-16 ^{f,g} 961356 ⁻ 16 ^x	99676-16 ^h 99678-16 ⁱ 99663-16 ^z	99822-16 ^{9,j} 99820-16 ^{9,k}	99098-1 ¹ 99097-1"	13640-16 ^p	13984-1*r 13977-1*s			13763TR-10
	96886-16 ^f 96848-16 ^{f,g} 961226-16 ^{f,w}	99970-16 99676-16 ^h 99678-16 ⁱ	99822-16 ^{9,j} 99820-16 ^{9,k}	99098-1 ¹ 99094-1 ^m 99097-1 ⁿ	13634-16º 13640-16 ^p	13975-1*ª 13984-1*' 13977-1*s			13750-16 ⁴ 13763TR-1

- Requires cam button spacer and a 11990-1 (.489" I.D.) or 11989-1 (.500" I.D. Accel) aluminumа bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump pushrod 11985-1 is highly recommended to prevent fuel pump lobe wear.
- b
- Camshaft has SFO firing order, with 4/7 swap. Requires cam button spacer, camshaft incorporates an integral cast iron distributor drive gear, C aluminum-bronze distributor drive gear not required. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Ultra Pro Series vertical locking bar roller lifters. Ultra Pro Series vertical locking bar roller lifters for .904" diameter lifter bores. Must machine cylinder heads. d
- е
- f
- For supercharged applications, use **99679-16** or **99678-16** retainers. Titanium for 3/8" dia. valve stems, must use **99098-1** valve stem locks, included with the retainers. h
- Titanium for 11/32" dia. valve stems, must use **99097-1** valve stem locks, included with the retainers.
- For 3/8" dia. valve stems.
- For 11/32" dia. valve stems.
- Machined steel, heat treated for 3/8" dia. valve stems.

- Machined steel, heat treated, for 11/32" diameter valve stems, Multi Fit. m
- Machined steel, heat treated for 11/32" dia. valve stems. n
- 0 Heavy wall, heat treated.
- Pro Series one-piece. p
- Performance steel billet gears and roller chain set. q
- Pro Series steel billet gears and roller chain set.
- Pro Series steel billet gears and roller chain set with thrust bearing. 1991-95 engines require the installation of **99157-16** 7/16" rocker arm studs and **13650-1** pushrod 1791-93 engines require the instantation of 99137-107716 rocket and study a guideplates (machining required).
 1.7 ratio, 7/16" stud. Valve Train Stabilizer available, see page 343.
 1.7 ratio, 7/16" stud, Wide Body. Valve Train Stabilizer available, see page 343.
- u
- v
- Requires 99661-16 titanium retainers w
- X
- For 2.100" assembly height, requires **99663-16** titanium retainers. Titanium, for **961226-16** valve springs, requires Crane Multi Fit valve stem locks.
- ż Titanium, for 961356-16 valve springs, requires Crane Multi Fit valve stem locks.

					СОМ	PLETE C	AM SPE	CIFICAT	IONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276 LIFTERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050″ Cam Lift Int/Exh	e Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Mechanical Roller Camsh	afts										
Competition only, strong mid range and top end for 572+ cu.in. Super Gas and Super Comp, good upper RPM HP, 540+ cu.in., drag racing, auto transmission w/race converter, 12.5 minimum compression ratio advised. Good w/large manifold nitrous system. Good w/large Roots supercharger, 30 lbs. maximum boost w/8.0 maximum compression ratio advised.	R-284/456-255-14 R-284/456-255-14 SFO	5000- 8400	138391*ª 138401*ª,b 🊯	13570-16º 13574-16ª	284 296	324 336	114	31 73 85 31		.775 .740	
Competition only, 600+ cu.in., Top Sportsman, Quick 16, Top Dragster, auto transmission w/race converter, 13.0 minimum compression ratio advised.	R-286/490-251-14 SFO	5000- 8000	138771 ^{*a,b}	13570-16° 13574-16 ^ª	286 306	326 352	114	34 72 92 34		.833 .810	
Competition only, 640+ cu.in., Top Sportsman, Quick 16, Top Dragster, auto transmission w/race converter, 14.0 minimum compression ratio advised.	R-286/500-253-16 SFO	5000- 7600	138951 ^{*a,b}	13570-16° 13574-16 ^ª	286 298	326 348	116	30 76 89 29	.026 .030	.850 .816	
Radical competition only, good upper RPM HP, 640+ cu.in., bracket racing, Pro Street, auto trans w/race converter, intended for large manifold nitrous system, 14.5 minimum compression ratio advised.	R-286/5151-25-16 SFO	6000- 8400	138961 ^{*a,b}	13570-16° 13574-16 ^d	286 310	320 344	116	31 75 94 36		.876 .794	
Competition only, maximum performance applica- tions, 500+ cu.in., Super Quick, etc., auto transmis- sion w/race converter, 13.0 minimum compression ratio advised.	321-334-10R	5000- 8200	19315'ª €	13570-16° 13574-16 ^d	287 292	321 334	110	37.5 69.5 80 32		.723 .714	
Competition only, maximum performance applica- tions, 500+ cu.in., Super Comp, Super Quick, etc., stick or auto transmission w/race converter, 14.0 minimum compression ratio advised.	333-344-14R	5000- 8400	19333°ª	13570-16° 13574-16 ^d	287 297	333 344	114	33.5 73.5 87.5 29.5	.035 .030	.774 .726	
Competition only, maximum performance applica- tions, 560+ cu.in., Super Comp, Super Quick, etc., stick or auto transmission w/race converter, 14.0 minimum compression ratio advised.	R-288/5002-252-12 SFO	5000- 8400	138971 ^{*a,b}	13570-16° 13574-16 ^d	288 300	318 332	112	37 71 87 33		.850 .850	
Competition only, large cu.in. Top Sportsman, Pro Stock, Quick 16, good also w/large manifold nitrous systems, auto transmission w/race converter, 14.5 minimum compression ratio advised.	R-288/515-252-16 SFO	5000- 8400	138911 ^{*a,b}	13570-16° 13574-16 ^d	288 312	322 352	116	31 77 96 36		.876 .800	
Competition only, unlimited Street, very large cu.in. applications, also good w/large manifold nitrous sys- tems, 14.5 minimum compression ratio advised.	R-288/515-253-18 SFO	5200- 8400	138921 ^{*a,b}	13570-16' 13574-16 ^d	288 316	318 348	118	30 78 100 36	.020 .022	.876 .850	
Competition only, Supercharged Unlimited Street, very large cu.in. applications, for 55mm bearing journals. Also good w/large manifold nitrous systems.	R-292/5152-2S-17 SFO 55	5800- 8600	138981 ^{*a,b}	13570-16° 13574-16 ^d	292 310	322 342	117	34 78 97 33		.876 .850	

CAMSHAFTS

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kits available. See page 313 for details.

IMPORTANT NOTE: 1991-95 Gen V engines can use these camshafts and components if they are converted to adjustable rocker arms by machining the cylinder heads for **99157-16** N 7/16" screw-in studs and **13650-1** pushrod guideplates, and installing appropriate rocker arms.

NOTE: Many options are available for these camshafts, and any of our custom ground camshafts. An iron distributor drive gear and rear journal can be specified. SFO firing order (4/7 swap) is offered. Optional journal sizes are: Roller Bearing (1.968"), 2.125", and 55mm (2.165"). Gun drilling (where applicable) is available. Camshafts for the GM DRCE family of V-8's are also offered in 55mm and 60mm journal versions.
 NOTE: In order to use these cams in 65-66 engines, you must groove the center of the rear cam bearing journal, 3/16" wide and 7/64" deep.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	ROCKERS – Gold Race
	96848-16° 961226-16°,9	99676-16 ^f 99681-16 ^g 99661-16 ^s	99822-16 ^{e,h} 99820-16 ^{e,i}	99098-1 ^j 99097-1 ^k	13640-16 ^ı	13984-1* ^m 13977-1* ⁿ			13763TR-16
	96848-16°	99676-16 ^f	99822-16 ^{e,h}	99098-1 ^j	13640-16 ¹	13984-1* ^m			13763TR-16
	961356-16 ^{e,r}	99681-16º 99663-16 ^t	99820-16 ^{e,i}	99097-1 ^k		13977-1 [*] "			
	96848-16°	99676-16 ^f	99822-16 ^{e,h}	99098-1 ^j	13640-16 ¹	13984-1* ^m			13763TR-16
	961356-16 ^{e,r}	99681-16º 99663-16 ^t	99820-16 ^{e,i}	99097-1 ^k		13977-1 [*] "			
	96848-16°	99676-16 ^f	99822-16 ^{e,h}	99098-1 ^j	13640-16 ¹	13984-1*m			13763TR-16
	961356-16 ^{e,r}	99681-16 ⁹ 99663-16 ^t	99820-16 ^{e,i}	99097-1 ^k		13977-1* ⁿ			
	96848-16°	99676-16 ^f	99822-16 ^{e,h}	99098-1 ^j	13640-16 ¹	13984-1*m			13763TR-16
	961226-16 ^{e,q}	99681-16º 99661-16'	99820-16 ^{e,i}	99097-1 ^k		13977-1* ⁿ			
	96848-16° 961226-16°,9	99676-16 ^f 99681-16 ^g	99822-16 ^{e,h} 99820-16 ^{e,i}	99098-1 ^j 99097-1 ^k	13640-16 ¹	13984-1 ^{*™} 13977-1 [*] "			13763TR-16
	901220-10	99661-16 ⁵ 99661-16 ⁵	99020-10**	99097-1°		139/7-1 "			
	96848-16°	99676-16 ^f	99822-16 ^{e,h}	99098-1 ^j	13640-16 ⁱ	13984-1*m			13763TR-16
	961356-16 ^{e,r}	99681-16º 99663-16 ^t	99820-16 ^{e,i}	99097-1 ^k		13977-1* ⁿ			
	96848-16°	99676-16 ^f	99822-16 ^{e,h}	99098-1 ^j	13640-16 ¹	13984-1*m			13763TR-16
	961356-16 ^{e,r}	99681-16 ⁹ 99663-16 ^t	99820-16 ^{e,i}	99097-1 ^k		13977-1* ⁿ			
	96848-16°	99676-16 ^f	99822-16 ^{e,h}	99098-1 ^j	13640-16 ¹	13984-1*m			13763TR-16
	961356-16 ^{e,r}	99681-16 ⁹ 99663-16 ^t	99820-16 ^{e,i}	99097-1 ^k		13977-1 [*] "			
	96848-16°	99676-16 ^f	99822-16 ^{e,h}	99098-1 ^j	13640-16 ¹	13984-1* ^m			13763TR-16
	961356-16 ^{e,r}	99681-16 ⁹ 99663-16 ^t	99820-16 ^{e,i}	99097-1 ^k		13977-1* ⁿ			

Requires cam button spacer and a 11990-1 (.489" I.D.) or 11989-1 (.500" I.D. Accel) aluminumа bronze distributor drive gear. For engines equipped with mechanical fuel pumps, fuel pump pushrod **11985-1** is highly recommended to prevent fuel pump lobe wear. Camshaft has SFO firing order, with 4/7 swap. Pro Series vertical locking bar roller lifters. Ultra Pro Series vertical locking bar roller lifters for .904" diameter lifter bores.

- b
- C
- d
- е
- Must machine cylinder heads. Titanium for 3/8" dia. valve stems, must use **99098-1** valve stem locks, included with the retainers. f
- Titanium for 11/32" dia. valve stems, must use **99097-1** valve stem locks, included with the retainers. g
- For 3/8" dia. valve stems. h
- For 11/32" dia. valve stems.
- Machined steel, heat treated for 3/8" dia. valve stems.

- Machined steel, heat treated for 11/32" dia. valve stems. k Pro Series one-piece.
- L Pro Series steel billet gears and roller chain set. m
- n
- Pro Series steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. 1991-95 engines require the installation of **99157-16** 7/16" rocker arm studs and **13650-1** pushrod guideplates (machining required). 1.7 ratio, 7/16" stud, Wide Body. Valve Train Stabilizer available, see page 343. Requires **99661-16** titanium retainers For 2.100" assembly height, requires **99663-16** titanium retainers. Titanium, for **961226-16** valve springs, requires Crane Multi Fit valve stem locks. Titanium, for **961356-16** valve springs, requires Crane Multi Fit valve stem locks. 0
- p
- q
- r
- t

Chevrolet V-8 96-00

454 (7.4L)-502 (8.2L) cu.in. Gen VI

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Roller Camsha		INNOL	LITISSIONS CODE		IIIt/ LAII.	IIIt/ LAII.	Separation		LAII.	LAII.
Brute low end torque and HP, smooth idle, daily usage, fuel efficiency, towing, 2000-2600 cruise RPM, 8.5 to 9.5 compression ratio advised. Good cam for Tuner.		800- 5000	168711 [*] ª	26535-16 ^b 13532-16ʻ	204 214	260 270	112	(5) 29 44 (10)		.486 .512
			Ð							
Excellent low end & mid range torque and HP, good idle, daily usage, off road, towing, performance & fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 com- pression ratio advised. Good cam for Tuner.	HR-214/325-25-12 IG	1200- 5000	168721 ^{*a}	26535-16 ^b 13532-16 ^c	214 220	276 282	112	0 34 47 (7)	.000 .000	.553 .564
Good low end and mid range torque and HP, good idle, moderate performance usage, auto trans w/2000+ converter, 2800-3200 cruise RPM, 9.0 to 10.75 com- pression ratio advised. Also mild marine performance w/performance exhaust.	HR-222/339-25-12 IG	1400- 5400	168781*ª	26535-16 ^b 13532-16ʻ	222 230	284 292	112	4 38 52 (2)	.000 .000	
Excellent mid range torque and HP, fair idle, moderate performance usage, crate motor upgrade, mild bracket racing, auto trans w/2500+ converter, mild marine per- formance, mild supercharged, 3000-3400 cruise RPM, 9.5 to 11.0 compression ratio advised. Good cam for Tuner.	HR-226/345-2S-12 IG	1600- 5600	168731*ª	26535-16 ^b 13532-16 ^c	226 236	288 298	112	6 40 55 1	.000 .000	
Excellent mid range torque and upper RPM HP, fair idle, moderate performance usage, crate motor upgrade, auto trans w/2800+ converter, mild super- charged, 3200-3600 cruise RPM, 9.75 to 11.25 com- pression ratio advised. Good cam for Tuner.	HR-226/345-2S-14 IG	1800- 5800	168791*ª 3	26535-16 ^b 13532-16 ^c	226 236	288 298	114	4 42 57 (1)	.000 .000	.587 .610
Good mid range torque and HP, fair idle, moderate performance usage, crate motor upgrade, good mid range HP, mild bracket racing, auto trans w/2500+ converter, marine performance, mild supercharged, 3200-3600 cruise RPM, 10.0 to 11.5 compression ratio advised.	HR-230/352-25-12 IG	2000- 5800	168761*ª	26535-16 ^b 13532-16 ^c	230 236	292 298	112	8 42 57 (1)	.000 .000	
Excellent mid range and upper RPM torque and HP, rough idle, performance usage, mild bracket racing w/ heavy car, auto trans w/3000+ converter, 3400-3800 cruise RPM, 10.0 to 11.25 compression ratio advised.	HR-236/359-25-10 IG	2200- 5800	168801 ^{*a}	26535-16 ^b 13532-16 ^c	236 244	298 306	110	13 43 57 7	.000 .000	.610 .632
Good mid range and upper RPM torque and HP, rough idle, performance usage, crate motor upgrade, mild bracket racing, auto trans w/3000+ converter, marine performance, 3400-3800 cruise RPM, 10.5 to 11.75 compression ratio advised.	HR-236/359-2S-12 IG	2200- 6000	168741*ª	26535-16 ^b 13532-16 ^c	236 244	298 306	112	11 45 59 5	.000 .000	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.
- **NOTE:** The 1996-00 Gen VI engines can use these camshafts and components if they are converted to adjustable rocker arms by installing **99152-16** rocker arm studs (no machining required) and factory pushrod guideplates, providing open valve spring pressures do not exceed 480 pounds. Custom length pushrods can also be made to achieve correct lifter preload if standard non-adjustable rocker arms are retained. See page 353 for checking your hydraulic lifter preload.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

See pg.		See pg. 317	MPONENTS See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
See pg	000	See py. 517	See pg. 550	see pg. 545	See pg. 540	See pg. 280	5ee py. 508	See pg. 232	see py. 295	See py. 297
VALVE SF				VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUN	
AND RETA		VALVE SPRINGS	RETAINERS	STEM SEALS	STEM LOCKS	PUSHRODS	AND GEAR ASSEMBLY	ROCKER ARMS	ENERGIZER	GOLD RACE
KIT.	,	JI MINOS	RETAINERS	JERES	LUCKS	rosinos	ASSEMBLI	Alimo	LINENGIZER	NACL
		99896-16	99955-16	99822-16 ^f	99098-1 ⁹	13628-16 ^h	16977-1 ^{*k}	13801C-16 ^{I,m}		13750-16 ^{m,}
		99890-16 99832-16 ^d	99955-16 99976-16°	99822-10	99090-1°	13628-16 ⁴ 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	10977-1	129016-10	13744-16 ^{m,o}	
		99896-16 99832-16ª	99955-16 99976-16°	99822-16 ^f	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1 ^{*k}	13801C-16 ^{I,m}	13744-16 ^{m,}	13750-16 ^{m,} 13763TR-16'
		99896-16 99832-16 ^d	99955-16 99976-16°	99822-16 ^f	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1* ^k	13801C-16 ^{i,m}	13744-16 ^{m,o}	13750-16 ^{m,} 13763TR-16 ^m
		99896-16 99832-16 ^d	99955-16 99976-16°	99822-16 ^f	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1* ^k	13801C-16 ^{i,m}	13744-16 ^{m,₀}	13750-16 ^{m,r} 13763TR-16 ⁿ
		99896-16 99832-16 ^d	99955-16 99976-16°	99822-16 ^f	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1* ^k	13801C-16 ^{i,m}	13744-16 ^{m,o}	13750-16 ^{m,} 13763TR-16 ^m
		99896-16 99832-16 ^d	99955-16 99976-16°	99822-16 ^f	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1 ^{*k}	13801C-16 ^{I,m}	13744-16 ^{m,o}	13750-16 ^{m,} 13763TR-16 ^r
		99896-16 99832-16 ^d	99955-16 99976-16°	99822-16 ^r	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1* ^k		13744-16 ^{m,o}	13750-16 ^{m,} 13763TR-16 ^m
		99896-16 99832-16 ^d	99955-16 99976-16°	99822-16 ^f	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1* ^k		13744-16 ^{m,}	13750-16 ^{m,} 13763TR-16

Section Continued 🔰

- Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor а drive gear not required. For use with standard GM alignment bars. Required for use with camshafts having greater than
- b stock lobe lift.
- Vertical locking bar hydraulic roller lifters, no machining required. Ovate wire beehive spring, requires **99976-16** retainers. C
- d
- Steel, for 99832-16 beehive springs. e
- f Must machine cylinder heads.
- Machined steel, heat treated. g h
- Heavy wall, heat treated, for standard deck height blocks with adjustable rocker arms and hydraulic roller lifters.

- Pro Series one piece. Heavy wall, heat treated, for +.400" deck height "Tall Blocks" with adjustable rocker arms and hydraulic roller lifters.
- Pro Series steel billet gears and roller chain set with thrust bearing. k
- I 1.7 ratio, Nitro Carb, extra long slot for 1.560" maximum 0.D. valve springs.
 m Gen VI cylinder heads require the installation of 99152-16 7/16" rocker arm studs (no machining
- required) and factory pushrod guideplates.
- 0 Energizer, 1.7 ratio. Valve Train Stabilizer available, see page 343.
- 1.7 ratio. Valve Train Stabilizer available, see page 343. p
- q 1.7 ratio Wide Body. Valve Train Stabilizer available, see page 343.

Chevrolet V-8 96-00

454 (7.4L)-502 (8.2L) cu.in. Gen VI

						СОМ	PLETE C	AM SPE	CIFICATI	ONS		
		Camshaft Series/		Camshaft PART NUMBER/	See pg. 274	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Gross Lift Int.	
	Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.	
	Hydraulic Roller Camsha Good mid range & upper RPM HP, rough idle, perfor-	/ CS HR-240/365-2S-14 IG	2600-	168771*ª	26535-16 ^b	240	302	114	11 49	.000	.621	
1 -	mance usage, bracket racing, manifold nitrous system, auto trans w/3500+ converter, marine performance for 540+ engines, 3800-4200 cruise RPM, 10.5 to 12.5 com- pression ratio advised. Good w/supercharger 18 lbs. max. boost w/8.0 max. compression ratio advised.	nr-240/302-23-14 Id	6200	3	13532-16 [°]	240 248	310	114	63 5	.000		
	Good mid range to upper RPM torque, rough idle, perfor- mance usage, bracket racing, auto trans w/3500+ con- verter, marine perf. w/aftermarket dry pipe exhaust sys- tems or tube headers, 3600-4000 cruise RPM, best for 540+ cu.in. engines, 11.0 to 12.75 compression ratio advised.	HR-242/372-25-12 IG	2800- 6200	168811 ^{*a}	26535-16 ^b 13532-16 ^c	242 246	304 308	112	14 48 60 6	.000 .000		
	Good mid range to upper RPM torque and HP, rough idle, performance usage, bracket racing, auto trans w/3500+ converter, marine perf. for 540+ cu.in. modified engines in performance applications w/aftermarket dry pipe exhaust systems or tube headers. Good w/manifold nitrous system, 3800-4200 cruise RPM, best for 540+ cu.in. engines, 11.5 minimum compression ratio advised. Good w/Roots supercharger, 20 lbs. max. boost w/8.0 max. compression ratio advised.	HR-244/372-252-14 IG	3000- 6400	169651*ª �	26535-16 ^b 13532-16 ^c	244 256	306 318	114	13 51 67 9	.000 .000	.632 .632	
	Excellent upper RPM torque and HP, performance usage, bracket racing, good w/manifold nitrous system, auto trans w/3500+ converter, best in 540+ cu.in. engines. 11.5 to 12.75 compression ratio advised. Good w/super- charger, 20 lbs. maximum boost, w/8.0 maximum com- pression ratio advised.	HR-248/372-25-14 IG	3200- 6400	169691*ª 3	26535-16 ⁶ 13532-16 ⁶	248 256	310 318	114	15 53 67 9	.000 .000		
	Performance usage, good upper RPM torque and HP, bracket racing, Pro, Super Pro, etc., auto trans w/4000+ converter, best in 540+ cu.in., 12.5 minimum compres- sion ratio advised.	HR-254/400-252-10 IG	3400- 6600	168831*ª (3)	26535-16 ^b 13532-16 ^c	254 262	324 332	110	21.5 52.5 66.5 16.5	.000 .000	.680 .680	
	Performance usage, good upper RPM torque and HP, bracket racing, good w/large manifold nitrous system, auto trans w/race converter, best in 540+ cu.in. engines w/prepared cylinder heads. 12.5 minimum compression ratio advised. Good w/large supercharger, 22 lbs. maxi- mum boost w/8.5 maximum compression ratio advised.	HR-254/400-254-14 IG	3600- 6800	168841*ª	26535-16 ^b 13532-16 ^c	254 262	324 332	114	17.5 56.5 69.5 12.5	.000 .000		
_	Performance usage, good upper RPM torque and HP, bracket racing, Super Gas, Super Comp, auto trans w/race converter, best in 572+ cu.in. engines w/prepared cylin- der heads, 12.5 minimum compression ratio advised.	HR-262/400-25-14 IG	3800- 6800	168851*ª	26535-16 ^b 13532-16 ^c	262 264	332 326	114	21.5 60.5 71 13	.000 .000	.680 .680	
	Performance usage, good upper RPM HP, bracket racing, Super Gas, Super Comp, auto trans w/4000+ converter, best in 572+ cu.in. engines w/prepared cylinder heads, good w/large manifold nitrous system, 12.5 min. com- pression ratio advised. Good w/large supercharger 26 lbs. max. boost w/8.5 max. compression ratio advised.	HR-262/400-251-14 IG	3800- 7000	169711*ª 3	26535-16 ^b 13532-16 ^c	262 270	332 340	114	21.5 60.5 73.5 16.5	.000 .000	.680 .680	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.

NOTE: The 1996-00 Gen VI engines can use these camshafts and components if they are converted to adjustable rocker arms by installing **99152-16** rocker arm studs (no machining required) and factory pushrod guideplates, providing open valve spring pressures do not exceed 480 pounds. Custom length pushrods can also be made to achieve correct lifter preload if standard non-adjustable rocker arms are retained. See page 353 for checking your hydraulic lifter preload.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	A ROCKERS — Gold Race
	99896-16 99832-16ª	99955-16 99976-16°	99822-16 ^f	99098-1 ^g	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1" ^k		13744-16 ^{m,o}	13750-16™ 13763TR-16
	99896-16 99832-16ª	99955-16 99976-16°	99822-16 ^f	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1* ^k		13744-16 ^{m,o}	13750-16 ^m 13763TR-16
	99896-16 99832-16ª	99955-16 99976-16°	99822-16 ^f	99098-1ª	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1*k		13744-16 ^{m,o}	13750-16" 13763TR-16
	99896-16 99832-16 ⁴	99955-16 99976-16°	99822-16 ^f	99098-1 ⁹	13628-16 ^h 13642-16 ^{h,i} 13629-16 ^j 13643-16 ^{j,i}	16977-1* ^k		13744-16 ^{m,o}	13750-16 ^{m,} 13763TR-16
	99896-16	99955-16	99822-16 ^f	99098-1 ⁹	13642-16 ^{h,i} 13643-16 ^{j,i}	16977-1 ^{*k}			13750-16 ^m 13763TR-16
	99896-16	99955-16	99822-16 ^f	99098-1 ⁹	13642-16 ^{h,i} 13643-16 ^{j,i}	16977-1* ^k			13750-16 ^m 13763TR-16
	99896-16	99955-16	99822-16 ^f	99098-1 ^g	13642-16 ^{h,i} 13643-16 ^{j,i}	16977-1 ^{*k}			13750-16 ^m 13763TR-16
	99896-16	99955-16	99822-16 ^f	99098-1 ^g	13642-16 ^{h,i} 13643-16 ^{j,i}	16977-1 ^{*k}			13750-16" 13763TR-16

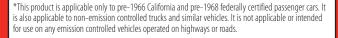
- a Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. For use with standard GM alignment bars. Required for use with camshafts having greater than
- b Vertical locking bar hydraulic roller lifters, no machining required. Ovate wire beehive spring, requires **99976-16** retainers. Steel, for **9832-16** beehive springs.
- C
- d
- e f
- Must machine cylinder heads.
- Machined steel, heat treated. g h
- Heavy wall, heat treated, for standard deck height blocks with adjustable rocker arms and hydraulic roller lifters.
- Pro Series one piece
- Heavy wall, heat treated, for +.400" deck height "Tall Blocks" with adjustable rocker arms and hydraulic roller lifters. j

- Pro Series steel billet gears and roller chain set with thrust bearing.
 1.7 ratio, Nitro Carb, extra long slot for 1.560" maximum 0.D. valve springs.
 m Gen VI cylinder heads require the installation of 99152-16 7/16" rocker arm studs (no machining required) and factory pushrod guideplates. Energizer, 1.7 ratio. Valve Train Stabilizer available, see page 343. 1.7 ratio. Valve Train Stabilizer available, see page 343. 1.7 ratio Wide Body. Valve Train Stabilizer available, see page 343.
- 0
- р
- q

Chevrolet V-8 96-00

454 (7.4L)-502 (8.2L) cu.in. Gen VI

					СОМ	PLETE C	AM SPE	CIFIC	ATIO	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/C @ .05 Cam I Int/E	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Mechanical Roller Camsh	afts										
Excellent low end and mid range torque and HP, fair idle, moderate performance usage, marine performance, bracket racing, auto trans w/2500+ converter, 3400- 3800 cruise RPM, 10.5 to 11.5 compression ratio advised. Also mild supercharged, 10 lbs. maximum boost w/8.5 maximum compression ratio advised.	SR-238/350-2S-12 IG	2800- 6600	168551*ª •	16510-16 ⁶ 13570-16 ⁶	238 246	288 296	112	12 60	46 6	.020 .020	
Good low end and mid range torque and HP, fair idle, moderate performance usage, marine performance, bracket racing, auto trans w/3000+ converter, 3800- 4200 cruise RPM, 10.5 to 12.0 compression ratio advised.	SR-246/362-25-10 IG	3000- 6800	168601*ª 🚯	16510-16 ^b 13570-16 ^c	246 254	296 304	110		48 12	.020 .020	
Good mid range to upper RPM torque and HP, rough idle, performance usage, marine performance, bracket racing, auto trans w/4000+ converter, 4200-4600 cruise RPM, 11.0 to 12.5 compression ratio advised.	SR-254/374-2S-12 IG	3400- 7200	168631*ª	16510-16⁵ 13570-16℃	254 262	304 312	112	19 67	55 15	.020 .020	
Performance usage, good low and mid range torque and HP, rough idle, bracket racing, auto trans w/3500+ con- verter, 11.0 to 12.5 compression ratio advised. Good w/ manifold nitrous system. Also supercharged, 18 lbs. max- imum boost w/ 8.0 maximum compression ratio advised.	R-254/420-25-12 IG	3600- 7200	168401*ª	16510-16 ^ь 13570-16ʻ	254 262	286 294	112	19 67		.020 .020	
Performance usage, bracket racing, good mid to upper RPM Torque and HP, Pro, Super Pro, etc., auto trans w/ race converter, 12.0 minimum compression ratio advised.	R-264/420-25-10 IG	4200- 7400	168411*ª (3)	16510-16⁵ 13570-16℃	264 270	296 302	110	26 69		.020 .020	
Competition only, bracket racing, good upper RPM Torque and HP, Super Pro, Super Gas, Super Comp, etc., auto trans w/race converter, 12.5 minimum compression ratio advised.	R-274/4334-2S-10 IG	4600- 8000	168291*ª 🚯	16510-16⁵ 13570-16℃	274 284	314 324	110		64 29	.026 .026	
Competition only, good upper RPM HP, 500+ cu.in., bracket racing, auto trans w/race converter, good w/large manifold nitrous system, 12.5 minimum compression ratio advised. Good w/large Roots supercharger, 24 lbs. maximum boost w/8.0 maximum compression ratio advised.	R-274/4334-2S-14 IG	4800- 8200	168351*ª €	16510-16 ^b 13570-16ʻ	274 284	314 324	114	26 79	68 25	.026 .026	


RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: The 1996-00 Gen VI engines can use these camshafts and components if they are converted to adjustable rocker arms by installing **99152-16** rocker arm studs (no machining required) and factory pushrod guideplates, providing open valve spring pressures do not exceed 480 pounds.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

124

CAMSHAFTS

		MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	A ROCKERS – Gold Race
	99876-16ª 99832-16°	99955-16 99676-16 ^f 99976-16 ^g	99822-16ª	99098-1 ^h	13634-16 ⁱ 13640-16 ^j 13635-16 ^k	16977-1" ¹			13750-16" 13763TR-16
	99876-16ª 99832-16°	99955-16 99676-16 ^f 99976-16 ^g	99822-16 ^d	99098-1 ^h	13634-16 ⁱ 13640-16 ^j 13635-16 ^k	16977-1* ¹			13750-16" 13763TR-10
	99876-16ª 99832-16°	99955-16 99676-16 ^f 99976-16 ^g	99822-16 ^d	99098-1 ^h	13634-16 ⁱ 13640-16 ^j 13635-16 ^k	16977-1 ^{*1}			13750-16 13763TR-1
	96886-16ª	99955-16 99676-16 ^f	99822-16 ^d	99098-1 ^h	13634-16 ⁱ 13640-16 ^j 13635-16 ^k	16977-1 ^{*1}			13750-16" 13763TR-10
	96886-16ª	99955-16 99676-16 ^f	99822-16 ⁴	99098-1 ^h	13634-16 ⁱ 13640-16 ^j 13635-16 ^k	16977-1 ^{*1}			13750-16" 13763TR-16
	96886-16 ^d	99955-16 99676-16 ^f	99822-16 ^d	99098-1 ^h	13634-16 ⁱ 13640-16 ⁱ 13635-16 ^k	16977-1* ¹			13750-16" 13763TR-10
	96886-16ª	99955-16 99676-16 ^f	99822-16 ^d	99098-1 ^h	13634-16 ⁱ 13640-16 ^j 13635-16 ^k	16977-1* ¹			13750-16" 13763TR-16

Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor а Camshaft incorporates an integral cast iron distributor drive gear, aluminum drive gear not required. For use with standard GM alignment bars. Ultra Pro Series vertical locking bar roller lifters, no machining required. Must machine cylinder heads. Ovate wire beehive spring, requires **99976-16** retainers. Titanium, must use **99098-1** valve stem locks, included with the retainers. Steel, for **99832-16** beehive springs. Machined steel, heat treated.

b

c d

е

- f

g h

Heavy wall, heat treated.

- k
- 1

Heavy wall, heat treated. Pro Series one piece. Heavy wall, heat treated, for +.400" deck height "Tall Blocks". Pro Series steel billet gears and roller chain set with thrust bearing. Gen VI cylinder heads require the installation of **99152-16** 7/16" rocker arm studs (no machining required) and factory pushrod guideplates. 480 pounds maximum valve spring pressure advised. 1.7 ratio. Valve Train Stabilizer available, see page 343. 1.7 ratio Wide Body. Valve Train Stabilizer available, see page 343. n

- 0
- р

Chevrolet V-8 01-08

8.1 Litre L18 (Vortec 8100)

					СОМ	PLETE C		ECIFICATI	ONS	
Anglington	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 274	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exn.	Separation	Int/Exh	Exh.	Exh.
Hydraulic Roller Camsha Brute low end torque, smooth idle, daily usage, fuel	TTS HR-208/292-25-16 IG	800-	268701 [*] ª	26535-16 ^b	208	264	116	(7) 35	.000	.496
economy, towing, mild marine usage, 1600-2200 cruise RPM, 8.0 to 9.5 compression ratio advised.		4600	•3		214	270		48 (14)	.000	.512
Excellent low end torgue and HP, good idle, daily	HR-216/325-2S-14 IG	1200-	268711*ª	26535-16 ^b	214	276	114	(2) 36	.000	552
usage, off road, towing, performance and fuel effi-	HK-210/323-23-1410	5000	200711	20333-10	214	241	114	(2) 30 49 (9)	.000	
ciency, computer upgrades may be required, 2600- 3000 cruise RPM, 8.75 to 10.5 compression ratio advised. Marine performance usage with free flowing above water exhaust system.			\$							
Good mid range torque and HP, good idle, moderate performance usage, mild supercharged, computer	HR-222/339-25-12 IG	1400- 5400	268721 ^{*a}	26535-16 ^b	222 230	284 292	112	4 38 52 (2)	.000. .000	
upgrades required, 8.75 to 10.5 compression ratio advised. Marine performance usage with free flowing above water exhaust system.		J400	•		230	232		JZ (Z)	.000	.570
Good mid range torque and HP, fair idle, moderate performance usage, mild supercharged, computer upgrades required, 9.0 to 11.0 compression ratio	HR-226/345-2S-14 IG	1600- 5600	268731 ^{*a}	26535-16 ^b	226 234	288 296	114	4 42 56 (2)	.000 .000	.587 .610
advised. Marine performance usage in modified engines with aftermarket high flow abovve water exhaust systems.			\$							
Good mid range HP, fair idle, performance usage, computer upgrades required, 9.5 to 11.0 compression	HR-230/352-2S-14 IG	1800-	268761 ^{*a}	26535-16 ^b	230	292	114	6 44		.598
ratio advised. Marine performance usage w/ modified engines having aftermarket dry pipe exhaust systems.		5800	•		236	298		57 (1)	.000	.610
Good mid range HP, rough idle, performance usage, mild supercharged, computer upgrades required, 10.0	HR-236/359-251-14 IG	2200- 6000	268741*ª	26535-16 ^b	236 244	298 306	114	9 47 61 3	.000 .000	.610
to 11.5 compression ratio advised. Marine perfor- mance usage with modified engines having aftermar- ket dry pipe exhaust systems.		0000	•		244	300		01 3	.000	.032
Good upper RPM HP, rough idle, performance usage for increased displacement engines, computer	HR-240/365-2S-12 IG	2600- 6200	268771 [*] ª	26535-16 ^b	240 248	302 310	112	13 47 61 7	.000	.621 .632
upgrades required, 10.0 to 11.0 compression ratio advised. Marine performance for highly modified engines with aftermarket dry pipe exhaust or tube headers.		0200	•		210	510		01 /	.000	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: Crane Hydraulic Roller Cams offer tremendous power, torque and RPM potential. Due to their RPM capability and increased valve travel it is HIGHLY RECOMMENDED that the appropriate Crane valve train components be installed for maximum performance and reliability.

NOTE: For best performance and reliability, these engines should be converted to adjustable rocker arms by installing 99155-16 rocker arm studs (no machining required) and appropriate rocker arms. Custom length pushrods can also be made to achieve correct lifter preload if standard non-adjustable rocker arms are retained. See page 353 for checking your hydraulic lifter preload.

Since 1975, General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

126

CRANE VAL	VE TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUI Energizer	M ROCKERS - Gold Race
	99896-16 99832-16'	99964-16 99976-16ª	99822-16°	99098-1 ^f	26640-16 ⁹	26977-1 ^{*h}		13744-16 ^{i,k}	13750-16 ⁱ 13763TR-10
	99896-16 99832-16'	99964-16 99976-16ª	99822-16°	99098-1 ^f	26640-16º	26977-1* ^h		13744-16 ^{i,k}	13750-16 ⁱ 13763TR-1
	99896-16 99832-16'	99964-16 99976-16ª	99822-16°	99098-1 ^f	26640-16 ^g	26977-1 ^{°h}		13744-16 ^{i,k}	13750-16 ⁱ 13763TR-10
	99896-16 99832-16'	99964-16 99976-16ª	99822-16°	99098-1 ^f	26640-16 ⁹	26977-1* ^h		13744-16 ^{i,k}	13750-16 13763TR-1
	99896-16 99832-16'	99964-16 99976-16ª	99822-16°	99098-1 ^f	26640-16ª	26977-1 ^{*h}		13744-16 ^{i,k}	13750-16 13763TR-1
	99896-16 99832-16'	99964-16 99976-16ª	99822-16°	99098-1 ^f	26640-16 ⁹	26977-1 ^{*h}		13744-16 ^{i,k}	13750-16 13763TR-1
	99896-16 99832-16'	99964-16 99976-16ª	99822-16°	99098-1 ^f	26640-16 ⁹	26977-1 ^{*h}		13744-16 ^{i,k}	13750-16 13763TR-1

а Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. For use with standard GM alignment bars. Required for use with canshafts having greater than

b For the with standard with any infert bars, required for as stock lobe lift (.335").
 Ovate wire beehive spring, requires 99976-16 retainers.
 Steel, for 99832-16 beehive springs.
 Must machine cylinder heads.
 Machined steel, heat treated.

c

d

e f

g Pro Series one piece.
 h Pro Series steel billet gears and roller chain set with thrust bearing.
 i 8.1L cylinder heads require the installation of 99155-16 7/16" rocker arm studs (no machining required) and factory pushrod guideplates.
 k Energizer, 1.7 ratio, 7/16" stud.
 I.7 ratio, 7/16" stud.
 m 1.7 ratio Wide Body.

Chrysler/Dodge Neon 4 cyl. 95-05

					COM	PLETE C	AM SPE	ECIFICATI	ONS		1
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266 FOLLOWERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe	Open/Close @ .050" Valve Lift n Int/Exh	Lash Hot Int. Exh.	Lift Int.	
Hydraulic Roller Follower	Camshafts										
Good idle, performance usage, good mid to upper RPM HP, street, drag race, OK with nitrous, aftermarket intake/exhaust advised.	CHR-242-2S-6	1000- 6500	158-0010*		196 200	242 250	106	(11) 27 27 (7)			
Good idle, performance usage, for use with turbo, good upper RPM HP, intercooler advised, aftermarket intake/low restriction exhaust required.	CHR-250-2SR-8	1500- 6800	158-0012°		204 200	250 250	108	(9) 33 29 (9)		.355 .315	
Performance usage, primarily drag race, good upper RPM HP, good with turbo, intercooler advised, high flowing cylinder head/intake/large exhaust advised, aftermarket ECM required, 12.0+ minimum compres- sion ratio required.	CHR-262-25R-8	2500- 7500	158-0014°		216 212	262 262	108	(3) 39 35 (3)		.355 .345	
Performance usage, drag race, good upper RPM HP, for use with turbo, intercooler advised, high flowing cyl- inder head/intake/large exhaust advised, aftermarket ECM required, 12.0+ minimum compression ratio required.	CHR-272-25-14	3000- 7800	158-0016* •		226 226	272 282	114	1 45 52 (6)		.355 .345	
Competition only, radical drag race, good upper RPM HP, turbo with intercooler, high flowing cylinder head/ intake/large exhaust advised, aftermarket ECM required, 12.0+ minimum compression ratio required.	CHR-232/400-2SR-10	3200- 8000	158-0018 ^{°a}		232 230	280 285	110	7 45 50 0	.000 .000		
Competition only, radical drag race, good high RPM HP, turbo with intercooler, high flowing cylinder head/ intake/large exhaust advised, aftermarket ECM required, 12.0+ minimum compression ratio required.	CHR-236/440-2SR-12	3500- 8500	158-0020 ^{*a}		236 230	280 285	112	8 48 52 (2)			
	Stock (For comparison purposes only)				192 198	247 265	110		.000 .000	.309 .275	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING BELT AND SPROCKET ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS - Gold Race
903-2003 ^b	158830-16 [.]	158660-16 ^d							
				Cu	istom grinds availa take CHR-226	ble using the following	g lobes: -232/400*	CHR-236/440	*
903-2003 ^b	158830-16 [.]	158660-16 ^d		Ex	haust CHR-226 Requires Ferrea lash c	5/345 CHR	-230/400*		
903-2003 ^b	158830-16	158660-16 ^d							
705 2005	130030-10	120000-10							
	13630-10	130000-10							
903-2003 ^b	158830-16	158660-16 ^d							
903-2003 ^b	158830-16 [,]	158660-16 ^d							
903-2003 ^b 903-2003 ^b	158830-16' 158830-16'	158660-16 ^d 158660-16 ^d							
903-2003 ^b	158830-16 [,]	158660-16 ^d							

- c Requires 158660-16 retainers.
 d Titanium, for use with standard valve locks.

CO	M	D	FΤ	E.	CA	M	S	DF	C	ы	C	Δт	П	C	N	G
					<u> </u>						-			-	-	

						COM	PLETEC	AIVI SPE	CIFICATI	CINS		
	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266 FOLLOWERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe	Open/Close @ .050" Valve Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
	Hydraulic Roller Followe	r Camshafts										
	Good idle, daily usage, good mid range HP, perfor- mance upgrade for stock engine, aftermarket intake/ exhaust and ECM advised.	CHR-242-6ª	1000- 6500	180-0010 ^{*a}		200 200	242 242	106	(3) 23 29 (9)	.000 .000	.354 .354	
-	Good idle, performance usage, for use with turbo, good upper RPM HP, intercooler advised, aftermarket intake/low restriction exhaust required.	CHR-246-2SR-6ª	1500- 6800	180-0014 ^{*a}		204 196	246 238	106	1 23 29 (13)		.364 .345	
	Good idle, performance usage, street, drag race, intended for use with nitrous, aftermarket intake/ exhaust and ECM advised.	CHR-246-8ª	1500- 6800	180-0012 ^{*a}		204 204	246 246	108	(3) 27 33 (9)		.364 .364	
	Performance usage, drag race, turbocharger with intercooler, good upper RPM HP, high flowing cylinder head/intake/large exhaust advised, 11.0+ minimum compression ratio and aftermarket ECM required.	CHR-250-2SR-6ª	2200- 7500	180-0015*ª È		208 204	250 246	106	(2) 30 28 (4)		.374 .364	
	Fair idle, performance usage, drag race, good mid and upper RPM HP, high flowing cylinder head/intake/ exhaust and aftermarket ECM advised.	CHR-250-6ª	2000- 7200	180-0016 ^{*a}		208 208	250 250	106	2 26 34 (6)		.374 .374	
	Performance usage, drag race, good upper RPM HP, high flowing cylinder head/intake/large exhaust advised, 12.0+ minimum compression ratio and after- market ECM required.	CHR-258-8ª	2500- 7500	180-0018 ^{*a}		216 216	258 258	108	4 32 40 (4)		.394 .394	
	Competition only, drag race, good upper RPM HP, high flowing cylinder head/intake/large exhaust advised, 12.5+ minimum compression ratio and aftermarket ECM required.	CHR-266-10ª	2800- 7800	180-0020 ^{*a}		224 224	266 266	110	2 42 42 2		.413 .413	
	Competition only, drag race, good high RPM HP, high flowing cylinder head/intake/large exhaust advised, 13.0+ minimum compression ratio and aftermarket ECM required.	CHR-274-10ª	3200- 8000	180-0022 ^{*a}		232 232	274 274	110	6 46 46 6		.433 .433	
	Competition only, drag race, good high RPM HP, high flowing cylinder head/intake/large exhaust advised, 13.0+ minimum compression ratio and aftermarket ECM required.	CHR-282-6ª	3600- 8200	180-0024 ^{*a}		240 240	282 282	106	18 42 50 10		.453 .453	
	Competition only, radical drag race, high RPM HP, high flowing cylinder head/intake/large exhaust advised, 13.0+ minimum compression ratio and aftermarket ECM required.	CHR-290-6ª	4000- 8600	180-0026*ª		248 248	290 290	106	22 46 54 14		.472 .472	
	Competition only, radical drag race, high RPM HP, high flowing cylinder head/intake/large exhaust advised, 13.5+ minimum compression ratio and aftermarket ECM required.	CHR-296-6ª	4400- 8800	180-0028 ^{*a}		256 256	296 296	106	26 50 58 18		.492 .492	
		Stock 2.0-2.4L (For comparison purposes only)				196 196	243 243	108			.344 .315	
-		Stock SRT4-PT 2.4L (For comparison purposes only)				194 196	248 248	113			.325 .259	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

CRANE VALV	E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340 VALVE	See pg. 286	See pg. 308	See pg. 292	See pg. 295 —— ALUMINUM	See pg. 297
AND RETAINER Kits	VALVE SPRINGS	RETAINERS	STEM SEALS	STEM LOCKS	PUSHRODS	AND SPROCKET ASSEMBLY	ROCKER ARMS	ENERGIZER	GOLD RACE
903-2002°	180830-16 ^d	158660-16°							_
				0	:HR-224/413CHR-232	ble using the following /433 CHR	-240/453		
903-2002 ^c	180830-16 ^d	158660-16°			:HR-248/472CHR-256, :HR-268/492	/492 CHK	-264/492		
903-2002°	180830-16 ^d	158660-16°							
2002 2002	100020 1/4	150//0 1/4							
903-2002°	180830-16 ^d	158660-16°							
903-2002 ^c	180830-16 ^d	158660-16°							
903-2002°	180830-16 ^d	158660-16°							
903-2002°	180830-16 ^d	158660-16°							
903-2002°	180830-16 ^d	158660-16°							
/07 2002		150000 10							
903-2002 ^c	180830-16 ^d	158660-16°							
002 2002	100020 1 (1								
903-2002 ^c	180830-16 ^d	158660-16º							
903-2002 ^c	180830-16 ^d	158660-16°							

For Neon 2.0 - 2.4L. Includes valve springs and titanium retainers. а c

- d Requires 158660-16 retainers.
 e Titanium, for use with standard valve locks.

1951–1956 301-331-354 Hemi V8 & 1957–1958 392 Hemi V8

Although not usually considered to be a Chrysler Small Block, these early Chysler Hemi engines provided the basic architecture for the "A" and "LA" engines that followed. Although visually similar, the Dodge and DeSoto hemis (and the polyspherical variants) of the 1950's were unique engines that had little interchangeability with the Chrysler versions.

Our 53 prefix is for the 1951–1956 301–331–354 hemis, while the 54 prefix designates the 1957–1958 392 hemi. There is a lifter bore bank angle change between these two families, so be careful since these camshafts have the same basic dimensions. The cams can be physically interchanged, but performance would be poor, as valve timing would be incorrect from bank to bank. A 392 type timing chain set will also be required when installing these camshafts in the earlier 301–354 engines.

Retrofit hydraulic roller camshafts and drop in hydraulic roller lifters are offered, along with most valve train components. With the hydraulic roller applications, there may have to be some clearancing performed on the cylinder block and heads where the pushrods pass through, due to the taller lifters changing the pushrod angles, but modern camshaft technology can easily be applied to this half-century old power plant.

Mechanical roller camshafts and drop in roller lifters for applications ranging from mild street to Nostalgia Top Fuel are also available, along with most valve train components. Whether you're using stock cast iron heads, or the latest billet aluminum pieces, we can supply the proper valve springs, retainers, and other parts to suit your needs.

1964–1987 273-340-360 (5.9L) & 1967–1986 318 "LA" V8

This engine family is commonly referred to as the Small Block Chrysler V8. Properly called the "LA" series, it is an evolution of the 1956-1966 "A" family, which included displacements of 277-301-303-318-326 cu.in. The A was noted for its Polyspherical combustion chamber/ staggered valve cylinder heads (one rocker shaft per head, with the intake and exhaust rockers pointing in opposite directions), and mechanical lifters (except the 1959 Chrysler 326). The important part of this heritage is to help explain the unusual 59 degree lifter bore bank angle that carried over into the LA family. This was used in the A to provide the best compromise for lifter to pushrod angles for its inline lifter bore blocks. Also note there were 1964-1966 318 engines that were still the A version, and should not be confused with the 1967-1986 LA 318.

When upgrading to the LA (Lightweight A) family, Chrysler maintained the 59 degree lifter bore angle in the blocks, even though the valves were now inline, in a normally configured wedge chambered cylinder head. Shaft mounted 1.5:1 ratio rocker arms were employed. This resulted in an awkward appearing angle between the lifters and pushrods. With the change in cylinder head configuration, a different valve layout was incorporated into the heads, however the basic camshaft dimensions were maintained. Therefore, while A and LA camshafts will physically interchange, half of the lobes will be in the wrong location, allowing only four cylinders to run properly. The 1964-1967 273 engines were equipped with mechanical lifter camshafts and adjustable rocker arms. Later engines had hydraulic lifters and non-adjustable rocker arms (with a couple of rare exceptions).

There were also left-hand rotation marine engines produced that required a unique camshaft. Make certain of the engine's rotation if you have a marine application.

Be aware of both OE production and factory replacement cylinder blocks that may incorporate very large chamfers on the tops of the lifter bores. This is not usually a problem when hydraulic and mechanical flat faced camshafts and lifters are used. In certain cases, if hydraulic and mechanical roller lifters are installed in these blocks, the oiling passages in the lifters may become exposed to the chamfer at full valve lift, causing a loss of oil pressure. Possible solutions would be sleeving the lifter bores, or having a camshaft custom ground having a reduced base circle diameter.

Crane Cams' 69 prefix has been assigned to the camshafts and components for this engine family, along with its factory produced variants. Principal among these are the R3 blocks that are available from Chrysler. These are offered in 59 degree and 48 degree lifter bank angle options (also, 45 and 47 degrees on the aluminum blocks), with the 59 degree R3 block not intended for roller lifter usage. There are also a number of choices of camshaft bearing journal sizes being used. These range from the standard stepped journals, plus: 50mm

(1.968") – RB (first four journals) or 5RB (all five journals) suffix; 2.000" – BB suffix; 54mm (2.125") – 54J suffix; 60mm (2.362") – 60J suffix.

We offer cast hydraulic and mechanical lifter camshafts for the LA engines having the standard journal diameter, lifter bank angle, and firing order.

Steel billet retrofit hydraulic roller camshafts and components are available. The hydraulic roller lifters have a vertical locking bar, and are a drop-in configuration, with no machining required. These camshafts are produced from steel billet material, are heat treated, and then finish ground. They also incorporate a cast iron distributor drive gear and rear journal (IG suffix), allowing the use of a standard type distributor gear for long term reliability. Some early production and some later replacement and aftermarket cylinder heads may require modifications for pushrod clearance, due to their angle having changed resulting from the higher pushrod seats in the hydraulic roller lifters.

Steel billet mechanical roller camshafts are offered with Iron Gear versions for street performance and endurance racing, having standard diameter journals. Racing mechanical roller camshafts are available in standard firing order (1-8-4-3-6-5-7-2) and SFO (1-8-7-3-6-5-4-2) firing order. Mechanical roller camshafts are also available for the various camshaft journal diameters and lifter bore bank angles as previously mentioned.

1986–1991 318 (5.2L) & 1987–1991 360 (5.9L) "LA" V8

These engines are a continuation of the LA series, being factory upgraded with hydraulic roller camshafts and lifters. Cylinder head changes were also made, with the valve spring envelope being reduced, making it very difficult to fit performance valve springs. Still designated with our 69 prefix, this engine group is listed separately to properly define the emissions legalities of the camshafts.

Hydraulic roller camshafts are offered, along with many valve train components.

1992–2002 5.2L & 5.9L Magnum V8

The final upgrade to the LA family, the Magnum engines received non-adjustable pedestal mounted 1.6:1 ratio rocker arms from the factory. The nose of the camshaft was also shortened as a result of vehicle packaging requirements, so there is no camshaft interchangeability with the earlier LA engines. Our 70 prefix indicates this version.

We offer hydraulic roller camshafts and many valve train components for the Magnum. Our **36655-16** Pushrod Guideplate and Rocker Arm Stud Conversion Kit can be used to install adjustable stud mounted rocker arms, with no cylinder head machining required.

2002–2015 5.7L & 6.1L HEMI V8

Chrysler's latest pushrod V8 capitalizes on the heritage of the legendary Chrysler Hemi powerplants of the 50's, 60's, and 70's. Loosely based around the LA engine's architecture, these are equipped with a hydraulic roller camshaft and .842" diameter hydraulic roller lifters. Crane Cams' 198 prefix denotes our products for these engines. Whenever upgrading to a performance camshaft, the cylinder deactivation system (MDS) lifters can not be used, and computer upgrades will be required. The 392 Crate engines are also included in this group.

We currently offer hydraulic roller camshafts, and other valve train components, with more products to be introduced.

Dodge R5

This is an evolution of the LA engine, designed for rules specific oval track racing. These engines were never installed in any vehicles, or sold as a complete assembly. Normally paired with the P7 cylinder heads, these are built per application for each form of competition. This is known as our 184 prefix, with 8620 steel billet roller cams having 60mm journals available on special order.

COMPLETE CAM SPECIFICATIONS

Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274 LIFTERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Cams	hafts—Retr	ofit									
Good low end and mid range and HP, good idle, daily and performance usage, auto trans w/2500+ converter, 2600-3400 cruise RPM, 8.75 to 10.5 compression ratio advised.	HR-224/339-10	2000- 6000	539521ª 549521 ^b 3	68532-16 [,]	224 224	286 286	110	7 37 47 (3)	.000 .000	.509 .509	
Good mid to upper RPM torque and HP, fair idle, daily and performance usage, also mild supercharged, auto trans w/2500+ converter, 3200-4000 cruise RPM, 9.5 to 11.0 compression ratio advised, or 8.5 to 10.0 w/supercharger	HR-230/352-2-14	2600- 6600	539531ª 549531 ^b 3	68532-16 [,]	230 240	292 302	114	6 44 59 1	.000 .000	.528 .548	
Good upper RPM torque and HP, rough idle, performance usage, auto trans w/ 3000+ converter, 4000-4800 cruise RPM, 11.0 to 12.5 compression ratio advised.	HR-240/365-2S-8	3200- 6800	539541ª 549541 ^b	68532-16ʻ	240 248	302 310	108	17 43 57 11	.000 .000	.548 .558	

Mechanical Roller Can	nshafts								
Good low end and mid range torque, good idle, daily and performance usage, 2600-3400 cruise RPM, 8.75 to 9.75 compression ratio advised.	SR-230/338-8	2200- 6200	538491 ^{a,e} 548491 ^{b,e}	66515-16 66542-16⁴	230 230	280 280	108	12 38 48 2	.507 .507
Good mid range RPM torque and HP, good idle, daily and performance usage, also mild supercharged, auto trans w/2000+ converter, 2800-3600 cruise RPM, 9.0 to 10.5 compression ratio advised, or 8.0 to 9.0 with supercharger.	SR-230/338-25-10	2200- 6200	538501 ^{a,e} 548501 ^{b,e} 3	66515-16 66542-16 ⁴	230 238	280 288	110	10 40 54 4	.507 .525
Good mid to upper RPM torque and HP, fair idle, daily and performance usage, also mild supercharged, auto trans w/2500+ converter, 3200-4000 cruise RPM, 9.5 to 11.0 compression ratio advised, or 8.5 to 10.0 with supercharger.	SR-238/350-2S-12	2800- 6600	538511 ^{a,e} 548511 ^{b,e}	66515-16 66542-16⁴	238 246	288 296	112	12 46 60 6	.525 .543
Good upper RPM torque and HP, rough idle, performance usage, also supercharged, auto trans w/3000 + converter, 3600-4400 cruise RPM, 10.0 to 11.5 compression ratio advised, or 8.5 to 10.5 with supercharger.	SR-246/362-12	3200- 7000	538521 ^{a,e} 548521 ^{b,e} 3	66515-16 66542-16 ^d	246 246	296 296	112	16 50 60 6	 .543 .543
Competition only, nostalgia A/F.	R-278/458-10	6000- 8600	538701 ^{a,e} 548701 ^{b,e}	66542-16ª	278 278	310 310	110	33 65 73 25	687 687
Competition only, baseline nostalgia T/F.	R-284/456-10	6000- 9900	538661 ^{a,e} 548661 ^{b,e}	66542-16ª	284 284	324 324	110	35 69 75 29	.684 .684
Competition only, cacklefest exhibition.	R-285/410-8		538711 ^{a,e} 548711 ^{b,e} 3	66542-16 ^d	285 285	328 328	108	39.5 65.5 75.5 29.5	615 615

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: Although the 1951-1956 301-331-354 camshafts have the basic same dimensions as the 1957-1958 392 camshafts, and are physically interchangeable, the lifter bore bank angle is different between these two groups. You must use the correct camshaft for your particular block to achieve proper performance.

NOTE: All camshafts are the short nose (1.100"), internally threaded (7/16"-14) configuration, requiring the 57-58 timing set.

CRANE VAL	/E TRAIN CO	OMPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 30
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	- ROCKERS GOLD RACE
	99838-16 ^f	99957-16º 99944-16 ^h	99822-16 ^{f,g} 99820-16 ^{f,h}	99098-1 ^{g,j} 99097-1 ^{h,j}		69975-1 ^k			
	99838-16 ^f	99957-16 ⁹ 99944-16 ^h	99822-16 ^{f,g} 99820-16 ^{f,h}	99098-1 ^{9,j} 99097-1 ^{h,j}		69975-1 ^k			
	99838-16 ^f	99957-16 ⁹ 99944-16 ^h	99822-16 ^{fg} 99820-16 ^{fh}	99098-1 ^{9,j} 99097-1 ^{h,j}		69975-1 ^k			

99893-16 ^f	99954-16 ⁹ 99953-16 ^h	99822-16 ^{f,g} 99820-16 ^{f,h}	99098-1 ^{9,j} 99097-1 ^{h,j}	69975-1 ^k
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
99893-16 ^f	99954-16 ⁹	99822-16 ^{f,g}	99098-1 ^{g,j}	69975-1 ^k
	99953-16 ^h	99820-16 ^{f,h}	99097-1 ^{h,j}	
99893-16 ^f	99954-16 ⁹ 99953-16 ^h	99822-16 ^{f,g} 99820-16 ^{f,h}	99098-1 ^{9,j} 99097-1 ^{h,j}	69975-1 ^k
	99900-10°	99020-10 ^{%*}	99097-1	
99893-16 ^f	99954-16 ⁹	99822-16 ^{f,g}	99098-1 ^{9,j}	69975-1 ^k
JJUJJ-10	99953-16 ^h	99820-16 ^{f,h}	99097-1 ^{h,j}	
96884-16 ^f	99675-16 ⁱ		99097-1 ^{h,j}	
96884-16 ^f	99675-16 ⁱ		99097-1 ^{h,j}	
70004-10	JJU/J-10		7707/-1 "	
96884-16 ^f	99675-16 ⁱ		99097-1 ^{h,j}	

- а
- For 1951-1956 301-331-354 cu.in. For 1957-1958 392 cu.in. b
- Vertical locking bar hydraulic roller lifters. Due to the increased height of these lifters, the cylinder heads will require clearancing for the changed pushrod angles. c
- d Ultra Pro series roller lifters.
- Requires either 69990-1 aluminum bronze, or 69970-1 coated steel distributor gears. е
- Must machine cylinder heads.

- g h
- For 3/8" valve stems. For 11/32" valve stems.
- i Titanium, for 11/32" single groove valve stems, must use 99097-1 valve stem locks (included with the retainers).
- j Machined steel, heat treated, single groove.
 k Performance steel billet gears and roller chain set.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf										
	H-248-2	800- 4200	693971* (99278-16	192 204	248 260	112	(11) 23 39 (15)	.000 .000	.400 .427
Great low end torque and HP, smooth idle, daily usage, off road, towing, economy, mild marine performance, also mild turbocharged, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-260-2	1200- 4800	693901* 693902*ª	99278-16	204 216	260 272	112	(5) 29 45 (9)	.000 .000	.427 .454
Good low end and mid range torque and HP, good idle, daily usage, off road, towing, economy, mild marine performance, also mild turbocharged, 2400-2800 cruise RPM, 8.5 to 10.0 compression ratio advised.	Z-268-2	1200- 5000	693511* 693512* 3	99278-16	212 220	268 276	112	(1) 33 47 (7)		.459 .480
	Energizer 272 H10	1800- 5200	15005* 150052*ª •	99278-16	216 216	272 272	110	3 23 43 (7)		.454 .454
Good low end and mid range torque and HP, good idle, daily usage and off road, towing, performance and fuel efficiency, marine performance, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio advised.	H-272-2	1800- 5400	693941* 693942*ª €	99278-16	216 228	272 284	112	1 35 51 (3)	.000 .000	
Good low end and mid range torque and HP, good idle, daily usage and off road, towing, performance and fuel efficiency, marine performance, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio advised.	Z-276-2	1800- 5600	693521* 693522*ª	99278-16	220 228	276 284	110	5 35 49 (1)		.480 .501
Excellent mid range torque, rough idle, moderate per- formance usage, limited oval track, mild bracket rac- ing, auto trans w/3000+ converter, serious off road, 9.5 to 11.0 compression ratio advised.	H-222/3200-6	2200- 5600	690141* •	99278-16 99378-16" ^ь	222 222	294 294	106	9 33 41 1		.480 .480
Good mid range torque and HP, fair idle, daily perfor- mance usage, mild bracket racing, mild supercharged, small nitrous system, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	H-278-2	2200- 5800	693801* 693802*a €	99278-16 99378-16⁵	222 234	278 290	114	2 40 56 (2)		.467 .494

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: For maximum performance, and to provide the most accurate valve adjustment on hydraulic lifter camshafts, the use of our 69770-16 adjustable rocker arms and 69691-16 pushrods is highly recommended.

NOTE: Early 1986-91 318 (5.2L) and early 1987-91 360 (5.9L) engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller camshafts and lifters can be installed in these engines, providing the appropriate kit components are used.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 300
VALVE SPRI AND RETAIN KITS		RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS – Gold Race
69308-1 9	99835-16'	99948-16			69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{*h}		
69308-1°	99835-16 [.]	99948-16			69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{°h}		
69308-1 9	99835-16'	99948-16			69621-16°	69975-1*f	69770-16 ⁹ 69771-16 ^{*h}		
69308-1 °	99835-16'	99948-16			69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{*h}		
69308-19	99835-16'	99948-16			69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{*h}		
69308-1°	99835-16'	99948-16			69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{*h}		
	99838-16 ^d	99948-16	99822-16 ^d		69621-16°	69975-1* ^f	69770-16 ^g 69771-16 ^{*h}		
69308-19	99835-16'	99948-16			69621-16°	69975-1*f	69770-16 ⁹ 69771-16 ^{*h}		

- a Cam and lifter kit, includes installation lubricants.
 b Optional Hi Intensity hydraulic lifters, see page 272 for details.
 c Contains standard diameter valve springs, no machining required.
 d Must machine cylinder heads.

- e Heavy wall, heat treated, for use with adjustable rocker arms.
 f Performance steel billet gears and roller chain set.
 g 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).
 h 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).

					СОМ	PLETE C	AM SPE	ECIFICATI	ONS		
	Camshaft Series/	rpm Power	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050″	Advertised Degrees Duration	l Degrees Lobe	Open/Close @ .050" Cam Lift	Lash Hot Int.	Gross Lift Int.	
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.	/
Hydraulic Lifter Camshaf											
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, bracket racing, 340+ cu.in., 3200-3600 cruise RPM, 9.5 to 11.0 compression	H-288-2	2600- 6000	694301 [*] 694302 [*] ª	99278-16 99378-16 ^{*b}	226 230	288 292	110	8 38 50 0		.458 .465	
ratio advised.			•								ŗ
Good mid range torque, fair idle, moderate perfor- mance usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, serious	Energizer 284 H12	3000- 6200	15006 [*] 150062 [*] ª	99278-16 99378-16⁵⁵	228 228	284 284	112	7 41 51 (3)			
off road, 9.5 to 11.0 compression ratio advised.			•								
Performance usage, good mid range torque & HP, bracket racing; Street, Heavy, etc., auto trans w/3000+ converter, oval track; Street Stock, Enduro, etc., 1/4-3/8 mile, radical	H-228/3200-25-8	3000- 6200	690591 [*]	99278-16 99378-16*⁵	228 234	284 290	108	11 37 50 4		.480 .494	
off road, 10.0 to 11.5 compression ratio advised.			3								
Performance usage, strong mid range to upper RPM torque and HP, bracket racing, auto trans w/3000+ converter, 10.0 to 11.5 compression ratio advised.	H-232/3360-6	3200- 6400	690221*	99278-16 99378-16*⁵	232 232	304 304	106	14 38 46 6		.504 .504	
			•								
performance usage, auto trans w/3000+ converter, 3800-4200 cruise RPM, radical street, also mild super-	H-302-2	3200- 6800	694561 [*]	99278-16 99378-16⁵	232 242	302 312	114	7 45 60 2		.504 .528	
charged, nitrous, 340+ cu.in., 10.0 to 11.5 compression ratio advised.			€								
Moderate competition, good upper RPM HP, perfor- mance usage, bracket racing, 360+ cu.in., auto trans w/3500+ converter, 360+ cu.in., 10.5 to 12.0 com- pression ratio advised.	H-312-2	3600- 7000	694571* 3	99278-16 99378-16⁵⁵	242 252	312 322	108	18 59 44 13	.000 .000		
Moderate competition, good upper RPM HP, bracket racing, 360+ cu.in., auto trans w/3500+ converter, oval track 3/8-1/2 mile, 360+ cu.in., 11.5 to 13.0 compression ratio advised.	H-244/3439-6	3800- 7000	690711°	99278-16 99378-16⁵⁵	244 244	300 300	106	20 44 52 12		.516 .516	
Moderate competition only, good upper RPM HP, bracket racing, auto trans w/3500+ converter, 360+ cu.in., good with aluminum cylinder heads, 12.5 mini- mum compression ratio advised.	H-252/3680-2-10	4400- 7200	690241°	99278-16 99378-16" ^ь	252 262	324 334	110	21 51 66 16	.000 .000		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: For maximum performance, and to provide the most accurate valve adjustment on hydraulic lifter camshafts, the use of our 69770-16 adjustable rocker arms and 69691-16 pushrods is highly recommended.

NOTE: Early 1986-91 318 (5.2L) and early 1987-91 360 (5.9L) engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller camshafts and lifters can be installed in these engines, providing the appropriate kit components are used.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 30
VALVE SPRING AND RETAINER	VALVE		VALVE	VALVE		TIMING CHAIN AND GEAR	CAST ROCKER	— ALUMINUM	
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
69308-1°	99835-16'	99948-16			69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{*h}		
69308-1 ^c	99835-16 [,]	99948-16			69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{*h}		
	99838-16ª	99957-16	99822-16 ^d		69621-16°	69975-1* ^f	69770-16 ^g 69771-16 [%]		
	99838-16 ⁴	99957-16	99822-16 ⁴		69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{°h}		
	99838-16 ^d	99957-16	99822-16 ^d		69621-16°	69975-1*f	69770-16 ^g 69771-16 ^{°h}		
	99838-16 ^d	99957-16	99822-16 ^d		69621-16°	69975-1* ^f	69770-16 ^g 69771-16 ^{°h}		
	99838-16 ⁴	99957-16	99822-16 ⁴		69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{°h}		
	99838-16 ^d	99957-16	99822-16 ^d		69621-16°	69975-1* ^f	69770-16 ⁹ 69771-16 ^{*h}		

a Cam and lifter kit, includes installation lubricants.
 b Optional Hi Intensity hydraulic lifters, see page 272 for details.
 c Contains standard diameter valve springs, no machining required.
 d Must machine cylinder heads.

e Heavy wall, heat treated, for use with adjustable rocker arms.
f Performance steel billet gears and roller chain set.
g 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).
h 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).

					сом	PLETE C	AM SPE	CIFICATI	ONS		
Anglissting	Camshaft Series/	RPM POWER		See pg. 274	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Lift Int.	
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	INT/EXN.	Separation	Int/Exh	Exh.	Exh.	
Hydraulic Roller Camshar Excellent low end torque and HP, smooth idle, daily usage, towing, economy, also mild turbocharged, 2200-3000 cruise RPM, 8.0 to 9.5 compression ratio	fts — Retrofit HR-204/286-2-12 IG	800- 4800	699601 ^{*a}	69532-16 ^b	204 214	260 270	112	(5) 44 29 (10)	.000 .000		
advised.			€								
Good low end torque and HP, good idle, daily usage, off road, performance and fuel efficiency, also mild turbocheaged, 2600-3400 cruise RPM, 8.75 to 10.5	HR-214/325-2S-12 IG	1400- 5400	699611 [*]	69532-16 [⊾]	214 222	276 284	112	0 34 48 (6)	.000 .000		
compression ratio advised.			€								
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3000-3800 cruise RPM, 9.5 to 10.76 conversion with a divid	HR-222/339-25-12 IG	2000- 6000	699621 ^{*a}	69532-16 [⊾]	222 230	284 292	112	4 38 52 (2)	.000 .000	.509 .528	
10.75 compression ratio advised.		2000	•		227	200	440	0 00	0.00	540	
Good mid range torque and HP, fair idle, moderate performance usage, bracket racing w/heavy car, auto trans w/2500+ converter, serious off road, 3200-4000 wire DBM. 10.0 to 11.6 compared in the advised	HR-226/345-251-10 IG	2000- 6000	699651*ª	69532-16 ^b	226 230	288 292	110	8 38 50 0	.000 .000		
cruise RPM, 10.0 to 11.5 compression ratio advised.			•								
Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, 3600-4400 cruise RPM, good w/manifold nitrous system, 10.0 to 11.5 compression ratio advised.	HR-230/352-2S-12 IG	2600- 6600	699631 [*] ª	69532-16 ^b	230 238	292 300	112	8 42 56 10		.528 .548	
			€								
Good mid range to upper RPM torque and HP, rough idle, performance usage, bracket racing, auto trans w/3500+ converter, 360+ cu.in., 4000-4800 cruise	HR-238/365-25-8 IG	2800- 6800	699661*ª	69532-16 ^b	238 246	300 308	108	16 42 56 10	.000 .000		
RPM, 10.5 to 12.0 compression ratio advised.			€								
Good mid range to upper RPM torque and HP, rough idle, performance usage, mild bracket racing, auto trans w/3500+ converter, 4200-4800 cruise RPM, 10.5 to	HR-238/365-25-14 IG	3000- 7000	699641 [*] ª	69532-16 ^b	238 246	300 308	114	10 48 62 4	.000 .000	.548 .558	
12.0 compression ratio advised, also mild supercharged.			•								
Rough idle, performance usage, bracket racing, auto trans w/3500+ converter, 4000-4800 cruise RPM, 360+ cu.in., 11.0 to 12.5 compression ratio advised.	HR-242/372-2-8 IG	3200- 7000	699671*ª	69532-16 ^b	242 252	304 314	108	18 44 59 13	.000 .000	.558 .558	
			•								
Performance usage, bracket racing w/ heavy car, auto trans w/400+ converter, 380+ cu.in., 11.5 to 13.0 compression static adducted	HR-246/372-25-8 IG	3400- 7000	699681*ª	69532-16 ^b	246 254	308 316	108	20 46 60 14	.000 .000	.558 .558	
compression ratio advised.			•								
Performance usage, good upper RPM HP, bracket rac- ing, good w/manifold nitrous system, auto trans w/4000+ converter, 380+ cu.in., 13.0 minimum com-	HR-252/372-2S-10 IG	4000- 7200	699691 ^{*a}	69532-16 ^b	252 262	314 324	110	21 51 66 16	.000 .000		
pression ratio advised, also mild supercharged.			•								
										_	_

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: For maximum performance, and to provide the most accurate valve adjustment on hydraulic roller camshafts, the use of our 69770-16 or 69790-1 adjustable rocker arms and 69628-16 pushrods is highly recommended. Otherwise, special length pushrods will be required.

NOTE: Early 1986-91 318 (5.2L) and early 1987-91 360 (5.9L) engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller camshafts and lifters can be installed in these engines, providing the appropriate kit components are used.

IMPORTANT: Due to the increased pushrod seat height of the Crane retrofit hydarulic roller lifters, some early cylinder heads, and some aftermarket cylinder heads, may have to be modified for pushrod clearance.

140

Coo n	<i>ŋ. 338</i>	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 3
VALVE S	SPRING TAINER TS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	ALUMINUM ENERGIZER	
		99838-16'	99948-16	99822-16 '		69628-16ª	69975-1*°	69770-16 ^f 69771-16 ^{*g}		
		99838-16 [.]	99948-16	99822-16 '		69628-16 ^d	69975-1*°	69770-16 ^f 69771-16 ^{*g}		
		99838-16 [.]	99948-16	99822-16 '		69628-16 ^d	69975-1 ^{*e}	69770-16 ^f 69771-16 ^{*g}		
		99838-16'	99948-16	99822-16 '		69628-16ª	69975-1*°	69770-16 ^f 69771-16 ^{*g}		
		99838-16 [.]	99948-16	99822-16 '		69628-16 ^d	69975-1 ^{*e}	69770-16 ^f 69771-16 ^{*g}		
		96874-16 ⁴	99957-16	99822-16 [.]		69628-16 ^d	69975-1*e	69770-16 ^f 69771-16 ^{*g}		
		96874-16'	99957-16	99822-16 ⁴		69628-16 ⁴	69975-1*e	69770-16 ^f 69771-16 ^{*g}		
		96874-16'	99957-16	99822-16 ⁴		69628-16 ^d	69975-1 ^{*e}	69770-16 ^f 69771-16 ^{*g}		
		96874-16 [.]	99957-16	99822-16 [.]		69628-16ª	69975-1 ^{*e}	69770-16 ^f 69771-16 ^{*g}		
		96874-16 [.]	99957-16	99822-16 ^c		69628-16 ^d	69975-1*e	69770-16 ^f 69771-16 ^{*g}		

Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor а drive gear not required. Vertical locking bar hydraulic roller lifters, no machining required. Special length pushrods are required, use **69628-16** with adjustable rocker arms. b

c Must machine cylinder heads.

d Heavy wall, heat treated, for use with adjustable rocker arms.
 Performance steel billet gears and roller chain set.
 f 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).
 g 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).

						COMPLETE CAM SPECIFICATIONS							
		Camshaft Series/	RPM Power		See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	.@.0 Cam	050″ n Lift	Lash Hot Int.	Lift Int.	
	Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/	Exh	Exh.	Exh.	
Z	Mechanical Lifter Camsh												
	Good low end and mid range torque and HP, fair idle, moderate performance usage, bracket racing, 3400- 3800 cruise RPM, 10.0 to 11.5 compression ratio advised.	F-238/3200-2-14	2600- 6400	691191°	99260-16	238 248	300 310	114	10 63	48 5		.480 .500	
-				•									
	Good mid range torque, performance usage, limited oval track 1/4-3/8 mile, bracket racing w/heavy car, serious off road, auto trans w/2500+ converter, 10.5 to 120 converter, 10.5	F-244/3454-2S-6	3200- 6800	690921*	99260-16	244 252	280 288	106		45 17	.026 .026	.518 .536	
	to 12.0 compression ratio advised.			€									
	Good mid range torque and HP, rough idle, performance usage, limited oval track, bracket racing, serious off road, auto trans w/2000+ converter, 10.5 to 12.0 compression ratio advised.	F-248/3602-2-8	3200- 7000	690911 [*]	99260-16	248 258	284 294	108	21 62	47 16	.026 .026		
T	Performance usage, great mid range torgue and HP,	F-256/383-2S-8	3600-	•	99260-16	256	312	108	25	51	014	.575	
ł	bracket racing, 340+ cu.in., auto trans w/2500+ converter, 11.0 to 12.5 compression ratio advised.	F-230/383-23-0	3600- 7400	690931	99200-10	256 260	312 316	100		51 17		.575 .585	
	Contraction of the DDM territy and UD rough	5 250/2725 2 0	2600	•	00000 10	250	204	100	26	52	226	540	
	Good mid range and upper RPM torque and HP, rough idle, performance usage, bracket racing, 340+ cu.in., auto trans w/2500+ converter, 11.0 to 12.5 compression ratio advised.	F-258/3735-2-8	3600- 7200	691381* •	99260-16	258 268	294 304	108		52 21		.560 .580	
-				•									
	Good upper RPM torque and HP, moderate competi- tion only, bracket racing, 360+ cu.in., auto trans w/3000+ converter, good w/ plate nitrous system, aluminum cylinder heads recommended, 12.0 mini-	F-262/394-2S-10	3800- 7600	691391* •	99260-16	262 264	294 296	110	26 67	56 17	.018 .018		
	mum compression ratio advised.			V									
-	Good upper RPM torque and HP,moderate competition only, bracket racing, 360+ cu.in., auto trans w/3000+ converter, 12.0 minimum compression ratio advised.	F-268/3868-2-8	4000- 7600	691561*	99260-16	268 278	304 314	108	31 72	57 26		.580 .600	
	Converter, 12.0 חוווווווווווווווווווווווווווווווווווו			•									
T	Competition only, good upper RPM torque and HP,	F-274/412-2S-8	4200-	•	99260-16	274	306	108	34	60	.018	.618	
	auto trans w/3500+ converter, good with manifold	F-2/4/412-23-0	4200- 8000	0713/1	77200-10	274 288	300	100		33	.018		
	nitrous system, 360+ cu.in., 12.5 minimum compres- sion ratio advised.			€									
	Competition only, good upper RPM HP, auto trans w/3500+ converter, 360+ cu.in., 12.5 minimum com-	F-278/4002-8	4400- 8000	691701*	99260-16	278 278	314 314	108		62 26		.600 .600	
	pression ratio advised.		0000	•		270	511		, 2	20	.020	.000	
	Radical competition only, maximum performance	F-288/4134-8	5000-	691951 [*]	99260-16	288	324	108	41		.026	.620	
	applications, flat tappet restricted classes, aluminum cylinder heads advised, 13.5 minimum compression ratio advised.		8400	•		288	324		77	31	.026	.620	
									_				

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: To effect valve adjustment, 318, 340 and 360 engines require the use of Crane Adjustable Rocker Arms and appropriate pushrods when using mechanical lifter cams. **NOTE:** Early 1986-91 318 (5.2L) and early 1987-91 360 (5.9L) engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller camshafts and lifters can be installed in these engines, providing the appropriate kit components are used.

142

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 3
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS GOLI RACI
	99838-16ª	99948-16	99822-16ª		69622-16 ⁶	69975-1*°	69770-16 ^ª 69771-16 [*]		
	99838-16ª	99948-16	99822-16ª		69622-16 ⁶	69975-1*c	69770-16 ^d 69771-16 ^{*e}		
	99838-16ª	99948-16	99822-16ª		69622-16 ^b	69975-1*c	69770-16ª 69771-16*e		
	99838-16ª	99948-16	99822-16ª		69622-16 ⁵	69975-1 *c	69770-16 ^d 69771-16 ^{*e}		
	99838-16ª	99948-16	99822-16ª		69622-16 ⁶	69975-1*c	69770-16 ^d 69771-16 ^{*e}		
	99838-16ª	99948-16	99822-16ª		69622-16 ^b	69975-1*c	69770-16 ^d 69771-16 ^{*e}		
	99838-16ª	99948-16	99822-16ª		69622-16 ⁶	69975-1*c	69770-16 ^d 69771-16 ^{*e}		
	99838-16ª	99948-16	99822-16ª		69622-16 [⊾]	69975-1 *c	69770-16 ^d 69771-16 ^{*e}		
	99838-16ª	99948-16	99822-16ª		69622-16 ⁶	69975-1*c	69770-16 ^d 69771-16 ^{*e}		
	99838-16ª	99948-16	99822-16ª		69622-16 ^b	69975-1*c	69770-16⁴ 69771-16*е		

a Must machine cylinder heads.
 b Heavy wall, heat treated, for use with adjustable rocker arms.
 c Performance steel billet gears and roller chain set.

d 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).
 e 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).

143

						COMPLETE CAM SPECIFICATIONS							
		Camshaft Series/	rpm Power	Camshaft PART NUMBER/	See pg. 276	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	.@.C Cam	050″ n Lift	Lash Hot Int.	Lift Int.	
	Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/	/Exh	Exh.	Exh.	
	Mechanical Roller Camsh												
	Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 10.5 to 11.5 compression ratio advised.	SR-238/350-2S-12 IG	2800- 6600	698521*ª	69515-16 69542-16'	238 246	288 296	112	12 60	46 6		.525 .543	
	Good mid to upper RPM torque & HP, fair idle, moderate performance usage, mild bracket racing, good w/plate nitrous system, auto trans w/3000+ converter, 3800- 4200 cruise RPM, 10.5 to 12.0 compression ratio advised. Good w/Roots supercharger, 14 lbs. maximum boost w/8.0 maximum compression ratio advised.	SR-246/362-25-12 IG	3200- 7000	698531"ª	69515-16 69542-16'	246 254	283 290	112	15 63	49 9	.020 .020		
	Competition only, bracket racing, heavy car, good w/ manifold nitrous system, 360+ cu.in., auto trans w/race converter, aftermarket aluminum cylinder heads required, 12.0 to 13.0 compression ratio advised.	R-256/452-25-10	3800- 7800	698271* ^b	69542-16 [,]	256 268	285 297	110	69	53 19	.022	.746 .746	
	Good mid range torque and HP, rough idle, perfor- mance usage, oval track, bracket racing, auto trans w/ race converter, 11.5 to 12.5 compression ratio advised.	R-260/420-25-8	3800- 7600	698801* ^ь	69515-16 69542-16'	260 266	292 298	108		54 21		.630 .630	
	Competition only, good mid to upper RPM HP, oval track, bracket racing, auto trans w/race converter, 12.5 mini- mum compression ratio advised.	R-268/420-251-8	4000- 7800	698821* ^b	69515-16 69542-16'	268 276	300 308	108		58 26		.630 .630	
	Competition only, good upper RPM HP, bracket racing, auto trans w/race converter, 12.5 minimum compres- sion ratio advised.	R-272/420-2-8	4200- 8000	698831* ^b	69515-16 69542-16'	272 282	304 314	108		60 29		.630 .630	
	Competition only, good upper RPM torque and HP, bracket racing, Super Pro, Super Gas, auto trans w/race converter, aftermarket aluminum cylinder heads required, 13.0 minimum compression ratio advised.	R-274/482-2S-8	4200- 8200	698281* ^b	69542-16 [,]	274 278	318 334	108		64 26		.723 .735	
	Competition only, good upper RPM HP, bracket racing, auto trans w/race converter, nitrous, 12.5 minimum compression ratio advised.	R-276/420-2-10	4400- 8200	698841* ^b	69515-16 69542-16'	276 286	308 318	110		64 29		.630 .630	
_	Competition only, bracket racing, good upper RPM HP, Super Quick, Super Comp, etc.,manual trans or auto w/trans brake, aftermarket aluminum cylinder heads required, 13.0 minimum compression ratio advised.	R-280/452-25-8	5000- 8600	698291* ^b	69542-16 [,]	280 288	309 317	108		63 31		.678 .678	
	Competition only, Super Stock or Competition elim., manual trans or auto w/trans brake, 13.5 minimum compression ratio advised.	R-284/4765-2S-8	5200- 9000	698611* ^b	69542-16 [,]	284 292	318 326	108		65 33	.035 .030		

CAMSHAFTS

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

gun drilled rear drive camshafts are also an option. Appro-priate oil conducting roller lifters are also available. Contact Crane's Performance Consultants for details.

NOTE: 8620 steel billet roller camshafts for Chrysler R series cylinder blocks with 50mm, 2.000", and 60mm diameter camshaft bearing journals, and 45, 47, or 48 degree lifter bore bank angles are available on special order. Lightweight, NOTE: Early 1986-91 318 (5.2L) and early 1987-91 360 (5.9L)

IMPORTANT NOTE: Roller lifter camshafts are not intended for use in R blocks having 59 degree bank angle lifter bores. Contact NOTE: To effect valve adjustment, 318, 340 and 360 engines Crane's Performance Consultants for details.

engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller cam-shafts and lifters can be installed in these engines, providing the appropriate kit components are used. require the use of Crane Adjustable Rocker Arms and appropriate pushrods when using roller lifter cams.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 30
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS - GOLD RACE
	99893-16ª	99957-16	99822-16ª		69622-16 ^f	69975-1 ^{*g}	69770-16 ^h 69771-16 ^{*i}		
	99893-16ª	99957-16	99822-16ª		69622-16 ^f	69975-1 ^{*g}	69770-16 ^h 69771-16 ^{*i}		
	96883-16ª	99679-16°	99822-16 ^d		69622-16 ^f	69975-1 ^{*g}	69770-16 ^h 69771-16 ^{*i}		
	99885-16 ^d	99955-16	99822-16 ^d		69622-16 ^f	69975-1* ^g	69770-16 ^h 69771-16 ^{*i}		
	99885-16ª	99955-16	99822-16 ^d		69622-16 ^f	69975-1 ^{*g}	69770-16 ^h 69771-16 ^{*i}		
	99885-16ª	99955-16	99822-16 ⁴		69622-16 ^f	69975-1 ^{*g}	69770-16 ^h 69771-16 ^{*i}		
	96883-16ª	99679-16°	99822-16 ^d		69622-16 ^f	69975-1* ⁹	69770-16 ^h 69771-16 ^{*i}		
	99885-16 ^d	99955-16	99822-16 ^d		69622-16 ^f	69975-1* ⁹	69770-16 ^h 69771-16 ^{*i}		
	96883-16 ^d	99679-16°	99822-16 ⁴		69622-16 ^f	69975-1* ^g	69770-16 ^h 69771-16 ^{*i}		
	96883-16 ^d	99679-16°	99822-16 ^d		69622-16 ^f	69975-1 ^{*g}	69770-16 ^h 69771-16 ^{*i}		

Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor а drive gear not required. Requires **69990-1** aluminum-bronze, or **69970-1** coated steel distributor drive gears. Ultra Pro Series roller lifters.

b

c d Must machine cylinder heads.

e f

g h

Titanium, must use **99098-1** single-groove valve stem locks, included with the retainers. Heavy wall, heat treated, for use with adjustable rocker arms. Performance steel billet gears and roller chain set. 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included). 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included). i

Chrysler-Dodge-Plymouth "LA" V-8 86-91

86-91 318 (5.2L) and 87-91 360 (5.9L) cu.in. (except 91 Dakota)

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Roller Camsha	fts									
Brute low end torque, for 86-91 318 (5.2L) and 87-92 360 (5.9L) TBI equipped Dodge trucks and vans (except 91 Dakota), designed to improve low end torque and HP for street performance, towing and economy.	2010	800- 4200	694101°	70530-16ª	194 184	250 240	107	(6) 20 23 (19)	.000 .000	.407 .384
Excellent low end torque, for 86-91 318 (5.2L) and 87-92 360 (5.9L) TBI equipped Dodge trucks and vans (except 91 Dakota), designed to improve low end torque and HP for street performance, and towing (50 States Legal, C.A.R.B. E.O. D-225-23).	2020	1000- 4600	694111 (70530-16ª	204 194	260 250	112	(5) 29 34 (20)	.000 .000	.429 .407
Good low end torque and HP, good idle, daily usage, tow- ing, also mild turbocharged, computer upgrades required, 2200-3000 cruise RPM, 8.0 to 9.5 compression ratio advised.	HR-204/286-2S-14	1000- 4800	699701* 3	70530-16ª	204 208	260 250	114	(7) 31 43 (15)	.000 .000	.429 .438

CAMSHAFTS

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: The 1991 Dakota engines were fuel injected and used a camshaft core with a shorter nose. These would have the same configuration as the 70-prefix camshafts listed below.

NOTE: For maximum performance, and to provide the most accurate valve adjustment on hydraulic roller camshafts, the use of our 69770-16 or 69790-1 adjustable rocker arms and special length pushrods is highly recommended.

Chrysler-Dodge-Plymouth Magnum V-8 92-02

5.2-5.9 Litre

Hydraulic Roller Camsha	fts									
Brute low end torque, for 92-93 Dodge Magnum, improves low-end torque and HP, for street perfor- mance, towing and economy w/multi-point F.I. trucks and vans. (Compatible w/factory valve train.) (50 state legal, 94 and earlier Chrysler trucks with 5.2 or 5.9 eng. C.A.R.B. E.O. D-225-47)	2020	800- 4600	704111	70530-16°	194 204	250 260	112	(10) 24 39 (15)	.000 .434 .000 .458	
Excellent low end torque, for 92-93 V-8, improves low and midrange torque and HP, for street performance and towing w/stock or modified multi-point FI. trucks and vans. (Compatible w/factory valve train.) (50 state legal, 94 and earlier Chrysler trucks with 5.2 or 5.9 eng. C.A.R.B. E.O. D-225-54)	2030	1200- 5200	704121	70530-16°	204 208	260 264	114	(7) 31 43 (15)	.000 .458 .000 .467	
Good low end and mid range torque, good idle, daily usage, performance and towing, off road, mild super- charged, computer upgrades required, 2200-3000 cruise RPM, 8.5 to 9.75 compression ratio advised.	HR-208/292-251-10	1600- 5600	708501*	70530-16°	208 216	264 272	110	(1) 29 43 (7)	.000 .467 .000 .482	
Good mid range torque and HP, good idle, daily usage, mild supercharged, cylinder head and computer upgrades required, 2600-3400 cruise RPM, 8.75 to 10.5 compression ratio advised.	HR-214/325-2S-14	1800- 5800	708511°	70530-16°	214 220	276 282	114	(2) 36 49 (9)	.000 .520 .000 .531	
Good mid to upper RPM torque and HP, fair idle, moder- ate performance usage, cylinder head and computer upgrades required, 3000-3800 cruise RPM, 9.5 to 11.0 compression ratio advised. good w/supercharger, 10 lbs. max. boost w/8.0 max. compression ratio advised.	HR-222/339-25-14	2200- 6200	708521°	70530-16°	222 226	284 288	114	2 40 52 (6)	.000 .542 .000 .552	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon applications.

NOTE: 1992-2002 5.2L and 5.9L Magnum engines no longer use shaft mount rocker arms, but instead have individually mounted non-adjustable 1.6 ratio pedestal rockers. For street applications, Crane offers a method to convert to stud mounted adjustable rocker arms without cylinder head removal or machining. Install Pushrod guideplate and Rocker Arm Stud Conversion Kit, **36655-16**, along with aluminum roller rocker arms (such as **11776-16**, **11746-16**, or **11759-16**). Pushrods, **36621-16**, are also required. Valve cover clearance will have to be checked.

146

CRANE VAL	/E TRAIN CO	OMPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 300
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — Gold Race
						69975-1 [™]	69770-16 [.]		
						69975-1 ^{*b}	69770-16 [.]		
						09975-1	09770-10		
						69975-1 ^{*b}	69770-16 [.]		

c 1.5 ratio rocker arms, adjustable, must use special Crane pushrods (shafts not included).

For use with standard Chrysler alignment bars. Performance steel billet gears and roller chain set. a b

11759-16 [;]	11746-16 ⁱ	69975-1 ^{*g}	36621-16 ^f	
11759-16 ⁱ	11746-16 ⁱ	69975-1 ^{*9}	36621-16 ^f	
11759-16 ^j		69975-1 ^{*9}	36621-16 ^f	
	11746-16 ⁱ			
11759-16 ⁱ	11746-16 ⁱ	69975-1 ^{*g}	36621-16 ^f	
11759-16 ⁱ	11746-16 ⁱ	69975-1 ^{*g}	36621-16 ^f	

j

i i

Energizer, 1.6 ratio, for use with **36655-16** Pushrod Guideplate and Rocker Arm Stud Conversion Kit. Requires **36621-16** pushrods. 1.6 ratio, for use with **36655-16** Pushrod Guideplate and Rocker Arm Stud Conversion Kit. Requires **36621-16** pushrods.

- For use with standard Chrysler alignment bars. Heavy wall, heat treated, for use with **36655-16** Pushrod Guideplate and Rocker Arm Stud Conversion Kit. Performance steel billet gears and roller chain set. e f
- g

Chrysler-Dodge V-8 03-15 (non-VCT)

					сом	PLETE C	AM SPE	ECIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Roller Camsha	fts									
Excellent low end and mid range torque and HP, smooth idle, daily usage, off road, towing, economy, MDS compatible, 2200-2600 cruise RPM.	HR-208/297-25-16	1000- 5000	1989491* 3	a	208 214	268 274	116	(10.5) 38.5 44.5 (10.5)	.000 .000	.505 .505
Excellent low end and mid range torque and HP, smooth idle, daily usage, off road, towing, economy, valve spring upgrade required, 2200-2600 cruise RPM.	HR-210/3236-2S-12	1200- 5200	1989501° 3	b	210 216	268 274	112	(2) 32 45 (9)	.000 .000	.550 .550
Good mid range torque and HP, good idle, daily usage, also mild supercharged or nitrous, valve spring and com- puter upgrades required, 2400-2800 cruise RPM.	HR-216/3236-25-12	1800- 5800	1989511* (3)	b	216 222	274 280	112	1 35 48 (6)	.000 .000	.550 .550
Good upper RPM HP, fair idle, radical street, valve spring and computer upgrades required, 2600-3000 cruise RPM.	HR-222/3236-25-14	2200- 6200	1989521* (3)	b	222 228	280 286	114	(3) 45 48 0	.000 .000	.550 .550

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

CRANE VAL	/E TRAIN CO	OMPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS GOLD RACE
	99831-16 [.]								
	99831-16 [,]								
	JJ0J1-10								
	99831-16 [,]								
	99831-16 [,]								

- a Re-use standard lifters.
 b Must use non-MDS lifters.
 c Compatible with standard retainers and valve stem locks.

1958–1978 350-361-383-400-413-426-440 B & RB V8

The B and RB Big Block Chrysler engines vary primarily due to cylinder block deck height differences. Intake manifolds, distributor housings, and pushrod lengths are noticeable changes from one to the other. The B (Low Block) engines are 350-361-383-400- (1962) 413, while RB (High Block) engines are 413-426-400 cu.in. Characterized by inline lifter bores in the block, inline valves in the cylinder heads, 1.5:1 ratio shaft mounted rocker arms, and a front mounted distributor, these engines were used throughout Chrysler's product lines for over two decades. Be aware that there are reverse rotation marine, and also gear drive cam industrial versions of these engines, that require unique camshafts.

Early cylinder heads had removable rocker pedestals for the rocker shafts, as did the 1960's performance engines (Stage II, Stage III, Max Wedge, etc., which also featured adjustable rocker arms and mechanical lifter camshafts), while later heads have integral shaft stands.

From 1958 to 1969, all camshafts used a single bolt to retain the cam sprocket. These have been the Crane 64 prefix camshafts, with hydraulic and mechanical flat faced lifter grinds offered. In 1970, the 440 Six Pack engines were upgraded by having a three bolt configuration camshaft installed. These are our 68 prefix items, which include hydraulic, mechanical, retrofit hydraulic roller, and mechanical roller camshafts and components. The single bolt and three bolt camshafts can be interchanged among these engines, providing the appropriate timing set is used. **Due to their superior reliability, we will now be offering only the 68 prefix three bolt camshafts for their engines.**

The Chrysler Hemi 426 camshafts will also physically fit into the B engines, but due to their different lobe layout, only four cylinders would function properly.

Our offerings include retrofit 8620 steel billet hydraulic roller camshafts and steel billet roller lifters to provide an excellent torque and power band increase. The lifters are a drop in type (no block machining, or lifter bore sleeving required), having a vertical locking bar to prevent rotation. Special pushrods are required due to the increased height of the lifters.

Our steel billet mechanical roller camshafts are available in standard firing order (1-8-4-3-6-5-7-2) and

SFO (1-8-7-3-6-5-4-2) firing orders. Roller camshafts for the Chrysler Mega blocks with 47 degree lifter bank angles, and other aftermarket blocks having 48 degree lifter bank angles are also available. Roller camshafts with 2.125" diameter and 60mm journals can be custom ordered. Engines equipped with Koffel B1 cylinder heads will require grooving the fourth camshaft bearing journal for proper upper end lubrication, optional labor number **98088** accomplishes this. All of our roller lifters are designed to drop into the block, with no machining or lifter bore sleeving required.

Early raised cam Chrysler Mega blocks had very tall lifter bores and a 47 degree lifter bore bank angle, so part number **66554-16** roller lifters (with the pushrod seats and guidebars raised .400") can be used to avoid additional block machining. Special camshafts are also required for the change in lifter bank angle, so be certain of what you have before ordering.

Aftermarket cylinder heads may require different rocker arms, shafts, pushrods, valve springs, retainers, locks, etc, than standard. Make sure of exactly what you need before ordering additional components.

1966–1971 426 Hemi V8

The famed 426 Hemi is related to the RB V8. One primary change to the cylinder block includes additional head bolt bosses for the Hemi head's internal attaching bolts. These cylinder heads utilize the classic Chrysler double shaft system for the intake and exhaust rockers. Standard rocker ratios are 1.57:1 intake, and 1.52:1 exhaust. Lifter bores are inline, inclined at a 45 degree bank angle. These engines are indicated by our 66 prefix.

There were also 1964 –1965 426 Hemi 426 engines that had single bolt camshafts. We recommend using the later three bolt configuration camshafts and timing sets in these engines (no other modifications required) for increased reliability. The Chrysler B/RB camshafts will physically fit into the Hemi engines, but due to their different lobe layout, only four cylinders will function properly.

The currently available aftermarket cylinder blocks have either standard or raised camshaft locations. Most of the raised camshaft blocks have the lifter bores changed to a 48 degree lifter bank angle, for better pushrod geometry. Special camshafts are required to maintain proper cam timing for each side of the engine. Early

raised cam Chrysler Mega blocks had very tall lifter bores and a 50 degree lifter bore bank angle, so part number **66554-16** roller lifters (with the pushrod seats and guidebars raised .400") can be used to avoid additional block machining. Special camshafts are also required for this unique change in lifter bank angle. Some replacement iron blocks may also have tall lifter bores. Check your lifter guidebar to block clearance before final engine assembly in the event that modifications are required.

The aftermarket blocks may also have relocated lifter bore spacing. While the standard lifter centerline spacing is 1.812", there are also popular "Spread .100" (1.900") and "Spread .200" (2.000") configurations. Be sure of your spacing when ordering roller lifters so that you don't exceed the travel capabilities of the guidebar.

We offer hydraulic, retrofit hydraulic roller, mechanical, and mechanical roller camshafts and components for these engines. When installing our hydraulic roller camshafts and retrofit lifters, machining will be required on the block and cylinder heads to provide clearance for the pushrods. This is due to the increased pushrod seat height on the hydraulic roller lifters, changing the angle of the pushrods. Our roller lifters are designed to drop into the block, with no machining or lifter bore sleeving required.

Street roller camshafts are also offered, with their superior torque and horsepower potential popular among the Hemi crowd.

Mechanical roller camshafts are available with standard stepped journal diameters, 2.125" - BB suffix journal diameters (with standard or SFO (1-8-7-3-6-5-4-2) firing orders for standard 45 degree, or 48 degree lifter bank angle blocks), and 60mm (2.362") - 60J suffix journal diameters (with standard or SFO firing orders). These larger journal camshafts have a stepped front journal, so that a standard timing set can be used. The larger journal camshafts are machined for 3/8" – 24 bolts to attach the timing set, requiring special shouldered bolts, and two 5/16" dowel pins are installed. For increased oil distribution to the valve train area, we can machine the oil groove in the fourth camshaft bearing journal to a larger size. This can be performed under labor number **98088.**

While the standard valve stem diameter for these engines is 5/16", aftermarket heads are commonly set

up for 11/32" valve stems. Some heads for supercharged fuel applications may have 3/8" exhaust valve stems. Verify your valve stem diameter when ordering retainers and valve locks.

HEMI 99 500 V8

This engine was developed specifically for maximum performance drag racing applications, and never installed in any vehicles, nor sold as a complete assembly. Designated by our 159 prefix, we offer custom ground 8620 steel billet roller camshafts with 60mm (2.362") bearing journals, and the SFO (1-8-7-3-6-5-4-2) firing order.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf	ts										
Excellent low end torque, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200- 2600 cruise RPM, 8.0 to 9.5 compression ratio advised	Н-260-2	1200- 4800	683901 [*] 683902 ^{*a,b}	99278-16 ^ь	204 216	260 272	112	(5) 29 45 (9)	.000 .000		
Replacement for factory 335 HP 383 cu.in. camshaft.	BluePrinted 2843564 (3512907)	1400- 5000	680101	99278-16 ^ь	214 226	272 292	115	(5) 39 51 (5)	.000 .000		
Excellent low end and mid range torque and HP, good idle, daily usage, off road, towing, performance and fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 compres- sion ratio advised.	H-272-2	1600- 5400	683941* 683942* ^{a,b}	99278-16 ^ь	216 228	272 284	112	1 35 51 (3)	.000 .000	.454 .480	
Good mid range torque and HP, good idle, daily per- formance usage, mild bracket racing, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	H-222/3114-25-12	1800- 5600	680321°	99278-16 ^ь 99378-16 [*]	222 234	278 290	112	4 38 54 0	.000 .000		
Good mid range torque and HP, good idle, daily perfor- mance usage, mild bracket racing, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised. Also mild supercharged.	H-278-2	1800- 5600	683801 [°] 683802 ^{°a,b}	99278-16 ^b 99378-16*°	222 234	278 290	114	2 40 56 (2)		.467 .494	
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, 400+ cu.in., bracket rac- ing, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised.	H-286	2200- 6000	684321* (3)	99278-16 ^ь 99378-16 [*]	226 226	286 286	112	6 40 50 (4)	.000 .000		
Excellent mid range torque and HP, rough idle, bracket racing w/heavy car, auto trans w/2500+ converter, 10.0 to 11.5 compression ratio advised.	H-228/3200-25-8	2600- 6400	680591°	99278-16 ^b 99378-16*°	228 234	284 290	108	11 37 50 4		.480 .494	
Good mid range to upper RPM torque and HP, rough idle, performance usage, mild bracket racing, auto trans w/3000+ converter, 3800-4200 cruise RPM, 10.0 to 11.5 compression ratio advised.	H-302-2	2800- 6600	684561°	99278-16 ^b 99378-16*c	232 242	302 312	112	9 43 58 4		.504 .528	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- NOTE: These three-bolt camshafts can be used in engines originally equipped with single-bolt camshafts if the appropriate timing chain and gear assembly, 68975-1 or 68977-1 s used.
- NOTE: Camshafts for Chrysler Mega Blocks with 47 degree lifter bore bank angles, and aftermarket blocks with 48 degree
- bore bank angles, and aftermarket biocks with 48 degree lifter bore bank angles are available on special order.
 NOTE: For maximum performance, and to provide the most accurate valve adjustment on hydraulic lifter camshafts, the use of our 64770-16 adjustable rocker arms and 64640-16 (low block) or 64641-16 (high block) pushrods is highly recommended. Adjustable rocker arms and appropriate pushrods are required for use with mechanical lifter camshafts.
- NOTE: Low Block Engines are 350-361-383-400 cu.in., while High Block Engines are 413-426-440 cu.in.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 30
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS GOLD RACE
64308-1 ^ª	99839-16°	99957-16			64640-16 ⁹ 64641-16 ^h	68975-1 ⁱ 68977-1 ^j	64770-16 [⊧] 64771-16⁼'		
64308-1 ^d	99839-16°	99957-16			64640-16ª 64641-16 ^h	68975-1 ⁱ 68977-1 ^j	64770-16 ^k 64771-16 ^{*1}		
64308-1 ^ª	99839-16°	99957-16			64640-16ª 64641-16 ^h	68975-1 ⁱ 68977-1 ^j	64770-16 ^k 64771-16 ^{*1}		
64308-1 ^d	99839-16°	99957-16			64640-16ª 64641-16 ^h	68975-1 ⁱ 68977-1 ^j	64770-16 ^k 64771-16 ^{*I}		
64308-1ª	99839-16°	99957-16			64640-16ª 64641-16 ^h	68975-1 ⁱ 68977-1 ^j	64770-16 ^k 64771-16 ^{*I}		
64308-1ª	99839-16°	99957-16			64640-16 ⁹ 64641-16 ^h	68975-1 ⁱ 68977-1 ^j	64770-16 ^k 64771-16 ^{*I}		
	99839-16°	99954-16	99822-16 ^b		64640-16 ⁹ 64641-16 ^h	68975-1 ⁱ 68977-1 ^j	64770-16 ^k 64771-16 ^{*i}		
	99839-16°	99954-16	99822-16 ^b		64640-16 ⁹ 64641-16 ^h	68975-1 ⁱ 68977-1 ^j	64770-16 ^k 64771-16 ^{*i}		

Section Continued 👐

Cam and Lifter Kit, includes installation lubricants. а

- a Can and Liter NC, includes instantation hubitants.
 b For 68-78 engines.
 c For 68-78 engines, optional Hi Intensity hydraulic lifters, see page 272 for details.
 d Contains standard diameter valve springs, no machining required.
 e Standard diameter valve springs, no machining required.
 f Must machine cylinder heads.

- g h
- i
- Heavy wall, heat treated, for Low Block engines with adjustable rocker arms. Heavy wall, heat treated, for High Block engines with adjustable rocker arms. Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included). 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included). κ́.
- 1

				COMPLETE CAM SPECIFICATIONS								
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/ @.0 Cam Int/)50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf		INNOL	Emissions couc	EITTERS	IIIt/ EXII:	IIIQ EXII:	Separation			LAII.	LAII.	
Good mid range to upper RPM torque and HP, rough idle, performance usage, mild bracket racing, auto trans w/3000+ converter, 3800-4200 cruise RPM, modern upgrade from factory Six-Pack camshaft, 10.0 to 11.5 compression ratio advised.		3000- 6800	680601* (99278-16 99378-16*ª	236 244	292 300	112	11 59	45 5	.000 .000		
Strong mid range torque, rough idle, bracket racing, seri- ous off road, auto trans w/3000+ converter, 10.5 to 12.0 compression ratio advised.	H-238/3347-6	3000- 6800	680651°	99278-16 99378-16*ª	238 238	294 294	106	17 49	41 9	.000 .000	.502 .502	
Good upper RPM torque and HP, Pro Street with 440+ cu.in., rough idle, performance usage, bracket racing, auto trans w/3500+ converter, 4200-4600 cruise RPM, 10.5 to 12.0 compression ratio advised.	Н-312-2	3200- 7000	684571* (99278-16 99378-16*ª	242 252	312 322	112	14 63	48 9	.000 .000		
Moderate competition only, rough idle, good upper RPM torque and HP, bracket racing, auto trans w/3500+ converter, 10.5 to 12.0 compression ratio advised.	H-242/3520-2-8	3600- 7200	680701*	99278-16 99378-16 ^{*a}	242 252	314 324	108	18 59	44 13	.000 .000	.528 .552	
Good upper RPM torque and HP, Pro Street with 440+ cu.in., rough idle, performance usage, bracket racing, auto trans w/3500+ converter, aftermarket aluminum cylinder heads advised, 4200-4600 cruise RPM, 11.0 to 12.5 compression ratio advised.	H-244/362-25-12	3800- 7200	680711°	99278-16 99378-16"ª	244 252	300 308	112	15 63	49 9		.543 .564	
Performance usage, good upper RPM and HP, Pro Street with 440+ cu.in., rough idle, bracket racing, auto trans w/3800+ converter, aftermarket aluminum cylinder heads advised, 11.5 to 13.0 compression ratio advised.	H-248/369-25-12	4000- 7200	680721 [*]	99278-16 99378-16 ^{*a}	248 256	304 312	112	17 65	51 11	.000 .000	.554 .575	
Moderate competition only, good upper RPM HP, bracket racing, 440+ cu.in., auto trans w/4000+ converter, 12.0 miniumum compression ratio advised.	H-252/3680-2-8	4000- 7200	680761* (3)	99278-16 99378-16 ^{*a}	252 262	324 334	108	23 64	49 18		.552 .576	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: Camshafts for Chrysler Mega Blocks with 47 degree lifter bore bank angles, and aftermarket blocks with 48 degree lifter bore bank angles are available on special order.

NOTE: These three-bolt camshafts can be used in engines originally equipped with single-bolt camshafts if the appropriate timing chain and gear assembly, 68975-1 or 68977-1 is used.

NOTE: For maximum performance, and to provide the most accurate valve adjustment on hydraulic lifter camshafts, the use of our **64770-16** adjustable rocker arms and **64640-16** (low block) or 64641-16 (high block) pushrods is highly recommended.

Adjustable rocker arms and appropriate pushrods are required for use with mechanical lifter camshafts. NOTE: Low Block Engines are 350-361-383-400 cu.in., while High

Block Engines are 413-426-440 cu.in.

CAMSHAFTS

CRANE VAL	/E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 30
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS GOLD RACE
	99890-16 ^ь	99970-16	99822-16 ^ь		64640-16° 64641-16ª	68975-1*e 68977-1*f	64770-16 ^g 64771-16 ^{*h}		
	99890-16 ^ь	99970-16	99822-16 ^b		64640-16° 64641-16ª	68975-1*e 68977-1*f	64770-16 ⁹ 64771-16 ^{*h}		
	99890-16 ^ь	99970-16	99822-16 ^b		64640-16° 64641-16ª	68975-1*e 68977-1*f	64770-16 ⁹ 64771-16 ^{*h}		
	99890-16 ^ь	99970-16	99822-16 ^ь		64640-16° 64641-16ª	68975-1*e 68977-1*f	64770-16 ⁹ 64771-16 ^{*h}		
	99890-16 ^ь	99970-16	99822-16 ^ь		64640-16° 64641-16ª	68975-1*e 68977-1*f	64770-16 ^g 64771-16 ^{°h}		
	99890-16 ^ь	99970-16	99822-16 ^b		64640-16° 64641-16 ^d	68975-1*e 68977-1*f	64770-16 ⁹ 64771-16 ^{*h}		
	99890-16 ^ь	99970-16	99822-16 ^b		64640-16° 64641-16ª	68975-1*e 68977-1*f	64770-16 ⁹ 64771-16 ^{*h}		

a Optional Hi Intensity hydraulic lifters, see page 272 for details.
b Must machine cylinder heads.
c Heavy wall, heat treated, for Low Block engines with adjustable rocker arms.
d Heavy wall, heat treated, for High Block engines with adjustable rocker arms.

e Performance steel billet gears and roller chain set.
f Pro Series steel billet gears and roller chain set with thrust bearing.
g 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).
h 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).

					СОМ	PLETE C	AM SPE	ECIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Degrees Duration	Degrees	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Camshat			EIIIISSIONS COUC				зерагацыя		LAII.	LAII.	
Brute low end torque, smooth idle, daily usage, tow- ing, economy, also mild turbocharged, 2200-3000 cruise RPM, 8.0 to 9.5 compression ratio advised.	HR-204/286-2-12	800- 5200	689501*ª •	68532-16 ^b	e 204 214	260 270	112	(5) 29 44 (10)		.429 .452	
Excellent low end and mid range torque and HP, good idle, daily usage, off road, performance and fuel efficien- cy, 2600-3400 cruise RPM, 8.75 to 10.5 compression ratio advised.	HR-214/325-25-12	1400- 5600	689511*ª (68532-16 ^b	214 222	276 284	112	0 34 48 (6)		.488 .509	
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3000-3800 cruise RPM, 9.5 to 10.75 compression ratio advised.	HR-222/339-25-12	1800- 6000	689521*ª	68532-16 ^b	222 230	284 292	112	4 38 52 (2)		.509 .528	
Good mid range torque and HP, fair idle, performance usage, 3600-4400 cruise RPM, excellent for 440 Six-Pack, mild supercharged, 10.0 to 11.5 compression ratio advised.	HR-230/352-2S-12	2200- 6400	689531*ª •	68532-16 ^b	230 236	292 298	112	8 42 55 1		.528 .539	
Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, 3800-4600 cruise RPM, mild supercharged, 10.5 to 12.0 compression ratio advised.	HR-234/359-25-12	2600- 6600	689551*ª •	68532-16 ^b	234 242	296 304	112	10 44 58 4		.539 .558	
Performance usage, good mid range torque and HP, rough idle, bracket racing w/heavy car, 440+ cu.in., auto trans w/3000+ converter, 4000-4800 cruise RPM, 10.5 to 12.0 compression ratio advised.	HR-240/365-2S-10	2800- 6600	689561*ª •	68532-16 ^ь	240 248	302 310	110	15 45 59 9		.548 .558	
Good mid range and upper RPM torque and HP, rough idle, performance usage, bracket racing, 440+ cu.in., auto trans w/3200+ converter, 4000-4800 cruise RPM, good w/mild supercharged or plate nitrous system, 11.5 to 13.0 compression ratio advised.	HR-240/365-25-14	3000- 6800	689541*ª •	68532-16 ^b	240 248	302 310	114	11 49 63 5		.548 .558	
Good upper RPM torque and HP, performance usage, bracket racing, 470+ cu.in., auto trans w/3500+ con- verter, good w/manifold nitrous system, 12.0 to 13.5 compression ratio advised. Good w/supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised.	HR-248/372-25-14	3200- 7000	689571*ª ()	68532-16 ^ь	248 256	310 318	114	15 53 67 9		.558 .558	
Performance usage, good upper RPM torque and HP, bracket racing, 490+ cu.in., aftermarket aluminum cylin- der heads advised, auto trans w/3500+ converter, good w/ large manifold nitrous system, 12.5 minimum com- pression ratio advised. Good w/supercharger, 22 lbs. max. boost w/8.5 max. compression ratio advised.	HR-254/400-2S-14	3400- 7000	689701*ª	68532-16 ^ь	254 262	324 332	114	17.5 56.5 69.5 12.5		.600 .600	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: Camshafts for Chrysler Mega Blocks with 47 degree lifter bore bank angles, and aftermarket blocks with 48 degree lifter bore bank angles are available on special order.

- NOTE: These three-bolt camshafts can be used in engines originally equipped with single-bolt camshafts if the appropriate timing chain and gear assembly, 68975-1 or 68977-1 is used.
- **NOTE:** For maximum performance, and to provide the most accurate valve adjustment on hydraulic roller camshafts, the use of our 64770-16 adjustable rocker arms and 64628-16 (low block) or 64629-16 (high block) pushrods is highly recommended.
- Otherwise, special length pushrods will be required. NOTE: Low Block Engines are 350-361-383-400 cu.in., while High Block Engines are 413-426-440 cu.in. NOTE: For engines equipped with B-1 cylinder heads, the fourth the parties incurrent purch the ground for report all incurrence all the parties incurrent purch the ground for report all incurrence all the parties incurrent purch the ground for report all incurrence all the parties incurrent purch the ground for report all incurrence all the parties incurrent purch the ground for report all incurrence all the parties incurrence and the parties incurrence all incurrence a
- cam bearing journal must be grooved for proper oiling. La-bor operation **98088** is an available option for this service.

CRANE VALV	/E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 300
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — Gold Race
	99893-16 [.] 99832-16 ^d	99969-16 99976-16°	99822-16 '		64628-16 ^f 64629-16 ^g	68975-1 ^{*h} 68977-1 ^{*i}	64770-16 ⁱ 64771-16 ^{*k}		
	99893-16° 99832-16 ^{cd}	99969-16 99976-16°	99822-16 [.]		64628-16 ^f 64629-16 ^g	68975-1* ^h 68977-1* ⁱ	64770-16 ⁱ 64771-16 ^{*k}		
	99890-16 [°] 99832-16 ^{°d}	99970-16 99976-16°	99822-16 [,]		64628-16 ^f 64629-16 ^g	68975-1* ^h 68977-1* ⁱ	64770-16 ⁱ 64771-16 ^{*k}		
	99890-16° 99832-16 ^{cd}	99970-16 99976-16°	99822-16 [.]		64628-16 ^f 64629-16 ^g	68975-1 ^{*h} 68977-1 ^{*i}	64770-16 ^j 64771-16 ^{*k}		
	99890-16 ^c 99832-16 ^{c,d}	99970-16 99976-16°	99822-16 '		64628-16 ^f 64629-16 ^g	68975-1 ^{*h} 68977-1 ^{*i}	64770-16 ⁱ 64771-16 ^{*k}		
	99890-16° 99832-16 ^{cd}	99970-16 99976-16°	99822-16 ^c		64628-16 ^f 64629-16 ^g	68975-1* ^h 68977-1* ⁱ	64770-16 ⁱ 64771-16 ^{*k}		
	99890-16° 99832-16 ^{cd}	99970-16 99976-16°	99822-16'		64628-16 ^f 64629-16 ^g	68975-1* ^h 68977-1* ⁱ	64770-16 ⁱ 64771-16 ^{*k}		
	99890-16 [.] 99832-16 ^{.,d}	99970-16 99976-16°	99822-16 [.]		64628-16 ^f 64629-16 ^g	68975-1 ^{°h} 68977-1* ⁱ	64770-16 ^j 64771-16 ^{*k}		
	99890-16 [.] 99832-16 ^{.,d}	99970-16 99976-16°	99822-16 [.]		64628-16 ^f 64629-16 ^g	68975-1 ^{*h} 68977-1* ⁱ	64770-16 ⁱ 64771-16 ^{*k}		

Requires cam button spacer and 66990-1 aluminum-bronze, or 66970-1 coated steel distributor а drive gears. Vertical locking bar hydraulic roller lifters, no machining required. Special length pushrods are required, use 64628-16 (Low Block) or 64629-16 (High Block) with adjustable rocker arms. b

f Heavy wall, heat treated, for Low Block engines with adjustable rocker arms. Heavy wall, heat treated, for High Block engines with adjustable rocker arms.

g h Performance steel billet gears and roller chain set.

i

ĺ.

Must machine cylinder heads. Ovate wire beehive spring, requires **99976-16** retainers. Steel, for **99832-16** beehive springs. d

е

C

Pro Series scele billet gears and roller chain sec. Pro Series scele billet gears and roller chain set with thrust bearing. 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included). 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).

					СОМ	PLETE C	AM SPE	CIFICAT	IONS		1
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.		Open/Close @ .050" Cam Lift Int/Exh	Hot	Lift Int.	
Mechanical Lifter Camsho											
	F-238/3467-2-12	2800- 6600	681201°	99259-16	238 248	284 294	112	12 46 61 7		.520 .540	
Good mid range torque and HP, rough idle, moderate performance usage, good mid-range HP, bracket racing, auto trans w/2500+ converter, serious off road, 10.0 to 11.5 compression ratio advised.	F-248/3334-2-12	3200- 7000	681241°	99259-16	248 258	310 320	112	17 51 66 12		.500 .520	
Good mid range torque and HP, rough idle, performance usage, bracket racing, auto trans w/3000+ converter, 10.5 to 12.0 compression ratio advised.	F-248/3600-2-8	3400- 7000	680931°	99259-16	248 258	284 294	108	21 47 62 16		.540 .560	
Good mid range and upper RPM torque and HP, rough idle, performance usage, bracket racing, auto trans w/3000+ converter, 4000-4400 cruise RPM, 11.0 to 12.5 compression ratio advised.	F-250/376-25-12	3600- 7200	680941°	99259-16	250 254	282 286	112	18 52 64 10		.564 .573	
Replacement for factory 425 HP 426 cu.in. camshaft.	BluePrinted 2402293	3600- 7200	680201°	99259-16	256 256	304 304	112.5	20.5 55.5 65.5 10.5		.504 .504	
Good mid range and upper RPM torque and HP, rough idle, performance usage, bracket racing, auto trans w/3500+ converter, 11.0 to 12.5 compression ratio advised.	F-258/3468-8	4000- 7400	681321°	99259-16	258 258	320 320	108	26 52 62 16		.520 .520	
Moderate competition only, good mid and upper RPM HP, bracket racing, auto trans w/3500+ converter, 11.5 to 13.0 compression ratio advised.	F-268/3868-2-8	4600- 7800	681561°	99259-16	268 278	304 314	108	31 57 72 26		.580 .600	
Competition only, good upper RPM HP, bracket racing, 1-4 bbl., manual trans or auto trans w/4000+ converter, 383+ cu.in., 12.0 minimum compression ratio advised.	F-274/3933-8	4800- 8000	681681°	99259-16	274 274	314 314	108	34 60 70 24		.590 .590	
Competition only, good upper RPM HP, bracket racing, manual trans or auto trans w/4000+ converter, 440+ cu.in., 12.0 minimum compression ratio advised.	F-278/4002-8	5000- 8200	681701°	99259-16	278 278	314 314	108	34 64 70 28			
Competition only, good upper RPM HP, bracket racing, aftermarket aluminum cylinder heads advised, manual trans or auto trans w/race converter, 470+ cu.in., 13.0 minimum compression ratio advised.	F-280/430-10	5000- 8400	681721°	99259-16	280 280	320 320	110	33 67 73 27	.018 .018	.645 .645	
Radical competition only, maximum performance appli- cations, flat tappet restricted classes, 1-4 bbl., manual trans or auto trans w/race converter, 13.0 minimum min- imum compression ratio advised.	F-288/4134-6	5200- 8400	681941°	99259-16	288 288	324 324	106	42 66 74 34	.026 .026	.620 .620	

RPM range shown is for average usage. These cam profiles NOTE: Camshafts for Chrysler Mega Blocks with 47 degree lifter will RPM higher, depending upon application. NOTE: These three-bolt camshafts can be used in engines bore bank angles, and aftermarket blocks with 48 degree lifter bore bank angles are available on special order. originally equipped with single-bolt camshafts if the appropriate timing chain and gear assembly, 68975-1 or 68977-1 is used. NOTE: To provide for valve adjustment on mechanical lifter camshafts, the use of our 64770-16 or 64790-1 adju rocker arms and 64621-16 (low block) or 64622-16 camshafts, the use of our 64770-16 or 64790-1 adjustable

rocker arms and 64621-16 (low block) or 64622-16 (high

block) pushrods is highly recommended. **NOTE:** Adjustable rocker arms and appropriate pushrods are

- required for use with mechanical lifter camshafts.
- NOTE: Low Block Engines are 350-361-383-400 cu.in., while High Block Engines are 413-426-440 cu.in.

158

		IN COMPON							
See pg.	338 See pg	n. 317 See pg.	330 See pg. 34	43 See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 3
VALVE S AND RET KIT	AINER VAL		VALVE STEM IERS SEALS	STEM	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	ALUMINUM Energizer	ROCKERS Gold Race
	9989	0-16ª 9997(D-16 99822-'	16 ª	64621-16 ^ϧ 64622-16ՙ	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997(0-16 99822-	16ª	64621-16 ^b 64622-16 ^c	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997	0-16 99822-	16ª	64621-16 ^b 64622-16 ^c	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997	0-16 99822-	16ª	64621-16 ^b 64622-16 ^c	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	3-16ª 99954	4-16 99822-	16ª	64621-16 ^b 64622-16 ^c	64975-1 ⁱ 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997	0-16 99822-	16ª	64621-16 ^b 64622-16 ^c	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997	0-16 99822-	16ª	64621-16⁵ 64622-16℃	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997	0-16 99822-	16ª	64621-16 ^b 64622-16 ^c	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997	0-16 99822-	16 ª	64621-16⁵ 64622-16℃	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997	0-16 99822-	16ª	64621-16 ⁶ 64622-16 ⁶	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		
	9989	0-16ª 9997	0-16 99822-	16ª	64621-16 ⁶ 64622-16 ⁶	68975-1 ^{*d} 68977-1 ^{*e}	64770-16 ^f 64771-16 ^{*g}		

- a Must machine cylinder heads.
 b Heavy wall, heat treated, for Low Block engines with adjustable rocker arms.
 c Heavy wall, heat treated, for High Block engines with adjustable rocker arms.
 d Performance steel billet gears and roller chain set.

Pro Series steel billet gears and roller chain set with thrust bearing.
 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).
 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).

						СОМ	PLETE C	AM SPE	ECIFI	CATI	ONS		
	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	@ .0 Cam)50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
	Mechanical Roller Camsh		THE SE					Separate		-	Len		
			3200- 7200	688521°ª	66515-16 66542-16 ^b	246 254	296 304	112	16 64			.543 .561	
	Good mid range to upper RPM torque and HP, rough idle, moderate performance usage, mild bracket racing, auto trans w/3500+ converter, 4000-4400 cruise RPM, good w/plate nitrous system, 11.0 to 12.0 compression ratio advised.	SR-254/374-2S-12	3400- 7200	688531°ª	66515-16 66542-16 ^b	254 258	304 308	112	20 66	54 12	.020 .020	.561 .561	
	Good mid range and upper RPM torque and HP, rough idle, performance usage, oval track, bracket racing, auto trans w/3500+ converter, 11.5 to 13.0 compression ratio advised.	R-260/420-25-8	3800- 7600	688801°ª	66542-16 ^b	260 268	292 300	108	26 66	54 22		.630 .630	
	Good upper RPM torque and HP, moderate competition only, bracket racing, auto trans w/race converter, 12.0 minimum compression ratio advised.	R-268/420-2-8	4000- 7800	688811*ª	66542-16 ^b	268 278	300 310	108	30 71	58 27	.020 .020	.630 .630	
-	Competition only, good upper RPM HP, bracket racing, auto trans w/race converter, 12.5 minimum compression ratio advised.	R-272/420-2-10	4200- 8000	688821*ª	66542-16 ^b	272 282	304 314	108	30 75	62 27			
	Competition only, good mid to upper RPM torque and HP, 440+ cu.in., bracket racing, auto trans w/race converter, good with plate or manifold nitrous system, aluminum aftermarket cylinder heads advised, 12.5 minimum com- pression ratio advised.	R-274/454-2S-12	4400- 8200	688651*ª	66542-16 ^ь	274 278	306 310	112	29 75		.020 .022		
	Competition only, good upper RPM HP, 440+ cu.in., bracket racing, auto trans w/race converter, 12.5 mini- mum compression ratio advised.	R-276/420-2-10	4400- 8400	688831*ª	66542-16 [⊾]	276 286	308 318	110	32 77	64 29		.630 .630	
	Competition only, single 4-barrel, Super Stock 383-400 cu.in., auto trans w/race converter, 11.5 minimum com- pression ratio advised.	R-280/4468-8	4600- 8200	688981*ª	66542-16 [⊾]	280 280	312 312	108	37 73		.028 .030		
	Competition only, Super Street, Super Gas, Pro E.T., auto trans w/race converter, aftermarket aluminum cylinder heads advised, 13.0 minimum compression ratio advised.	R-280/450-254-10	4600- 8400	688681*ª	66542-16 [⊾]	280 288	320 328	114	33 77			.675 .638	
	Competition only, good upper RPM HP, 470+ cu.in., bracket racing, auto trans w/race converter, 13.0 mini- mum compression ratio advised.	R-282/420-2-10	4800- 8600	688841 ^{*a}	66542-16 [⊾]	282 292	314 324	110	35 80		.020 .020	.630 .630	
_	Competition only, Super Stock drags 426 cu.in., single 4-bbl, 11.5 minimum compression ratio advised.	R-284/456-6	5000- 8200	688561 ^{*a}	66542-16 ^b	284 284	324 324	106	38 70			.684 .684	
	Radical competition only, maximum performance appli- cations, Top Dragster, Top Sportsman, Quick 16, etc., 560+ cu.in., aftermarket aluminum cylinder heads required, good w/large manifold nitrous system.	R-286/500-2S3-14	5000- 8400	688671 ^{*a}	66542-16 [⊾]	286 306	320 338	114	32 92		.026 .022		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: These three-bolt camshafts can be used in engines originally equipped with single-bolt camshafts if the appropriate timing chain and gear assembly, 68975-1 or 68977-1 is used.

- NOTE: Camshafts for Chrysler Mega Blocks with 47 degree lifter bore bank angles, and aftermarket blocks with 48 degree lifter bore bank angles are available on special order.
 NOTE: Adjustable rocker arms and appropriate pushrods are required for use with roller lifter camshafts. To provide for
 - required for use with roller lifter camshafts. To provide for valve adjustment on roller lifter camshafts, the use of our 64770-16 or 64790-1 adjustable rocker arms and

64621-16 (low block) or **64622-16** (high block) pushrods is highly recommended.

NOTE: Low Block Engines are 350-361-383-400 cu.in., while High Block Engines are 413-426-440 cu.in.

NOTE: For engines are 413–420-440 cm. Note: For engines equipped with B-1 cylinder heads, the fourth cam bearing journal must be grooved for proper oiling. Labor operation 98088 is an available option for this service.

C 220	6	6	6	6	6	C	6 202	C	<u> </u>
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 30
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	CAST	— ALUMINUM	ROCKERS
AND RETAINER	VALVE		STEM	STEM		AND GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	96879-16 [°]	99970-16	99822-16 ^c	99098-1 ^j	64621-16 ^m	68975-1 [*] °	64770-16 ^q		
	99832-16 ^{c,d}	99976-16 ^f			64622-16 ⁿ	68977-1 [*]	64771-16 [*]		
	96879-16 [.]	99970-16	99822-16 ⁴	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16ª		
	99832-16 ^{p,c}	99976-16 ⁴			64622-16 ⁿ	68977-1* ^p	64771-16*r		
	00005 1//	00055 16	00022.1/(00000 1i	(4()1 1(m	(0075 1*0	(4770 1/0		
	99885-16 [°]	99955-16	99822-16 ^c	99098-1 ^j	64621-16 ^m 64622-16 ⁿ	68975-1*º 68977-1* ^p	64770-16ª 64771-16*'		
					04022 10	007771	0477110		
	99885-16 [,]	99955-16	99822-16 [,]	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16ª		
	9900J-10	33333-10	33022-10	33030-1 ²	64622-16 ⁿ	68977-1 [*]	64771-16 [*]		
	99885-16 [.]	99955-16	99822-16 [,]	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16ª		
	<i>,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>))</i> 022 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	64622-16 ⁿ	68977-1 [*]	64771-16 [*]		
	99885-16 ^c	99955-16	99822-16 ^c	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16ª		
					64622-16 ⁿ	68977-1* ^p	64771-16*r		
	99885-16 [.]	99955-16	99822-16 [,]	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16ª		
	<i>yy</i> 00 <i>y</i> 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>JJ022</i> 10	<i>)))))</i>	64622-16 ⁿ	68977-1 [*]	64771-16 [*]		
	99885-16 [.]	99955-16	99822-16 [.]	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16ª		
	JJ005 10	99681-16 ⁹	JJ022 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	64622-16 ⁿ	68977-1 [*]	64771-16 ^{*r}		
	99885-16 [.]	99955-16	99822-16 [.]	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16ª		
		99681-16 ⁹			64622-16 ⁿ	68977-1* ^p	64771-16 ^{*r}		
	99885-16 ^c	99955-16	99822-16 ^c	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16 ^q		
		99681-16 ⁹			64622-16 ⁿ	68977-1* ^p	64771-16 ^{*r}		
	99885-16 [,]	99955-16	99822-16 ⁴	99098-1 ^j	64621-16 ^m	68975-1*°	64770-16ª		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99681-16 ⁹	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		64622-16 ⁿ	68977-1 ^{*p}	64771-16 ^{*r}		
	96886-16 [,]	99634-16 ^h	99828-16 '	99081-1 ^k	64621-16 ^m	68975-1 [*] °	64770-16 ^q		
	961246-16 ^{c,e}	99054-10 ⁴ 99962-16 ⁱ	37020-10	99081-1 ⁴ 99082-1 ¹	64622-16"	68977-1*P	64771-16 [*]		

Requires cam button spacer and 66990-1 aluminum-bronze, or 66970-1 coated steel distributor а drive gears.

b Ultra Pro Series roller lifters.

c d

e f

Ultra Pro Series roller lifters. Must machine cylinder heads. Ovate wire beehive spring, requires **99976-16** retainers. Tirple, for 2.050" assembly height, requires **99662-16** retainers. Steel, for **99832-16** beehive springs. Titanium, Posi Stop, must use **99098-1** single groove valve stem locks, included with the retainers. Titanium, standard 10 degree configuration. Titanium, for **961246-16** valve springs. g h

i

Т

m

n

0

р

q

Machined steel Heat treated, single groove. Machined steel, heat treated, 10 degree for 11/32" single groove valve stems. Machined steel, heat treated, 10 degree for 3/8" single groove valve stems. Heavy wall, heat treated, for Low-Block engines with adjustable rocker arms. Heavy wall, heat treated, for High-Block engines with adjustable rocker arms. Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. 1.5 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included). 1.6 ratio iron rocker arms, adjustable, must use appropriate Crane pushrods (shafts not included).

					СОМ	PLETE C	AM SPE	CIFIC	ATIC	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/C @ .05 Cam L Int/E	ift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
		KANGE	ETTISSIONS CODE	LIFIERS	IIIL/EXII.	IIIU/EXII.	Separation	IIIU/E	XII	EXII.	EXII.
Hydraulic Lifter Camshaf Excellent low end torque, good idle, daily usage, 2600-3000 cruise RPM, 8.5 to 10.25 compression ratio advised.	H-212/304-2-12	1600- 5200	660091°	99278-16	212 222	284 294	112	(1) 48	33 (6)	.000 .000	
Great mid range torque and HP, street Hemi and Crate Motor upgrade, fair idle, mild bracket racing, auto trans w/2500+ converter, 3800-4200 cruise RPM, 10.0 to 11.5 compression ratio advised.	H-232/3360-2-12	2600- 6000	660611* •••	99278-16	232 242	304 314	112	9 58	43 4		.528 .535
Good mid range torque and HP, street Hemi and Crate Motor upgrade, fair idle, mild bracket racing, good w/472+ cu.in., auto trans w/3000+ converter, 3800- 4200 cruise RPM, 10.5 to 12.0 compression ratio advised.	H-236/348-25-12	2800- 6200	660621* 3	99278-16	236 244	292 300	112	11 59	45 5		.546 .550
Rough idle, performance usage, good upper RPM HP, bracket racing, auto trans w/3500+ converter, 4000- 4400 cruise RPM, 11.0 to 12.5 compression ratio advised. Also good w/ supercharger, 18 lbs. maximum boost w/8.5 maximum compression ratio advised.	H-244/362-2S-14	3200- 6600	660631°	99278-16	244 252	300 308	114		51 7	.000 .000	
Hydraulic Roller Camsha	fts — Retrofi	t									
Great mid range torque and HP, fair idle, mild bracket racing, auto trans w/2500+ converter, 3000-3400 cruise RPM, 9.5 to 11.0 compression ratio advised.	HR-226/345-2S1-12	2200- 6200	669521 [*] ª	68532-16 ^b	226 230	288 292	112	6 52	40 (2)	.000 .000	
Good mid range torque and HP, street Hemi and Crate Motor upgrade, fair idle, mild bracket racing, auto trans w/3000+. converter, 3400-3800 cruise RPM, 10.0 to 11.5 compression ratio advised.	HR-236/359-2S-12	2600- 6600	669531°°	68532-16 ^b	236 240	298 302	112	6 52	40 (2)	.000 .000	.564 .555
Crate Motor upgrade, rough idle, performance usage, good upper RPM torque and HP, bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised, supercharged and/or nitrous.	HR-244/372-2S-14	3000- 6800	669541*ª (3)	68532-16 ⁶	244 248	306 310	114	13 63	51 5		.584 .565
Performance usage, good upper RPM torque and HP, bracket racing, auto trans w/3500+ converter, good w/472+ cu.in., good w/large nitrous system, 11.5 minu- mum compression ratio advised. Also supercharged, 22 lbs. maximum boost w/8.5 maximum compression ratio.	HR-254/400-2S-14	3400- 7000	669571*ª	68532-16 ⁶	254 258	324 328	114	17.5 5 68			.628 .608
Performance usage, good upper RPM HP, bracket racing, auto trans w/race converter, good w/496+ cu.in., good w/large nitrous system, 12.5 minumum compression ratio advised. Also supercharged, 28 lbs. maximum boost w/8.5 maximum compression ratio.	HR-262/400-2S-14	3600- 7000	669561 [*] ª	68532-16 ^b	262 266	332 336	114	21.5 60 72			.628 .608

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Due to the increased pushrod seat height of the Crane retrofit hydraulic roller lifters, the cylinder heads, and possibly the cylinder block, will have to be modified for pushrod clearance.

NOTE: Recently produced iron cylinder blocks may have taller than standard lifter bores. This may cause roller lifter guidebar interference, preventing the lifters from contacting the base circle of the camshaft. This will require clearancing, usually by grinding the block. This should be checked prior to final engine assembly.

NOTE: Camshafts for Chrysler Mega Blocks with 50 degree lifter bore bank angles, and aftermarket blocks with 48 degree lifter bore bank angles are available on special order.

CAMSHAFTS

	ALVE TRAIN CO								
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29.
VALVE SPRING AND RETAINER KITS		RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS – GOLD RACE
	99893-16	99954-16 ^d	99824-16 [,]	99093-1°	66621-16 ^ŕ	68975-1 ^{*g} 68977-1 ^{*h}			
	99893-16	99954-16 ^d	99824-16 [,]	99093-1°	66621-16 ^f	68975-1 ^{*g} 68977-1 ^{*h}			
	99893-16	99954-16 ^d	99824-16 [.]	99093-1°	66621-16 ^f	68975-1 ^{*g} 68977-1 ^{*h}			
	99893-16	99954-16 ^d	99824-16 [.]	99093-1°	66621-16 ^f	68975-1 ^{*g} 68977-1 ^{*h}			
	00006 16	00070 144	00024.44	00002.1/		60075 4 ⁸ 8			
	99896-16 [,]	99970-16 ⁴	99824-16 [,]	99093-1°	66628-16 ^f	68975-1 ^{*9} 68977-1 ^{*h}			
	99896-16 [,]	99970-16 ^d	99824-16 [,]	99093-1°	66628-16 ^f	68975-1 ^{*g} 68977-1 ^{*h}			
	99896-16 [,]	99970-16 ^d	99824-16 '	99093-1°	66628-16 ^f	68975-1 ^{*g} 68977-1* ^h			
	99896-16°	99970-16ª	99824-16 [.]	99093-1°	66628-16 ^f	68975-1 ^{*g} 68977-1 ^{*h}			
	99896-16 [,]	99970-16 ^d	99824-16 [,]	99093-1°	66628-16 ^f	68975-1* ⁹ 68977-1* ^h			

a Requires cam button spacer and 66990-1 aluminum-bronze, or 66970-1 coated steel distributor drive gears.

Vertical locking bar hydraulic roller lifters, machining possibly required (see IMPORTANT NOTE on opposite page). Special length pushrods are required, use 66628-16.
 Must machine cylinder heads.

Requires Crane Multi-Fit valve locks. Machined steel, heat treated, Multi-Fit. d

e f Heavy wall, heat treated.

Performance steel billet gears and roller chain set. Pro Series steel billet gears and roller chain set with thrust bearing. g h

163

Also: Brad Anderson aluminum, Johnson/Rodeck TFX-92, Keith Black aluminum, Milodon VII litre, and JP-1

					СОМ	PLETE C	AM SPE	CIFICA	TIONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Clo @ .050 Cam Lif Int/Exh	′Hot tInt.	Lift Int.	
Mechanical Lifter Camsh	afts										
Good low and mid range torque, street Hemi, fair idle, moderate performance usage, bracket racing, auto trans w/3000+ converter, 3600-4000 cruise RPM, 10.0 to 11.5 compression ratio advised.	F-238/3200-2-12	2800- 6400	661201°	99259-16	238 248	300 310	112	12 46 61 7		.502 .507	
Good mid range torque and HP, Crate Motor upgrade, rough idle, moderate performance usage, bracket racing, auto trans w/3500+ converter, 10.5 to 12.0 compression ratio advised. Also mild supercharged and/or nitrous.	F-248/3600-2-12	3600- 7000	660941°	99259-16	248 258	294 304	112	17 52 66 12		.565 .568	
Rough idle, moderate performance usage, bracket rac- ing, auto trans w/4000+ converter, 11.5 to 13.0 com- pression ratio advised. Also mild supercharged and/or nitrous.	F-260/391-25-10	4000- 7200	661381* 3	99259-16	260 264	292 296	110	25 55 67 17		.614 .603	
Mechanical Roller Camsh	afts										
Good low end and mid range torque and HP, Crate Motor upgrade, good idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3200- 3600 cruise RPM, 10.0 to 11.5 compression ratio advised. Also mild supercharged and/or nitrous.		3000- 7000	668511*ª 3	66515-16 66542-16 ^b	238 246	288 296	112	42 46 60 6		.550 .550	
Good mid range torque and HP, Crate Motor upgrade, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 10.5 to 11.5 compression ratio advised. Also mild super- charged and/or nitrous.	SR-246/362-25-12	3200- 7200	668521*ª	66515-16 66542-16⁵	246 254	296 304	112	16 50 64 10		.568 .568	
Good mid range and upper RPM torque and HP, rough idle, mild bracket racing, auto trans w/3000+ converter, 11.0 to 12.5 compression ratio advised. Also mild super- charged and/or nitrous.	SR-254/374-2S-12	3600- 7600	668531*ª	66515-16 66542-16⁵	254 262	304 312	112	20 54 68 14		.587 .565	
Performance usage, Pro Street, mild bracket racing, auto trans w/race converter, 12.0 to 13.5 compression ratio advised. Also mild supercharged and/or nitrous.	SR-262/400-2S-12	3800- 7600	668541*ª	66515-16 66542-16 ^b	262 266	300 304	112	24 58 70 16			
Performance usage, bracket racing, auto trans w/race converter, good w/large nitrous system, 12.0 to 13.5 compression ratio advised. Also supercharged w/22 lbs. maximum boost w/8.5 maximum compression ratio.	R-262/452-25-12	4000- 7800	668301*ª	66515-16 66542-16 ^b	262 276	291 312	112	24 58 73 23		.710 .699	
Competition only, bracket racing w/heavy car, single 4 bbl, auto trans w/race converter, 12.0 to 13.5 compres- sion ratio advised.	R-274/4334-8	4400- 8000	668281*ª	66515-16 66542-16 ^b	274 274	314 314	108	32 62 68 20			

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: Recently produced iron cylinder blocks may have taller than standard lifter bores, causing roller lifter guidebar interference, preventing the lifters from contacting the base circle of the camshaft. This will require clearancing, usually by grinding the

block. You must check for this prior to final engine assembly.
 NOTE: Camshafts for Chrysler Mega Blocks with 50 degree lifter bore bank angles, and aftermarket blocks with 48 degree lifter bore bank angles are available on special order.
 NOTE: Roller camshafts for the Keith Black 48°, Brad Anderson, and

- Johnson/Rodeck TFX-92 engines, with either standard, 2.125" or 60mm cam bearing journals, are available on special order.
- Contact Crane's Performance Consultants for details. **NOTE:** Roller camshafts for the 2.125" 1-4 journal diameter configuration and those having 60mm journals are available with the 4/7 firing order swap (1-8-7-3-6-5-4-2).
- NOTE: Custom ground tool steel roller camshafts are available for the 2.125" 1–4 journal diameter, and the 60mm journal diameter configuration blocks.

164

CAMSHAFTS

CRANE VAL	/E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29.
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS – GOLD RACE
	99893-16	99954-16ª	99824-16 [,]	99093-1°	65689-16 ^f	68975-1 ^{*9} 68977-1 ^{*h}			
	99893-16	99954-16 ^d	99824-16 '	99093-1°	65689-16 ^f	68975-1 ^{*g} 68977-1 ^{*h}			
	99893-16	99954-16 ^d	99824-16 ⁴	99093-1°	65689-16 ^f	68975-1* ⁹ 68977-1* ^h			
	96878-16 [.]	99970-16 ^d	99824-16 [,]	99085-1°	65689-16 ^f	68975-1 ^{*9} 68977-1 ^{*h}			
	96878-16'	99970-16ª	99824-16 [.]	99085-1°	65689-16 ^f	68975-1 ^{°g} 68977-1 ^{°h}			
	96878-16'	99970-16 ^d	99824-16 '	99085-1°	65689-16 ^f	68975-1* ^g 68977-1* ^h			
	96878-16'	99970-16 ^d	99824-16 [.]	99085-1°	65689-16 ^f	68975-1* ⁹ 68977-1* ^h			
	96886-16'	99970-16 ^d	99824-16 ⁴	99085-1°	65689-16 ^f	68975-1* ^g 68977-1* ^h			
	96886-16'	99970-16 ^d	99824-16 [,]	99085-1°	65689-16 ^f	68975-1 ^{*g} 68977-1 ^{*h}			

Requires cam button spacer and 66990-1 aluminum-bronze, or 66970-1 coated steel distributor а drive gears. Ultra Pro Series roller lifters. Must machine cylinder heads. Requires Crane Multi-Fit valve locks.

b

c d

e Machined steel, heat treated, Multi-Fit.
f Heavy wall, heat treated.
g Performance steel billet gears and roller chain set.
h Pro Series steel billet gears and roller chain set with thrust bearing.

Also: Brad Anderson aluminum, Johnson/Rodeck TFX-92, Keith Black aluminum, Milodon VII litre, and JP-1

					СОМ	PLETE C	AM SPE	CIFIC	ATIC	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/O @.05 Cam Int/E	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Mechanical Roller Camsh	afts											
Competition only, NHRA A/FD.	R-276/5401-25-13XBB 48D	4000- 6800	668821 ^{*a,b,c}	66547-16°	276 282	305 311	113	25 74	71 28	.020 .022	.848 .821	
Competition only, serious race Super Stock w/2-4's, SFO (1-8-7-3-6-5-4-2) firing order.	R-276/555-2S-13XBBA SFO	5500- 8500	668351 ^{*a,b,d}	66542-16 ^f	276 294	306 324	113	26 82		.020 .022		
Competition only, drag racing single 4-barrel Super Stock, manual or auto trans w/race converter, 12.0 mini- mum compression ratio advised.	320-324-12R	4400- 8400	668951*ª	66542-16 ^f	284 286	320 324	112	32 77		.028 .030	.785 .760	
Competition only, Nostalgia F/C.	R-292/480-10XBB 48D	5000- 8500	668311 ^{*a,b,c}	66547-16°	292 292	332 332	110		76 36	.026 .026		
Competition only, Nostalgia A/GS.	R-292/500-254-14XBBA 48D	5500- 9500	668321 ^{*a,b,c}	66542-16 ^f 95542-16 ^g	292 296	332 336	114		77 31	.026 .026	.785 .760	
Competition only, maximum performance, baseline high RPM normally aspirated applications, 12.5 minimum compression ratio advised.	R-296/4778-8	4600- 8600	669091*ª	66542-16 ^f	296 296	328 328	108	42 78		.024 .026		
Competition only, supercharged alcohol dragster up to 480 cu.in.	R-296/4778-2S-14 R-296/4778-2S-14XBBA 48D	6000- 10000	669101 ^{*a} 669161 ^{*a,b,c}	66542-16 ^f 95542-16 ^g	296 300	328 322	114		77 31	.024 .026	.750 .775	
Competition only, supercharged alcohol funny car over 480 cu.in.	R-296/500-16 R-296/500-16 48D R-296/500-16 XBBA 48D	6000- 9600	669121 ^{*a} 669131 ^{*a,c} 669171 ^{*a,b,c}	66542-16 ^f 95542-16 ^g	296 296	336 336	116	35 87	81 29	.026 .026		
Competition only, supercharged alcohol funny car over 480 cu.in., Pro Mod, with rigid valve train, SFO (1-8-7-3- 6-5-4-2) firing order.	R-296/5001-16XBBA 48D SFO	6000- 9600	668331 ^{*a,b,c,d}	66542-16 ^f 95542-16 ^g	296 296	330 330	116		80 28	.020 .022	.785 .760	
Competition only, baseline supercharged Fuel Dragster or Funny Car, and Blown Fuel Hydro.	R-298/4778-14XBB 48D	5000- 8600	669181 ^{*a,b,c}	66549-16 ^h	298 298	330 330	114		81 33	.026 .026	.750 .726	
Competition only, Top Fuel Dragster and Funny Car.	R-302/500-2SR-14XBB 48D	5000- 8600	668341 ^{*a,b,c}	66549-16 ^h	302 298	342 338	114	37 83	85 35	.026 .026	.785 .760	
			•									

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.
 NOTE: Recently produced iron cylinder blocks may have taller than standard lifter bores, causing roller lifter guidebar interference, preventing the lifters from contacting the base circle of the camshaft. This will require clearancing, usually by grinding the block, you must check for this prior to final engine assembly.
 NOTE: Camshafts for Chrysler Mega Blocks with 50 degree lifter bore bank angles, and aftermarket blocks with 48 degree lifter bore bank angles are available on special order.

NOTE: Camshafts for the Keith Black 48°, Brad Anderson, and Johnson/Rodeck TFX-92 engines, with either standard, 2.125" or 60mm cam bearing journals, are available on special order. Contact Crane's Performance Consultants for details.

NOTE: Camshafts for the 2.125" 1-4 journal diameter configuration and those having 60mm journals are available with the 4/7 firing order swap (1-8-7-3-6-5-4-2).

NOTE: Custom ground tool steel roller camshafts are available for the 2.125" 1–4 journal diameter, and the 60mm journal diameter configuration blocks.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS GOLD RACE
	96848-16 ⁱ 961356-16 ^t	99681-16 ^k 99663-16 ^v	99826-16 ⁿ	99097-1 ^{,,}					
	96849-16 [;] 961355-16"	99656-16 ¹ 99663-16 ^v	99825-16°	99093-1 ^{s,p}					
	96848-16 ⁱ 961356-16 ^t	99656-16 ¹ 99663-16 ^v	99825-16°	99093-1 ^{s,p}	66624-16				
	96849-16 [;] 961356-16 [;]	99681-16 ^k 99663-16 ^v	99826-16"	99097-1 [,] °					
	96849-16 ⁱ 961355-16 ^u	99681-16 ^k 99663-16 ^v	99826-16ª	99097-1 ^{7,0}					
	96848-16 ⁱ 961355-16 ^u	99656-16 ¹ 99663-16 ^v	99825-16°	99093-1 ^{s,p}	66624-16				
	96848-16 ⁱ 96849-16 ⁱ 961355-16"	99681-16 ^k 99663-16 ^v	99826-16"	99097-1 ⁵⁰					
	96848-16 ⁱ 96849-16 ⁱ 961355-16 ^u	99681-16 ^k 99663-16 ^v	99826-16"	99097-1 ^{,,}					
	96848-16 ⁱ 96849-16 ⁱ 961355-16 ⁱ	99681-16 ^k 99663-16 ^v	99826-16"	99097-1 ^{,,}					
	96849-16 [;] 961355-16"	99681-16 ^k 99678-16 ^m 99663-16 ^v	99826-16ª 99828-16 ^p	99097-1 ^{7,0} 99098-1 ^{7,4}					
	96849-16 [;] 961355-16"	99681-16 ^k 99678-16 ^m 99663-16 ^v	99826-16" 99828-16 ^p	99097-1 ^{7,0} 99098-1 ^{7,4}					

Requires cam button spacer and 66990-1 aluminum-bronze, or 66970-1 coated steel distributor а drive gears. 9310 steel camshaft with 2.125" cam bearing journals. b For 48° lifter bank angle blocks. c

Camshaft has SFO firing order 1-8-7-3-6-5-4-2.

Ultra Pro Series 1.000" diameter roller lifters for standard to .200" spread lifter bore blocks, requires е cylinder block machining.

Ultra Pro Series roller lifters. f

Ultra Pro Series roller lifters for .100 to .200" spread lifter bore blocks.

g h Ultra Pro Series 1-1/16" diameter roller lifters for standard to .200" spread lifter bore blocks, requires r cylinder block machining. For 2.100" assembly height, cylinder head machining may be required. For 2.200" assembly height, cylinder head machining may be required.

i

k Titanium, for 11/32" valve stems, must use **99097-1** valve stem locks (included with the retainers) and 99421-16 lash caps. Requires Crane Multi-Fit valve locks. н

Titanium, for 3/8" valve stems, must use 99098-1 valve stem locks (included with the retainers) m and 99422-16 lash caps.

Must machine cylinder heads. n

For 11/32" valve stems. 0

For 5/16" valve stems. p

For 3/8" valve stems. q

Machined steel, heat treated.

Machined steel, heat treated, Multi-Fit.

Small diameter, low mass, Pacaloy wire for 2.100" assembly height. Requires **99963-16** titanium retainers. Small diameter, low mass, Pacaloy wire for 2.175" assembly height. Requires **99963-16** titanium retainers. Titanium, for **961356-16** and **961355-16** springs, requires Crane Multi Fit valve locks. t

u

V

	COMPLETE CAM SPECIFICATIONS									
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Cl @ .050 Valve L Int/Ex	ft Int.	Lift Int.
Hydraulic Follower Cams		INNOL	Emissions couc	TOLLOWENS	IIIQ EXII.	IIIt/ EXII.	Separadon	IIIC/ EX		LAII.
Excellent low end torque, smooth idle, upgrade for stock applications, economy, 1800-2400 cruise RPM, standard compression ratio advised.	H-260-2	1400- 4600	190021°	19800-8	212 220	260 268	112	(1) 3 47 (7	3.000).000	.415 .425
Good low end torque, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200- 2600 cruise RPM, 8.75 to 10.0 compression ratio	H-270	1400- 4600	194611*	19800-8	218 218	270 270	113	13 47(9		.415 .415
advised.			€							
Good low and mid-range torque, good idle, daily usage and off road, performance and fuel efficiency, turbocharged performance, 2600-3000 cruise RPM, 9.5 to 11.0 compression ratio advised.	H-272-2	1800- 5200	194621*	19800-8	226 234	272 280	110	83 52	8 .000 2 .000	
Fair idle, moderate performance usage, mini stock short oval, good mid-range HP, 3000-3400 cruise RPM, 10.0 to 11.5 compression ratio advised.	H-278-2	2400- 5600	190071*	19800-8	234 242	278 286	110	12 4 56		.460 .480
			€							
Aechanical Follower Can	a ch a fta									
Mechanical Pollower Can Moderate competition, good mid and upper RPM torque & HP, mini stock short oval, 10.0 to 11.5 com- pression ratio advised.	FOR-272-2-10	2500- 6000	192211*ª	19800-8	232 242	272 282	110	11 4 66		.435 .460
Moderate competition only, good mid and upper RPM torque & HP, mini stock short oval, 10.5 to 12.0 com- pression ratio advised.	FOR-300-6	3200- 7000	192251*ª	19800-8	264 264	300 300	106	30 5 62 2		.510 .510
Moderate competition only, good mid and upper RPM HP, mini stock long oval, 11.0 to 12.5 compres- sion ratio advised.	FOR-300-8	3400- 7200	192221*a	19800-8	264 264	300 300	108	29 5 65 1		.510 .510
Competition only, radical turbocharged, drag racing, high RPM road course, prepared cylinder head recom- mended.	FOR-310-2R-8	4200- 8200	192261*ª	19800-8	274 264	310 300	108	34 6 64 1		.535 .510
Competition only, good mid and upper RPM HP, mini stock, long oval track or road course, 12.0 minimum compression ratio advised.	FOR-310-8	4000- 7600	192241*ª	19800-8	274 274	310 310	108	34 6 70 2		.535 .535
Radical competition only, high RPM maximum perfor- mance applications, high boost and RPM turbo- charged, 13.0 minimum compression ratio advised.	FOR-320-10	4600- 8400	192231*ª	19800-8	284 284	320 320	110	37 6 77 2		.560 .560

RPM range shown is for average usage. These cam profile	es
will RPM higher, depending upon application.	

NOTE: Although 1988 and later 2.3L and 2.5L engines are equipped with a composite steel camshaft and roller followers, conventional camshafts and followers can be fitted to them.

IMPORTANT NOTE: Certain special order camshafts are not warranted against lobe wear. NOTE: To install mechanical type camshafts in the Ford 2300 c.c. engine, a methaod of effecting valve adjustment must be provided. Remove the hydraulic adjuster bodies from the cylinder head, then mill the top of the adjuster boss down .200". Machine 8 press-in sleeves from steel, approximately 1.700" long to replace the hydraulic adjusters. Drill and tap the center of each sleeve to 14mm x 1.25. The sleeves should then be pressed into the head, and secured by pinning or with a locking compound. The 71-74 Ford 2000 c.c. OHC engine's adjusters and locking nuts can then be used to provide valve adjustment. The rocker stabilizer springs from the 71-74 Ford 2000 c.c. OHC engine should also be used to maintain follower to valve stem contact.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING BELT AND SPROCKET ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS GOLD RACE
	99882-8⁵								
				(
	99882-8 ^b			1	o avoid premature etry must be obtain	wear of the cam lo ned. Put machinist d ace of the rocker foll	pes the proper ye (such as Dyl	valve train geom kem Layout Fluid	-
				ā	and observe the we	ace of the rocker foll ear pattern created b ect and incorrect pa	ov the lobes. Th	e drawing below	,
	99882-8 ^b				valve stem length o	or use a lash cap to c	btain the corre	ect pattern.	
						┓ ┝──	correct →	l	
	99884-8°	99967-8	99820-8°						
									/ └─
	99884-8	99967-8	99820-8				rrect	7	
	99884-8⁵	99967-8	99820-8 ^b						,
					Valve too sho need longer v	alve			/
	99884-8 ^b	99967-8	99820-8 ^b		or lash cap				-
							← incorrect -	*	
	99884-8 ^b	99967-8	99820-8 ^b						,
					Valve too long	g, ath		$ \square $	
	99884-8 ^ь	99967-8	99820-8 ^b		or remove lash o	ap			J
	99884-8 ^b	99967-8	99820-8 ^b						

a Requires 99423-8 lash caps.
b Standard diameter valve springs, no machining required.
c Must machine cylinder head.

					СОМ	PLETE C	AM SPF	ECIFICATI	ONS		1
Application	Camshaft Series/ Grind Number	rpm Power Range		See pg. 266 FOLLOWERS	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees	Valve Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Follower	r Camshafts										
Excellent low end torque, smooth idle, daily usage, upgrade for stock applications, performance and fuel efficiency, 2200–3000 cruise RPM, 8.5 to 19.75 com-	RFOR-214/420-12	1000- 4200	•		214 214	252 252	112	0 34 44 (10)			
pression ratio advised.			€								
Good low end torque, good idle, daily usage, off road, performance and fuel efficiency, turbocharged perfor- mance, 2600-3200 cruise RPM, 8.75 to 10.5 compres-	RFOR-226/420-2S-12	1400- 4600	•		226 234	274 282	112	6 40 54 0		.420 .420	
sion ratio advised.			•								
Good mid range torque, fair idle, moderate performance usage, good mid-range HP, autocross, medium oval track, bracket racing, auto w/2500+ converter, 3200-	RFOR-234/450-8	2000- 5600	199511*		234 234	282 282	108	14 40 50 4		.450 .450	
3600 cruise RPM, 9.5 to 10.75 compression ratio advised.			3								
Rough idle, performance usage, good mid-range torque and HP, oval track, bracket racing, auto w/3000+ converter, 10.0 to 11.5 compression ratio	RFOR-242/480-8	2800- 6600	199521*		242 242	290 290	108	18 44 54 8		.480 .480	
advised.			•								
Rough idle, performance usage, good upper RPM HP, oval track, bracket racing, auto w/3500+ converter, 10.5 to 12.0 compression ratio advised.	RFOR-250/510-10	3200- 7000	199531*		250 250	298 298	110	20 50 60 10			
10.5 to 12.6 compression ratio advised.			•								

Mechanical Roller Follow	er Camshafts									
Moderate competition only, good mid range RPM torque and HP, short oval track, bracket racing, auto w/3200+ converter, 10.5 to 12.0 compression ratio advised.	RFOR-252/560-6	3200- 7000	198091°	252 252	284 284	106	24 56	48 16	.010 .012	.560 .560
Moderate competition only, good mid and upper RPM torque and HP, long oval track, bracket racing, auto w/4000+ converter, 11.5 minimum compression ratio advised.	RFOR-260/584-8	3600- 7400	198101 [°]	260 260	292 292	108	27 63	53 17	.010 .012	.584 .584
Competition only, good mid and upper RPM torque and HP, oval track, road course, bracket racing, auto w/ race converter, 12.0 minimum compression ratio advised.	RFOR-268/608-6	4000- 7800	198131°	268 268	300 300	106	32 64	56 24		.608 .608
Competition only, high RPM maximum performance applications, bracket racing, auto w/race converter, 12.5 minimum compression ratio advised, also high boost/high RPM turbocharged.	RFOR-276/632-8	4600- 8400	198161 [°]	276 276	308 308	108	35 71	61 25		.632 .632

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT NOTE: Hydraulic Roller Camshafts are designed to be used with a Ford stock length valve. Failure to do this will give incorrect gross lift, incorrect rocker geometry, and cause premature wear and loss of power.

IMPORTANT NOTE: Mechanical roller cams must use a valve that is 4.900" overall length, such as a small block Chevrolet valve. There should be .300" from tip of valve to top of keeper groove. This valve combined with Crane springs, retainers and locks will enable you to obtain proper valve spring assembly height and give you a .090" cushion from coil bind.

CAMSHAFTS

CRAINE VALV	/E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING AND RETAINER KITS	VALVE Springs	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING BELT AND SPROCKET ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS Gold Race
	99884-8ª	99967-8	99820-8ª		\square	Cam Base C	ircle	.50	00"R
	99884-8ª	99967-8	99820-8ª			_		×	
	99884-8ª	99967-8	99820-8ª		.425"				
	99884-8ª	99967-8	99820-8ª		2.07		Stock S	pring Seat	
	99884-8ª	99967-8	99820-8ª		cam, the v stock, a di obtained. method o material, l	t the correct valve tr valve stem height mu mension of 2.075" to If the spring seats he f measuring must be by drilling an 11/32"	ust be checked. o the tip of the ave been mach used. Make a perpendicular	. If the spring sea valve must be ined, then an alt gauge from a blo through hole. In:	ts are ernate ck of sert
	99838-8ª	99936-8	99820-8ª	99096-1 ^ь	the gauge (.500" rad	over the valve stem ius) base circle of the e of the gauge to the	and hold the f cam lobe. The	lat side against t dimension from	he
	99838-8ª	99936-8	99820-8ª	99096-1 ^ь	c.c. en	: To install Mechanic gine, a method of ef ed. Remove the hyd	fecting valve a	djustment must	be
	99838-8ª	99936-8	99820-8ª	99096-1 ^ь	inder I Machi long to ter of d	nead, then mill the t ne 8 press-in sleves o replace the hydrau each sleeve to 14mn	op of the adjus from steel, app lic adjusters. Di 1 x 1.25. The sle	ter boss down .2 roximately 1.700 rill and tap the ce eeves should ther	00". " en- n be
	99838-8ª	99936-8	99820-8ª	99096-1 ^ь	ing con ers and ment.	d into the head, and mpound. The 71-74 d locking nuts can th The rocker stabilizer IC engine should also	Ford 2000 c.c. (ien be used to springs from t	OHC engine's adju provide valve adj	ıst- ust-

171

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266 FOLLOWERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Cold Int. Exh.	Gross Lift Int. Exh.	
Mechanical Lifter Camsh	afts										
Good low and mid range power, manual or auto trans OK, advise low restriction air intake and header with free-flowing exhaust	F-210/374-2SR-10	1000- 6500	223-0010°		210 206	232 228	110	(1) 31 37 (11)	.008 .010	.374 .366	
Moderate performace usage, good mid range to upper RPM power, manual trans, advise upgraded air intake system, header with free-flowing exhaust.	F-214/382-2SR-9	2000- 7000	223-0012*		214 210	236 232	109	1 33 38 (8)		.382 .374	
Performance usage, upper RPM power, manual trans, good intake and exhaust with ported head recommend- ed, good with nitrous or supercharger, 10.5 to 12.0 com- pression ratio advised.	F-218/390-2SR-10	3000- 8000	223-0014* 3		218 214	240 236	110	2 36 41 (7)	.008 .010	.390 .382	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See p
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING BELT AND SPROCKET ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKEF GO RA
				Il custom grinds are av		er. Popular profiles includ	e:		
			F-226 The ma	/ 410 F-236/435 F-24 aximum performance	16/460 racing camshafts for t	hese engines are produce	ed in two versions:		
			F-226, The ma base ci ing to	/ 410 F-236/435 F-24 aximum performance ircle (1.418"), that wil be clearanced for lobe	16/460 racing camshafts for t I work with standard I clearance. Otherwise	hese engines are produce ength valves, but will req the nose of the lobe will	ed in two versions: uire the cylinder he contact the head.	ead cast- Reduced base	
			F-226, The ma base ci ing to circle (/410 F-236/435 F-24 aximum performance ircle (1.418″), that wil be clearanced for lobe (1.318″), that will worl	16/460 racing camshafts for t I work with standard I clearance. Otherwise k with either stock len	hese engines are produce ength valves, but will req	ed in two versions: juire the cylinder h contact the head. ick lash cap (Ferrea	ead cast- Reduced base 1 C10011),	

								CIFICATI			
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
lydraulic Lifter Camsha		NANGL	LITISSIONS COUC		IIIt/ LAII.	IIIt/ LXII.	Separation		LAII.	LAII.	
Frute low end torque, smooth idle, daily usage, fuel conomy, 1600-2200 cruise RPM, 7.75 to 8.75 com- ression ratio advised.	H-192/2667-2S-12	800- 4200	500511°	99280-12	192 204	248 260	112	(11) 23 39 (15)	.000 .000		
ood low end torque, smooth idle, daily usage, off oad, towing, economy, also mild turbocharged, 2200 600 cruise RPM, 8.0 to 9.5 compression ratio advisec	H-260-2	1200- 4600	503901°	99280-12	204 216	260 272	112	(5) 29 45 (9)	.000 .000	.458 .487	
ood low and mid range torque, good idle, daily usage nd off road, towing, performance and fuel efficiency, 600-3000 cruise RPM, 8.75 to 10.5 compression ratio dvised.	H-272-2	1800- 5400	503941* 3	99280-12	216 228	272 284	112	1 35 51 (3)	.000 .000	.487 .515	
iood low and mid range torque, fair idle, moderate per- ormance usage, limited 1/4 - 3/8 mile oval track, seriou ff road, mild bracket racing, auto with 2500+ converte 1.75 to 10.5 compression ratio advised.	S	2200- 5600	500211°	99280-12	224 234	288 298	106	10 34 47 7	.000 .000	.497 .523	
iood mid to upper RPM torque and HP, performance isage, 3/8 - 1/2 mile oval track, radical off road, bracket acing, 11.0 to 12.25 compression ratio advised.	H-238/3347-8	3200- 6400	500641°	99280-12	238 238	294 294	108	16 42 52 6	.000 .000		
Aechanical Lifter Camsl	nafts										
iood mid range torque and HP, fair idle, moderate erformance usage, off road, mild bracket racing, aut rans with 2000+ converter, 3400-3800 cruise RPM, 0.0 to 11.5 compression ratio advised.	F-238/3200-2-10	2600- 6000	501181°	99257-12ª	238 248	304 314	110	14 44 59 9	.022 .022		
ood upper to upper RPM torque and HP, 3/8 - 1/2 nile oval track, serious off road, bracket racing, auto vith 2500+ converter, 11.5 minimum compression atio advised.	F-246/359-2S-6	3000- 6200	501211°	99257-12ª	246 250	282 286	106	21 45 55 15	.012 .012		
iood upper RPM HP, performance usage, 3/8 - 1/2 nile oval track, bracket racing, auto with 3000+ con- erter, 12.0 minimum compression ratio advised.	F-256/3634-2S-8	3600- 6800	501311°	99257-12ª	256 264	292 300	108	23 53 63 21	.026 .026	.585 .604	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: Roller camshafts and kit components are available on special order.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
5cc pg. 550	5cc pg. 517	5cc pg. 550	5cc pg. 545	5cc pg. 540	Sec pg. 200	5cc pg. 500	5CC pg. 272	Sec pg. 275	500 pg. 27
VALVE SPRING			VALVE	VALVE		TIMING	STEEL	— ALUMINUM	ROCKERS -
AND RETAINER	VALVE		STEM	STEM		GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	99838-12	99944-12	99820-12 ^b	99097-1°	50621-12 ^d				
	99838-12	99944-12	99820-12 ^b	99097-1°	50621-12 ^d				
	99838-12	99944-12	99820-12 ^b	99097-1°	50621-12 ^d				
	99838-12	99944-12	99820-12 ^b	99097-1°	50621-12 ^d				
	99838-12	99944-12	99820-12 ^b	99097-1 [,]	50621-12 ^d				
	,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		50021 12				
	99893-12	99953-12	99820-12 ^b	99097-1°	50621-12 ^d				
	00902 12	00052 12	00920 12h	00007.1/	50621 12d				
	99893-12	99953-12	99820-12 ^b	99097-1°	50621-12 ^d				
	99893-12	99953-12	99820-12 ^b	99097-1°	50621-12 ^d				

c d

а

- Requires appropriate Crane pushrods. Must machine cylinder head. Machined steel, heat treated. Heavy wall, heat treated. b

175

1962–1987 221-255 (4.2L) – 260-289-302 (5.0L) cu.in. V8 and 1988–1995 302 (5.0L) cu.in. V8 trucks (except 1982-1995 302 (5.0L) H.O.)

Ford's modern line of small block V8 engines was introduced in 1962, with the 221 and 260 cu.in. versions. This engine family (properly referred to as the Windsor, even if it isn't the 351 cu.in. variety) has inline lifter bores in the block, and cylinder heads with inline valves equipped with 1.6:1 ratio rocker arms. The firing order is 1-5-4-2-6-3-7-8.

These engines are designated by Crane's 36 prefix. We offer hydraulic, hydraulic roller (retrofit and OE style), mechanical, and mechanical roller camshafts for them. A wide-ranging line of valve train components is also available.

The 1962 and 1963 cylinder heads have 5/16" diameter valve stems (different valve spring retainers, valve locks, and valve stem seals required), while the 1964 and later engines have 11/32" valve stems.

From 1962 to 1965, the rocker arm studs were a straight 3/8" diameter adjustable configuration. In 1966, bottleneck 3/8 – 5/16" rocker arm studs were installed, resulting in a nonadjustable configuration. The exception would be the HiPo 289 engines, offered through 1967, which had mechanical lifter camshafts, and retained the adjustable style straight 3/8" studs. Our 99768-16 positive locking nuts will permit valve adjustment on the bottleneck stud applications. In 1977, a net lash pedestal mount rocker arm system was installed, continuing with the remainder of production through 1995. These pedestal mount rocker cylinder heads can be easily converted to an adjustable configuration for hydraulic and hydraulic roller street applications by using our Pushrod Guideplate Conversion Kits. Part number 36655-16 provides for 3/8" stud mounted adjustable rocker arms, and 36656-16 is for 7/16" stud mounted rocker arms. No machining is necessary, and your standard pushrods can be maintained. thanks to the composite bushing inserts in the pushrod guideplates. For mechanical and mechanical roller applications, we advise the heads be machined for screw-in rocker arm studs and pushrod guideplates.

The production and aftermarket cylinder heads for the Windsor and Cleveland families all have the same valve layout, with the exception of the Gurney-Weslake pieces. If you are fortunate to have a set of these, we can custom produce a roller camshaft having the proper lobe layout.

Most 1985-1987 302, all 1988-97 302 passenger car, and all 1996-2000 302 truck engines are equipped with hydraulic roller camshafts and lifters. The firing order of 1-5-4-2-6-3-7-8 is maintained for these applications. Conventional hydraulic, mechanical, and roller lifter camshafts can be installed in these engines if the appropriate kit components are used.

The 1985-95 302 H.O. engines, although closely related, have a different firing order, and are discussed later on this page.

1969–1970 Boss 302 V8

Specifically developed for the Trans Am road racing series, the Boss 302 had canted valve "Cleveland" style cylinder heads installed on the 302 block. Since these heads have large ports and valves, and are intended for constant high RPM usage, a street driven application should have a relatively mild camshaft installed to enhance the torque and drivability. Rocker arm studs are a straight 7/16" diameter, with adjustable 1.73:1 ratio rocker arms required for the factory installed mechanical lifter camshaft. Although the valves are staggered, the same length pushrods are used for the intake and exhaust.

Due to the Boss heads' different valve spring requirements, and the increased rocker ratio, this engine is designated by Crane's 27 prefix (even though the camshaft is physically the same as the 36 prefix). We offer hydraulic, retrofit hydraulic roller, mechanical, and mechanical roller camshafts for them. An extensive line of valve train components is also available.

1985--1995 5.0L (302) H.O. V8

Although closely related to the standard 302, the 1985-95 5.0L H.O. are equipped with hydraulic roller lifters, with camshafts having a firing order of 1-3-7-2-6-5-4-8 (the same as the 351 Windsor). Our 44 prefix designates these engines. The camshafts are dimensionally the same as the 36 prefix, with the different firing order constituting the primary change. Camshafts can be interchanged, providing the necessary changes are performed for the proper firing order.

We offer hydraulic, hydraulic roller, mechanical, and mechanical roller camshafts. A wide-ranging line of valve train components is also available.

The standard pedestal mount rocker cylinder heads can be easily converted to an adjustable configuration for hydraulic and hydraulic roller street applications by using our Pushrod Guideplate Conversion Kits. Part number **36655-16** provides for 3/8" stud mounted adjustable rocker arms, and **36656-16** is for 7/16" stud mounted rocker arms. No machining is necessary, and your standard pushrods can be maintained, thanks to the composite bushing inserts in the pushrod guideplates. For mechanical and mechanical roller applications, we advise the heads be machined for screw-in rocker arm studs and pushrod guideplates.

1993-1995 SVT Cobra 5.0 Mustangs were factory equipped with aluminum needle bearing roller tip 1.7:1 pedestal mount rocker arms. These are our **44746-16**, designed for basic bolton installation, but make sure to check for adequate spring travel due to the increased valve lifts when installing on other engines.

1969–1993 351 (5.8L) cu.in. Windsor and 1982–1984 302 (5.0L) cu.in. H.O., also 1994– 1997 351W, and 302 SVO/351 SVO V8

Another derivative in the Windsor family, the 351 engine blocks incorporate 1.3" taller deck heights to accommodate the increased displacement. Lifter bores are still inline, as are the valves in the cylinder heads, and the 1.6:1 rocker arm ratio is retained. Most notably, the firing order was changed to 1-3-7-2-6-5-4-8. Our 44 prefix designates these engines. The camshafts are dimensionally the same as the 36 prefix, with the different firing order being the primary change. Camshafts can be interchanged, providing the necessary changes are performed for the proper firing order. Additionally, the 1982-1984 302 H.O. engines also were equipped with hydraulic lifter camshafts having this revised firing order.

We offer hydraulic, hydraulic roller (retrofit and OE style), mechanical, and mechanical roller camshafts and a wideranging line of valve train components for these engines.

From 1969 to 1976, bottleneck 3/8 – 5/16" rocker arm studs were installed in the cylinder heads, resulting in a nonadjustable configuration. Our 99768-16 positive locking nuts will permit valve adjustment for these applications. In 1977, a net lash pedestal mount rocker arm system was installed, continuing for the remainder of production through 1997. These pedestal mount rocker cylinder heads can be easily converted to an adjustable configuration for hydraulic and hydraulic roller street applications by using our Pushrod Guideplate Conversion Kits. Part number 36655-16 provides for 3/8" stud mounted adjustable rocker arms, and 36656-16 is for 7/16" stud mounted rocker arms. No machining is necessary, and your standard pushrods can be maintained, thanks to the composite bushing inserts in the pushrod guideplates. For mechanical and mechanical roller applications, we advise the heads be machined for screw-in rocker arm studs and pushrod guideplates.

1970-1982 351C-Boss 351-351M-400 cu.in. V8

The Ford 335 engine family (commonly called the "Cleveland") shared cylinder bore spacing dimensions, and the head bolt pattern with the Windsor engines, but few other parts are interchangeable. The inline lifter bores were retained, but they are at a different bank angle from the Windsor. Cam bearing sizes are also different, as are the distributor gear dimensions. The valves in the cylinder heads are canted (staggered), but the same length pushrods are used for the intake and exhaust valves. The rocker arm ratio is 1.73:1.

These engines are designated by Crane's 52 prefix. We offer hydraulic, retrofit hydraulic roller, mechanical, and mechanical roller camshafts for them. A wide-ranging line of valve train components is also available.

The pedestal mount rocker cylinder heads can be easily converted to an adjustable configuration for hydraulic and hydraulic roller street applications by using our Pushrod Guideplate Conversion Kits. Part number **52655-16** provides for adjustable configuration 7/16" stud mounted rocker arms. No machining is necessary, and your standard pushrods can be maintained, thanks to the composite bushing inserts in the pushrod guideplates. For mechanical and mechanical roller applications, we advise the heads be machined for screw-in rocker arm studs and pushrod guideplates.

The 1971 Boss 351 and 1972 351C H.O. featured cylinder heads with straight 7/16" rocker arm studs and pushrod guideplates, required for the mechanical lifter camshafts that were standard equipment.

The Fontana Clevor block also uses our 52 prefix camshafts, not the 36 or 44 prefix Windsor style items.

There can be a possible misapplication of components when choosing the proper retainers and valve stem locks for these engines. Although the valve stems are all 11/32" diameter, the configuration of the valve locks were changed. Note the following explanation to insure that the proper components are being used:

1970–1977 351C-351M-400: Intake and exhaust valves use multiple groove valve stem locks, having a large outside diameter, requiring the use of 3/8" type valve spring retainers.

1971 Boss 351/1972 351C H.O.: Intake and exhaust valves use standard single groove valve stem locks, requiring the use of 11/32" valve spring retainers.

1978 351M-400: The intake valves use multiple groove valve stem locks, having a large outside diameter, requiring the use of 3/8" type valve spring retainers. The exhaust valves use standard single groove valve stem locks, requiring the use of 11/32" valve spring retainers.

1979–1982 351M-400: Intake and exhaust valves use standard single groove valve stem locks, requiring the use of 11/32" valve spring retainers.

221-255 (4.2L)-260-289-302 (5.0L) cu.in. and 88-95 302 cu.in. trucks (exc. 82-95 302 [5.0L] HO)

					CON	IPLETE C	AM SPI	ECIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range		See pg. 273	Degrees Duration @ .050″ Int/Exh.	Degrees Duration	Degrees	Open/Close @ .050" Cam Lift 1 Int/Exh	Lash Hot Int. Exh.	Lift Int.
Hydraulic Lifter Camshaf					IIIt/EXII.	IIIt/ EXII.	Separation		EXII.	EXII.
Improves low-end and mid-range torque and HP in speed density fuel injected (SFI) truck (non-roller tappet) applications. Fine for auto or manual trans. Calif. legal 91-93 Federally certified trucks with MFMS.8TSHZC0, NFM5.8TSHZC1, OR PFM5.8TSHZD4 engine families. (50 state legal, C.A.R.B. E.O. D-225-24)	2021	800- 4200	364112ª	99280-16	190 198	252 260	109	(9) 19 33 (15)		.416 .432
Excellent low end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 8.0 to 9.5 com- pression ratio advised.	Energizer 260 H10	1200- 4600	13003* 130032* ^b	99280-16	204 204	260 260	110	(3) 27 37 13		.456 .456
Great low end torque and HP, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised. (50 state legal, pre-computer, C.A.R.B. E.O. D-225-32)	H-260-2	1200- 4800	363901 363902°	99280-16	204 216	260 272	112	(5) 29 45 (9)		.456 .484
Great low end torque and HP, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised.	Z-256-2	1200- 5000	363501* 363502*c •	99280-16	206 212	256 262	112	(4) 30 43 (11)		.461 .475
Good low end torque, smooth idle, daily usage, fuel economy, light towing, off road, 2200-2700 cruise RPM, 8.5 to 10.0 compression ratio advised.	Energizer 266 H10	1400- 4800	13004* 130042** •	99280-16	210 210	266 266	110	0 30 40 (10)		
Excellent low end and mid range torque and HP, good idle, daily usage, off road, towing, economy, 2400-2800 cruise RPM, 8.5 to 10.0 compression ratio advised.	H-266-2	1400- 5200	363931* 363932*c •	99280-16	210 218	266 274	114	(4) 34 48 (10)		.456 .472
Good low end and mid range torque, good idle, daily usage, off road, fuel efficiency plus performance, 2600- 3000 cruise RPM, 8.75 to 10.0 compression ratio advised.	Energizer 272 H10	1600- 5200	13005° 130052° ^b	99280-16	216 216	272 272	110	3 33 43 (7)	.000 .000	
Good low end and mid range torque and HP, good idle, daily usage and off road, towing, performance and fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 compres- sion ratio advised, w/centrifugal or small Roots super- charger, 8 lbs. maximum boost w/8.5 maximum com- pression ratio advised. Also good w/plate nitrous system. (50 state legal, pre-computer, C.A.R.B. E.O. D-225-32)		1800- 5400	363941 363942°	99280-16	216 228	272 284	112	1 35 51 (3)		.484 .512
Good low end and mid range torque and HP, good idle, daily usage and off road, towing, performance and fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 compres- sion ratio advised, w/centrifugal or small Roots super- charger, 8 lbs. maximum boost w/8.5 maximum com- pression ratio advised. Also good w/plate nitrous system.	Z-268-2	1800- 5600	363511" 363512"¢	99280-16	218 224	268 274	112	2 36 49 (5)		.490 .504

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller camshafts and lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: Specify if heads with 5/16" valve stems are used. These valve springs and retainers cannot be used with short valve stem heads.
- NOTE: Ford 221 thru 302 camshafts can be used in 351 Windsor engines if the engine is changed to 221 thru 302 firing order (1-5-4-2-6-3-7-8). Ford 351W firing order is 1-3-7-2-6-5-4-8.
- NOTE: To provide the most accurate valve adjustment on hydraulic lifter camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On engines equipped with bottleneck type studs, using 99768-16 positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.
- IMPORTANT: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 255 and 302 cu.in. engines with

pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.

- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and gear assemblies, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: Left hand rotation hydraulic camshafts are available on special order. Contact Crane's Performance Consultants for details.
- NOTE: These camshafts also fit the 1969-70 Ford-Mercury Boss 302 V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

	See pg. 338 ALVE SPRING ND RETAINER KITS 36308-14	See pg. 317 VALVE SPRINGS 96803-16 ^d	See pg. 330	See pg. 343 VALVE STEM SEALS	See pg. 340 VALVE STEM	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
	ND RETAINER Kits	SPRINGS		STEM	STEM				ALUMINUN	I ROCKERS
A	KITS	SPRINGS								
				SEALS		DUCUDADC	AND GEAR	ROCKER		GOLD
	36308-1 ^ª	96803-16 ^d			LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	36308-1"	96803-16	00046 46		00007.40	26624.46	44075 4*h	20000 10		26750.4
			99946-16		99097-1°	36621-16 ^f 36622-16 ^g	44975-1 ^{*h}	36800-16 ⁱ 36801-16 ⁱ	11746-16 ¹	36750-1 36759-1
						50022-10		20001-10	44746-16 ^m	36758-1
									44740-10	30730-1
	36308-1 ^d	96803-16 ^d	99946-16		99097-1°	36621-16 ^f	44975-1 ^{*h}	36800-16 ⁱ		36750-1
						36622-16 ⁹		36801-16 ^j	11746-16 ¹	36759-1
									44746-16 ^m	36758-1
	36308-1 ^d	96803-16 ^d	99946-16		99097-1°	36621-16 ^f	44975-1 ^{*h}	36800-16 ⁱ		36750-1
						36622-16 ⁹		36801-16 ^j	11746-16 ¹	36759-1
									44746-16 ^m	36758-1
	36308-1 ^d	96803-16 ^d	99946-16		99097-1°	36621-16 ^f	44975-1 ^{*h}	36800-16 ⁱ		36750-1
						36622-16 ⁹		36801-16 ^j	11746-16 ¹	36759-1
									44746-16 ^m	36758 -1
	36308-1 ^d	96803-16 ^d	99946-16		99097-1°	36621-16 ^f	44975-1 ^{*h}	36800-16 ⁱ		36750-1
						36622-16 ⁹		36801-16 ^j	11746-16 ¹	36759-1
									44746-16 ^m	36758-1
	36308-1 ^d	96803-16 ^d	99946-16		99097-1°	36621-16 ^f	44975-1 ^{*h}	36800-16 ⁱ		36750 -1
						36622-16 ⁹		36801-16 ^j	11746-16 ¹	36759-1
									44746-16 ^m	36758 -1
	36308-1 ^d	96803-16 ^d	99946-16		99097-1°	36621-16 ^f	44975-1 ^{*h}	36800-16 ⁱ		36750-1
						36622-16 ⁹		36801-16 ⁱ	11746-16 ¹	36759-1
									44746-16 ^m	36758 -1
	36308-1 ^d	96803-16 ^d	99946-16		99097-1°	36621-16 ^f	44975-1 ^{*h}	36800-16 ⁱ		36750-1
						36622-16 ⁹		36801-16 ^j	11746-16 ¹	36759-1
									44746-16 ^m	36758 -1
	26200 64	00000 101	00011111		00007.50		44075 4*h	2000 14		20750
	36308-1 ^d	96803-16 ^d	99946-16		99097-1°	36621-16 ^f	44975-1 ^{*h}	36800-16 ⁱ	11746 16	36750-
						36622-16 ⁹		36801-16 ⁱ	11746-16 ¹ 44746-16 ^m	36759-1 36758-1

Section Continued 🛰

- Cam and Lifter Kit, includes installation lubricants and Rocker Arm Pedestal Shim Kit. а b Cam and Lifter Kit, includes assembly lubricant.
- Cam and Lifter Kit, includes installation lubricants, and rocker arm adjusting nuts. C
- d Contains standard diameter valve springs, no machining required.
- Machined steel, heat treated. е
- For 63-68 engines, heavy wall, heat treated for use with or without guideplates. f
- For 69-95 engines, heavy wall, heat treated for use with or without guideplates.
- g h For 73-00 engines, performance steel billet gears and roller chain set.

16. Fatio, cast, non-rail type for 3/8" studs, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.

- To ratio, cast, rail type for 3/8" studs, non-adjustable with 5/16" top bottleneck studs, adjustable with straight 3/8" studs and locking nuts. i
- I Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- m Energizer, 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- n 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes 0 Rocker Arm Pedestal Shim Kit.
- p 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.

221-255 (4.2L)-260-289-302 (5.0L) cu.in. and 88-95 302 cu.in. trucks (exc. 82-95 302 [5.0L] HO)

				COMPLETE CAM SPECIFICATIONS						
	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.
Hydraulic Lifter Camshaf Good mid range torque, fair idle, daily usage, mild brack- et racing, auto trans w/2500+ converter, 2700-3200 cruise RPM, 9.5 to 10.75 compression ratio advised.	Energizer 278 H10	2200- 5600	13009° 130092°ª 3	99280-16 99380-16 ^{*d}	222 222	278 278	110	6 36 46 (4)	.000 .000	.498 .498
Moderate competition, rough idle, good mid-range torque and HP, limited oval track, mild bracket racing, serious off road, auto trans w/2500+ converter, 9.5 to 11.0 compression ratio advised.	H-222/3114-251-6	2200- 5400	360331°	99280-16 99380-16 ^{*d}	222 228	278 284	106	9 33 44 4	.000 .000	.498 .512
Good mid range torque and HP, good idle, daily perfor- mance usage, mild bracket racing, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised, also mild supercharged, nitrous.	H-278-2	2200- 5800	363801° 363802° ^b	99280-16 99380-16 ^{*d}	222 234	278 290	114	2 40 56 (2)	.000 .000	.498 .527
Good mid range torque and HP, good idle, daily perfor- mance usage, mild bracket racing, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised, also mild supercharged, nitrous.	Z-274-2	2200- 6000	363521° 363522° ^b	99280-16 99380-16 ^{*d}	224 230	274 280	110	3 41 54 (4)	.000 .000	.504 .518
Good mid range to upper RPM torque, fair idle, moderate performance usage, oval track, Street Stock, Enduro, Hobby, 1/4-3/8 mile, bracket racing, Street, Heavy, Pro E.T., Super E.T., auto trans w/3000+ converter, 3200- 3600 cruise RPM, 9.5 to 11.0 compression ratio advised.	H-288	2400- 6000	364381* 364382* •	99280-16 99380-16 ^{*d}	226 226	288 288	108	10 36 46 0	.000 .000	.488 .488
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 9.5 to 11.5 compression ratio advised, also w/plate or manifold nitrous system, or w/centrifugal or Roots supercharger, 10 lbs. max. boost w/8.5 maximum compression ratio.	H-286-2	2600- 6200	364551* 364552* ^b	99280-16 99380-16 ^{*d}	226 236	286 296	110	8 38 53 3	.000 .000	
Good mid range to upper RPM torque, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised.	Energizer 284 H12	2800- 6200	13006 [*] 130062 ^{*a}	99280-16 99380-16 ^{*d}	228 228	284 284	112	7 41 53 (3)		.512 .512
Good upper RPM torque and HP, rough idle, performance usage, bracket racing: Pro E.T., Super E.T., auto trans w/ race converter, oval track: Street Stock, Enduro, Hobby, 3/8-1/2 mile, 3800-4200 cruise RPM, 10.0 to 11.5 com- pression ratio advised. Good w/Roots supercharger, 15 lbs. maximum boost w/8.0 max. compression ratio advised, or w/manifold nitrous system.	H-296-2	3200- 6800	364561* 364562** 364562	99280-16 99380-16 ^{*d}	236 240	296 300	110	13 43 55 5	.000 .000	

RPM range snown is for average usage. These cam profiles	NUIE:	Ford 221 thru 302 camshafts can be used in 351 wind-	NUIE:	Many 1972 and later Ford-Mercury V-8 engines are
will RPM higher, depending upon application.		sor engines if the engine is changed to 221 thru 302		originally equipped with a retarded crankshaft sprocket. This
S CONTRACTOR STREET		firing order (1-5-4-2-6-3-7-8). Ford 351W firing order is		may cause idling and performance problems when installing
IMPORTANT: Adjustable Vacuum Advance Kit available. See page		1-3-7-2-6-5-4-8.		aftermarket camshafts. We recommend using our 44975-1
313 for details.	NOTE:	To provide the most accurate valve adjustment on hydraulic		or 44984-1 timing chain and gear assemblies, a pre-1972
NOTE: Many 1985-87 302 engines, all 88-97 302 passenger		lifter camshafts, the heads must be machined to accept		crankshaft sprocket, or by degreeing in your camshaft. The
car engines, all 96-00 302 truck engines, all 85-95 302		screw-in studs (on engines not originally equipped). On engines		non-retarded sprocket will have the alignment dot and
H.O., and all 94-97 351 Windsor engines are equipped		equipped with bottleneck type studs, using 99768-16 positive		keyway slot directly in line with each other.
with hydraulic roller camshafts and lifters. Conventional		locking nuts will permit valve adjustment. For engines	NOTE:	Left hand rotation hydraulic camshafts are available on
hydraulic, mechanical, or roller camshafts and lifters can be		equipped with pedestal mounted rocker arms and		special order. Contact Crane's Performance Consultants for
easily installed in these engines, providing the appropriate		hydraulic lifters, excessive lifter preload can be easily		details.
kit components are used.		remedied by using Crane's Rocker Arm Pedestal Shim Kit	NOTE:	These camshafts also fit the 1969-70 Ford-Mercury Boss
NOTE: Specify if heads with 5/16" valve stems are used. These valve		(99170-1). Refer to page 304 for details.		302 V-8 engines. Some kit components will differ. Contact
springs and retainers cannot be used with short valve stem	IMPOR	TANT: Crane offers a Pushrod Guideplate and Rocker Arm Stud		Crane's Performance Consultants for details.
heads.		Conversion Kit (36655-16) for street applications, enabling the		
		1977-00 255 and 302 cu.in. engines with pedestal mounted		
		rockers to have adjustable rocker arms without cylinder head		
		removal or machining. Refer to page 305 for details.		

L' SEANC L NOTE M

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUN	ROCKERS
AND RETAINER	VALVE		STEM	STEM		AND GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
36308-1°	96803-16°	99946-16		99097-1 ^h	36621-16 ^j 36622-16 ^k	44975-1 ^{*i}	36800-16" 36801-16°	11746-16 ^q	36750-1 36759-1
					50022-10		20001-10	44746-16 ^r	36758-1
36308-1°	96803-16°	99946-16		99097-1 ^h	36621-16 ⁱ	44975-1 ^{*1}	36800-16 ⁿ		36750-1
					36622-16 ^k	44984-1*m	36801-16°	11746-16 ^q	36759-1
								44746-16 [,]	36758-1
36308-1°	96803-16°	99946-16		99097-1 ^h	36621-16 ^j	44975-1 ^{*1}	36800-16"		36750-1
					36622-16 ^k		36801-16°	11746-16 ^q	36759-1
								44746-16 [,]	36758-1
36308-1°	96803-16°	99946-16		99097-1 ^h	36621-16 ^j	44975-1 ^{*1}	36800-16 [°]		36750-1
					36622-16 ^k		36801-16°	11746-16 ^q	36759-1
								44746-16'	36758-1
36308-1°	96803-16°	99946-16		99097-1 ^h	36621-16 ⁱ	44975-1 ^{*1}	36800-16"		36750-1
					36622-16 ^k		36801-16°	11746-16 ^q	36759-1
								44746-16 ^r	36758-1
	96874-16 ^f	99946-16	99820-16 ⁹	99097-1 ^h	36621-16 ^j	44975-1 ^{*1}	36800-16 ⁿ		36750-1
	50074-10	99969-16 ⁹	99020-10 ⁵	99097-1 99094-1 ⁱ	36622-16 ^k	44975-1 44984-1*m	36801-16°	11746-16 ^q	36759-1
								44746-16 ^r	36758-1
36308-1°	96803-16°	99946-16		99097-1 ^h	36621-16 ⁱ	44975-1 ^{*1}	36800-16"		36750-1
					36622-16 ^k		36801-16°	11746-16 ^q	36759-1
								44746-16 [,]	36758-1
	96874-16 ^f	99946-16	99820-16 ⁹	99097-1 ^h	36621-16 ⁱ	44975-1 ^{*1}	36800-16 ⁿ		36750-1
		99969-16 ⁹		99094-1 ⁱ	36622-16 ^k	44984-1*m	36801-16°	11746-16 ^q	36759-1
								44746-16 ^r	36758-1

- Cam and Lifter Kit, includes assembly lubricant.
- b Cam and lifter kit, includes installation lubricants, and rocker arm adjusting nuts.
- C Cam, lifter, and valve spring kit, includes installation lubricants.
- d Optional Hi Intensity hydraulic lifters, see page 272 for details.
- Contains standard diameter valve springs, no machining required. е f
- Must machine cylinder heads.
- Requires Crane Multi Fit valve locks. g h
- Machined steel, heat treated. Machined steel, heat treated, Multi Fit.


- m
- For 63-68 engines, heavy wall, heat treated for use with or without guideplates. For 69-95 engines, heavy wall, heat treated for use with or without guideplates. For 73-00 engines, performance steel billet gears and roller chain set. For 73-00 engines, Pro Series steel billet gears and roller chain set. 1.6 ratio, cast, non-rail type for 3/8" studs, must machine 1966-00 cylinder heads and install 00156 1 enders are fulled and 26650 1 purchad guideplate, or use 26655 16 Conversion n 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- o 1.6 ratio, cast, rail type for 3/8" studs, non-adjustable with 5/16" top bottleneck studs, adjustable with straight 3/8" studs and locking nuts.
- Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker q arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- Energizer, 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, r includes Rocker Arm Pedestal Shim Kit.
- 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs s and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount
- cylinder heads for street applications. 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes t
- Rocker Arm Pedestal Shim Kit. 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit. u

221-255 (4.2L)-260-289-302 (5.0L) cu.in. and 88-95 302 cu.in. trucks (exc. 82-95 302 [5.0L] HO)

				COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050″ Int/Exh.	Degrees Duration	Degrees	Open/Close @ .050" Cam Lift 1 Int/Exh	Hot Int.	Lift Int.
lydraulic Roller Camsha					IIIt/ LAII.	IIIV LAII.	Separation		LAII.	EAN.
Brute low end torque, smooth idle, daily usage, towing, performance and fuel efficiency, normally used in engines originally equipped with hydraulic roller cam- shafts. (50 state legal, C.A.R.B. E.O. D-225-46)	2020	800- 4600	364211 ^{*a}	36530-16°	198 208	260 270	112	(13) 31 36 (8)		.445 .470
Excellent low end and mid range torque and HP; good idle, daily usage, performance and fuel efficiency, off road, towing, 2400-3200 cruise RPM, 8.75 to 10.0 comp. ratio advised.	HR-216/325-2S-12	1800- 5600	369541 ^{*b,c}	36532-16 ^f	216 224	278 286	112	1 35 49 (5)		.520 .542
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3000-3400 cruise RPM, 9.0 to 10.75 comp. ratio advised.	HR-224/339-25-12	2400- 6400	369601 ^{*b,c}	36532-16 ^f	224 232	286 294	112	5 39 53 (1)		.542 .563
Mechanical Lifter Camsh	afts									
Replacement for factory 289 Hi-Po	BluePrinted C30Z-6250-C	2200- 6000	•	99257-16	227 227	266 266	114	3.5 43.5 51.5 (4.5)		.477 .477
			•							
Good low end & mid range torque & HP, fair idle, moder- ate performance usage, bracket racing, auto trans w/3000+ converter, 3400-3800 cruise RPM, 10.5 to 11.5 compress. ratio advised, also mild supercharged, nitrous.		2800- 6600	363841*	99257-16	238 248	278 288	114	10 48 63 5		.512 .533
Radical street, performance usage, oval track: Late Model, Sportsman, 3/8-1/2 mile, bracket racing: Pro, Pro E.T., Super E.T., auto trans w/race converter; 11.0 to 12.5 compression ratio advised.	F-280-2	3200- 7000	•	99257-16	244 252	280 288	108	16 48 56 16		.553 .572
Performance usage, good mid-range HP, bracket racing, auto trans w/4000+ converter, 11.0 to 12.5 compression ratio advised.	F-310-2	3600- 7400	364761*	99257-16	248 258	310 320	108	21 47 62 16		.533 .555
Performance usage, good mid and upper range HP, oval track, bracket racing, auto trans w/race converter, 11.5 minimum compression ratio advised.	F-260/3694-6	4400- 7800	361421*	99257-16	260 260	296 296	106	27 53 54 21		.591 .591
Moderate competition only, good upper RPM HP, bracket racing, auto trans w/race converter, 12.5 minim um com- pression ratio advised.		4800- 8200	361591*	99257-16	268 272	304 302	108	29 59 67 25		.630 .640

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller camshafts and lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: Specify if heads with 5/16" valve stems are used. These valve springs and retainers cannot be used with short valve stem heads.
- NOTE: Ford 221 thru 302 camshafts can be used in 351 Windsor engines if the engine is changed to 221 thru 302 firing order (1-5-4-2-6-3-7-8). Ford 351W firing order is 1-3-7-2-6-5-4-8.
- E: To provide the most accurate valve adjustment on hydraulic roller camshafts, and in order to effect valve adjustment when using mechanical lifter camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On engines equipped with bottleneck type studs, using 99768-16 positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic roller lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.
- IMPORTANT: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 255 and 302 cu.in. engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our **44975-1** or **44984-1** timing chain and gear assemblies, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: Left hand rotation mechanical camshafts are available on special order. Contact Crane's Performance Consultants for details.
- NOTE: These camshafts also fit the 1969-70 Ford-Mercury Boss 302 V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	A ROCH
NI15	STRINGS	REIMINERS	SERES	Evens	resinters	ASSEMBLI	Antino	LNLNGIZEN	
36308-1 ^g	96803-16 ⁹	99946-16		99097-1 ^j	36631-16 ¹ 36625-16 ^m	44975-1*r 44984-1*s	36800-16 ^t 36801-16 ^u	11746-16 ^w 44746-16 ^x	367 367 367
	96874-16 ^h	99944-16 99969-16 ⁱ	99820-16 ^h	99097-1 ^j 99094-1 ^k	95610-16ª 95614-16ª	44975-1* ^r 44984-1*s	36800-16 ^t 36801-16 ^u	11746-16 ^w 44746-16 ^x	367 367 367
	96874-16 ^h	99944-16 99969-16 ⁱ	99820-16 ^h	99097-1 ^j 99094-1 ^k	95610-16ª 95614-16ª	44975-1*r 44984-1*s	36800-16 ^t 36801-16 ^u	11746-16 ^w 44746-16 ^x	367 367 367
	96803-16g	99946-16		99097-1 ^j	36622-16 ^p 95618-16 ^q	44975-1* ^r 44984-1* ^s	36800-16 ^t		367 867
	99893-16 ^h	99953-16 99969-16 ⁱ	99820-16 ^h	99097-1 ^j 99094-1 ^k	36622-16 ^p 95618-16 ^q	44975-1*r 44984-1*s	36800-16 ^t		367 867
	96877-16 ^h	99943-16 99969-16 ⁱ	99820-16 ^h	99097-1 ^j 99094-1 ^k	36622-16 ^p 95618-16 ^q	44975-1*r 44984-1*s			367 867
	96877-16 ^h	99943-16 99969-16 ⁱ	99820-16 ^h	99097-1 ^j 99094-1 ^k	36622-16 ^p 95618-16 ^q	44975-1*r 44984-1*s			367 867
	96877-16 ^h	99943-16 99969-16 ⁱ	99820-16 ^h	99097-1 ^j 99094-1 ^k	36622-16 ^p 95618-16 ^q	44975-1*r 44984-1*s			367 867
	0.00FT		00000 5 5 5						
	96877-16 ^h	99943-16 99969-16 ⁱ	99820-16 ^h	99097-1 [;] 99094-1*	36622-16 ^p 95618-16 ^q	44975-1* ^r 44984-1*s			3 8

For 1986-89 (non-H.O.) engines originally equipped with hydraulic roller camshafts. а

Camshaft has standard base circle diameter, for use with 36532-16 or 36560-16 hydraulic roller lifters. b Requires 36970-1 (.467" I.D.), 36971-1 (.500" I.D.), or 44970-1 (.531" I.D. SVO) steel, or 36990-1 (.467" C

- I.D.), 36989-1 (.500"I.D.), or 44990-1 (.531"I.D. SVO), aluminum-bronze distributor drive gear.
- Cam, lifter, valve spring, and retainer kit, includes installation lubricants. For use with standard Ford alignment bars. d
- e
- Vertical locking bar hydraulic roller lifters, no machining required. Cylinder head removal will be required. f Contains standard diameter valve springs, no machining required.
- ĥ Must machine cylinder heads.
- Requires Crane Multi Fit valve locks.
- Machined steel, heat treated.
- Machined steel, heat treated, Multi Fit.
- For engines with non-adjustable pedestal rocker arms and stock base circle camshafts, heavy wall, heat treated.
- For engines with non-adjustable pedestal mount rocker arms, heavy wall, heat treated. m
- For engines with adjustable rocker arms with Crane's Pushrod Guideplate Conversion Kit (36655-16), heavy n wall, heat treated.
- 0 For engines with non-adjustable bottleneck studs or pedestal mount rocker arms , heavy wall, heat treated.
- For use with or without pushrod guideplate cylinder heads, heavy wall, heat treated.
- Pro Series one-piece. α
- For 73-00 engines, performance steel billet gears and roller chain set. r
- For 73-00 engines, Pro Series steel billet gears and roller chain set. ς

- 1.6 ratio, cast, non-rail type for 3/8" studs, must machine 1966-00 cylinder heads and install 99156t 16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- 1.6 ratio, cast, rail type for 3/8" studs, non-adjustable with 5/16" top bottleneck studs, adjustable u with straight 3/8" studs and locking nuts.
- Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker w arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- x Energizer, 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install **99156-16** rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- z 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- aa 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- bb 1.6 ratio, 7/16" stud, must machine 1966-00 cylinder heads and install 99157-16 rocker arm studs and 36650-1 pushrod guideplates.

221-255 (4.2L)-260-289-302 (5.0L) cu.in. and 88-95 302 cu.in. trucks (exc. 82-95 302 [5.0L] HO)

					СОМ	PLETE C	AM SPE	CIFI	CATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/ @.0 Cam Int/	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Mechanical Roller Camsh	afts										
Good low end and mid range torque and HP, fair idle, moderate performance usage, off road, bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 10.5 to 11.5 compression ratio advised.	SR-238/350-25-12	2800- 6600	368511 ^{*a,b}	44518-16 ⁿ 44570-16 ^{d,n}	238 246	288 296	112	12 60	46 6	.020 .020	.560 .579
Fair idle, moderate performance usage, good mid-range torque and HP, bracket racing, good w/manifold nitrous system, auto trans w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised. Good w/ Roots supercharger, 16 lbs. max. boost w/8.0 max. com- pression ratio advised.	SR-246/362-25-10	3400- 7000	368601 ^{*a,b}	44518-16ª 44570-16 ^{d,n}	246 254	296 304	110	18 62	48 12	.020 .020	.579 .598
Good mid range torque and HP, radical street, rough idle, performance usage, oval track, bracket racing, auto trans w/race converter, 11.0 to 12.5 compression ratio advised.	R-252/420-25-8	3600- 7400	448801 ^{*a,b,c}	44518-16 ⁿ 44570-16 ^{d,n}	252 258	284 290	108	22 61	50 17	.020 .020	.672 .672
Good mid range to upper RPM torque and HP, 302+ cu. in., rough idle, performance usage, oval track, bracket racing, auto trans w/race converter, 11.5 minimum com- pression ratio advised.	R-258/420-25-8	3800- 7600	448831 ^{*a,b,c}	44518-16 ⁿ 44570-16 ^{d,n}	258 262	290 294	108	25 63	53 19	.020 .020	.672 .672
Performance usage, good mid to upper RPM HP, 302+ cu.in., long oval track, bracket racing, auto trans w/race converter, 12.0 minimum compression ratio advised.	R-262/420-253-8	4200- 7800	448841 ^{*a,b,c}	44518-16 ⁿ 44570-16 ^{d,n}	262 268	294 300	108	27 66	55 22	.020 .020	.672 .672
Competition only, good upper RPM HP, 302+ cu.in., bracket racing, Heavy, Street, etc., auto trans w/race con- verter, aftermarket aluminum cylinder heads advised, 12.5 minimum compression ratio advised.	R-268/420-251-8	4800- 8200	448851 ^{*a,b,c}	44518-16 ⁿ 44570-16 ^{d,n}	268 272	300 304	108	30 68	58 24	.020 .020	.672 .672

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller camshafts and lifters can be easily installed in these engines, providing the appropriate kit components are used
- NOTE: Specify if heads with 5/16" valve stems are used. These valve springs and retainers cannot be used with short valve stem heads.
- NOTE: Ford 221 thru 302 camshafts can be used in 351 Windsor engines if the engine is changed to 221 thru 302 firing order (1-5-4-2-6-3-7-8). Ford 351W firing order is 1-3-7-2-6-5-4-8. http://www.astronuc.com/as
- NOTE: To effect valve adjustment when using roller lifter camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped).
- IMPORTANT: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (**36655-16**) for street applications, enabling the 1977-00 255 and 302 cu.in. engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- Analy 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and gear assemblies, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: These camshafts also fit the 1969-70 Ford-Mercury Boss 302 V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

CAMSHAFTS

CRANE VAL	/E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	ROCKERS — Gold Race
	99893-16	99953-16	99820-16°	99097-1 ^ŕ	36622-16 ⁹ 95618-16 ^h	44975-1 ^{*i} 44984-1 ^{*j}			36750-16 [¦] 86757-16™
	99893-16	99953-16	99820-16°	99097-1 ^f	36622-16 ^g 95618-16 ^h	44975-1 ^{*i} 44984-1 ^{*j}			36750-16 ¹ 86757-16 ^m
	99885-16°	99956-16	99820-16°	99097-1 ^f	36622-16 ⁹	44975-1* ⁱ			36750-16 ¹
					95618-16 ^h	44984-1 ^{*j}			86757-16 ^m
	99885-16°	99956-16	99820-16°	99097-1 ^f	36622-16 ^g 95618-16 ^h	44975-1* ⁱ 44984-1* ^j			36750-16 ^I 86757-16 [™]
	99885-16°	99956-16	99820-16°	99097-1 ^f	36622-16 ⁹ 95618-16 ^h	44975-1* ⁱ 44984-1* ^j			36750-16 ¹ 86757-16 ^m
	99885-16°	99956-16	99820-16°	99097-1 ^f	36622-16ª 95618-16 ^h	44975-1* ⁱ 44984-1* ^j			36750-16 ¹ 86757-16 ^m

a Requires **36970-1** (.467″ I.D.), **36971-1** (.500″ I.D.), or **44970-1** (.531″ I.D. SVO) steel, or **36990-1** (.467" I.D.), 36989-1 (.500" I.D.), or 44990-1 (.531" I.D. SVO), aluminum-bronze distributor drive gear.

- Requires 7/16-20 x 1-1/4" grade 8 cam gear bolt and hardened washer. Camshaft has 351W firing order: 1-3-7-2-6-5-4-8 b
- C
- d Ultra Pro Series roller lifters.
- Must machine cylinder heads. е
- Machined steel, heat treated. f
- For use with or without pushrod guideplate cylinder heads, heavy wall, heat treated. g h Pro Series one-piece.

For 73-00 engines, performance steel billet gears and roller chain set.

- For 73-00 engines, Pro Series steel billet gears and roller chain set.
- 1.6 ratio, 3/8" stud, must machine 1966-00 cylinder heads and install **99156-16** rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- **m** 1.6 ratio, 7/16" stud, must machine 1966-00 cylinder heads and install **99157-16** rocker arm studs and 36650-1 pushrod guideplates.
- n Cylinder head removal required for installation.

i

						СОМ	PLETE C	AM SPE	CIFIC	ATIOI	١S		
	Application	Camshaft Series/ Grind Number	RPM POWER	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe Separation	Open/Cl @ .050 Cam Li Int/Ex	D″H ift li	osh ot nt. ch.	Gross Lift Int. Exh.	
	Application Hydraulic Roller Camsha		RANGE	Emissions Code	LIFTERS	Int/Exh.	int/exn.	Separation	INU/EX	n E	(n.	EXN.	
	Good low to mid-range torque and HP, for speed den- sity (or mass airflow) style F.I., good idle, daily usage works w/auto or 4/5 speed manual and stock rear end gears, 2200-2600 cruise RPM, (50 state legal 85-93, C.A.R.B. E.O. D-225-46). Good w/centrifugal or small Roots supercharger, with speed density (of mass air- flow) style F.I., 8 lbs. maximum boost w/stock 9.2 compression ratio advised, and good w/SEFI-type nitrous system, with speed density (or mass airflow) style F.I., stock 9.2 compression ratio advised.	2020	1000- 5000	444211 444212 ^a	36530-16 ^b 36532-16ʻ	208 216	262 270	112	(3) 3 45 (9	9) .(000 .	.530	
	Good mid-range torque and HP, good idle, daily usage, designed for use with 1.7 ratio rockers and mass airflow style F.I. engines with aftermarket intake, heads, exhaust, 5-speed or auto w/mild stall converter, 2400-2800 cruise RPM, (50 state legal 85-93, C.A.R.B. E.O. D-225-46). Good w/centrifugal or small Roots supercharger, with mass airflow style F.I., 10 lbs. maximum boost w/8.5 maxi- mum compression ratio advised, and good w/SEFI-type nitrous system, with mass airflow style F.I., stock 9.2 compression ratio advised.	2031	1400- 5400	444225 444226° •	36530-16 ^b 36532-16'	214 220	276 282	112	0 3 47 (7	4.(7).(00 .		
-	Delivers mid-range torque and HP, good idle, daily usage, requires mass airflow style F.I. for best idle control, works w/4/5 speed manual or auto, may require higher stall converter, use with 3.08 or numerically higher rear gears, 2400-2800 cruise RPM, (50 state legal 85-93, C.A.R.B. E.O. D-225-46) Basic RPM 2000-5500. Good w/centrifu- gal or small Roots supercharger, with mass airflow style F.I., 10 lbs maximum boost w/8.5 maximum compres- sion ratio advised, and good w/SEFI-type nitrous system, with mass airflow style F.I., stock 9.2 compression ratio advised.	2030	1400- 5400	444221 444222ª	36530-16 ⁶ 36532-16'	216 220	270 278	112	1 3 47 (7		00 .		
	Good low end torque and HP, good idle, daily usage, per- formance and fuel efficiency, off road, towing, 2400- 3000 cruise RPM, 8.75 to 10.0 compression ratio advised.	HR-216/325-2S-12	1400- 5400	449541* 3	36530-16⁵ 36532-16℃	216 224	278 286	112	1 3 49 (5		00 . 00 .	520 542	
	Good mid-range and strong top-end power, E303 replacement, requires modified mass airflow, aftermar- ket intake, performance cylinder heads and headers, must use 5-speed and 3.55 or numerically higher rear gears, 2600-3000 cruise RPM, (50 state legal 85-93, C.A.R.B. E.O. D-225-46. Good w/centrifugal or Roots supercharger, 15 lbs. maximum boost w/8.0 maximum compression ratio advised, and good w/SEFI-type nitrous system, with mass airflow style F.I., stock 9.2 comp. ratio advised.	2040	1800- 5800	444231	36530-16 ⁶ 36532-16 ⁶	220 220	282 282	110			100 .	498 498	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page

- 313 for details. NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- **NOTE:** To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On engines equipped with bottleneck type studs, using **99768**-16 positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.
- NOTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- **NOTE:** Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your hydraulic lifter preload.
- NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.

CRANE VALV	/E TRAIN CO	OMPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINU/ Energizer	M ROCKERS — Gold Race
44308-1⁰ 44309-1⁰	99841-16	99942-16		h	36631-16 ^k 36625-16 ^l 95608-16 ^{l,m}	44975-1*ª 44984-1*°		44746-16'	36759-16° 36758-16° 36750-16"

44308-1° 44309-1'	99841-16	99942-16	h	36631-16 ^k 36625-16 ^l 95608-16 ^{l,m}	44975-1*" 44984-1*°	44746-16'	36759-16' 36758-16' 36750-16"
44308-1° 44309-1'	99841-16	99942-16	h	36631-16 ^k 36625-16 ^l 95608-16 ^{l,m}	44975-1* ⁿ 44984-1*°	44746-16'	36759-16 ^s 36758-16 ^t 36750-16 ^u

44308-1° 44309-1 ^v	96870-16 ^f	99943-16 99969-16 ⁹	99820-16 ^f	^ь 99097-1 ^і 99087-1 ^ј	36631-16 ^k 36625-16 ^l 95608-16 ^{l,m}	44975-1* ⁿ 44984-1*º	44746-16'	36759-16° 36758-16' 36750-16"
44308-1° 44309-1°	99841-16 96870-16 ^f	99942-16 99943-16 99969-16 ⁹	99820-16 ^f	հ 99097-1 ⁱ 99087-1 ^j	36631-16 ^k 36625-16 ^l 95608-16 ^{l,m}	44975-1* ⁿ 44984-1*°	44746-16'	36759-16° 36758-16' 36750-16"

- Cam and spring kit, includes 44308-1 kit, containing valve springs, valve spring retainers, and valve а stem locks.
- b
- For use with standard Ford alignment bars. Vertical locking bar hydraulic roller lifters, no machining required. Cylinder head removal required C for installation in 302 and 302 H.O. applications.
- d Gross valve lift with 1.7 ratio rocker arms.
- Includes standard diameter conical valve springs (99841-16), valve spring retainers (99942-16), and valve stem locks (99094 and 99097). No machining required. е
- f Must machine cylinder heads.
- Requires Crane Multi Fit valve stem locks. g
- ĥ Included in 44308-1 valve spring and retainer kit.
- Machined steel, heat treated.
- Machined steel, heat treated, Multi Fit.
- κ́. For engines with non-adjustable pedestal mount rocker arms, heavy wall, heat treated.

- For 302 H.O. engines with adjustable rocker arms with Pushrod Guideplate Conversion Kit (36655-16), heavy wall, heat treated. See page 305 for details.
- m Pro Series one-piece.
 n Performance steel billet gears and roller chain set.
- Pro Series steel billet gears and roller chain set. 0
- Energizer 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit. r
- s 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- t 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- 1.6 ratio, 3/8" stud, must machine cylinder heads and install 99156-16 rocker arm studs and u 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on pedestal mount cylinder heads for street applications.
- v For GT40P and similar long exhaust valve cylinder heads. No machining required.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Roller Camsha	fts									
Good mid-range torque and HP, fair idle, moderate per- formance usage, for use with 1.7 ratio rocker arms, bracket racing, auto trans w/2500+ converter. Good w/ centrifugal or Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised, and/ or nitrous, 2500-3600 cruise RPM, 8.75 to 10.5 compres- sion ratio advised.	HR-220/311-25-14	2000- 6000	449591° •	36530-16ª 36532-16 ^b	220 226	282 288	114	1 39 52 (6)	.000 .000	.529° .544°
Good mid range torque and HP, fair idle, moderate per- formance usage, 2600-3200 cruise RPM, good w/plate nitrous system, auto trans w/2500+ converter, 9.0 to 10.5 compression ratio advised. Also good w/supercharg- er, 20 lbs. maximum boost w/ 8.5 maximum compres- sion ratio advised.	HR-220/332-252-14	2000- 6200	449631°	36530-16ª 36532-16 ^b	220 228	282 290	114	1 39 53 (5)	.000 .000	
Good mid range and upper RPM torque and HP, fair idle, performance usage, B303 upgrade, X303 replacement, bracket racing, auto trans with 2500 + converter, 3000- 3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	HR-224/339-12	2200- 6000	449661* 449661*	36530-16ª 36532-16⁵	224 224	286 286	112	5 39 49 (5)	.000 .000	.542 .542
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, good for use with 1.7 rocker arms, mild bracket racing, auto trans with 2500+ converter, 3000-3400 cruise RPM, 9.0 to 10.75 compres- sion ratio advised. Good w/centrifugal or Roots super- charger, 18 lbs. maximum boost w/8.0 maximum comp- erssion ratio advised, and good with SEFI-type or mani- fold nitrous system.	HR-224/339-252-12	1400- 5400	449671°	36530-16ª 36532-16 ^b	224 232	286 294	112	5 39 53 (1)		.576° .559°
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans with 2500+ converter, 3000-3400 cruise RPM, 9.0 to 10.75 compression ratio advised. Good w/centrifugal or Roots supercharger, 18 lbs. maximum boost w/8.0 maximum comperssion ratio advised, and good with SEFI-type or manifold nitrous system.	HR-224/339-25-12	2400- 6400	449601°	36530-16ª 36532-16 ^b	224 232	286 294	112	5 39 53 (1)	.000 .000	.542 .563

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- **NOTE:** To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept

screw-in studs (on engines not originally equipped). On engines equipped with bottleneck type studs, using **99768-16** positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (**99170-1**). Refer to page 304 for details.

- remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details. NOTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- NOTE: Special length pushrods can be ordered to provide proper

hydraulic lifter preload. See page 353 for checking your hydraulic lifter preload.

- NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRIN AND RETAINE KITS		RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	N ROCKERS - Gold Race
	96870-16ª	99943-16 99969-16°	99820-16 ⁴	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{i,j}	44975-1 ^{*k} 44984-1 ^{*I}		44746-16°	36759-10 36758-10 36750-10
	96870-16ª	99943-16 99969-16°	99820-16ª	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{ij}	44975-1 ^{*k} 44984-1 ^{*I}		44746-16°	36759-1 36758-1 36750-1
	96870-16 ^d	99943-16	99820-16 ^d	99097-1 ^f	36631-16 ^h	44975-1*k			36759-1
		99969-16°		99087-1 ⁹	36625-16 ⁱ 95608-16 ^{i,j}	44984-1* ¹		44746-16°	36758-1 36750-1
	96870-16 ^d	99943-16 99969-16°	99820-16 ⁴	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{i,j}	44975-1* ^k 44984-1* ⁱ		44746-16°	36759-10 36758-10 36750-10
	96870-16 ^d	99943-16 99969-16°	99820-16ª	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{i,j}	44975-1 ^{°k} 44984-1 ^{°l}		44746-16°	36759-10 36758-10 36750-10

Section Continued 🛰

For use with standard Ford alignment bars. а

- b Vertical locking bar hydraulic roller lifters, no machining required. Cylinder head removal required for installation in 302 and 302 H.O. applications.
- Gross valve lift with 1.7 ratio rocker arms. C
- Must machine cylinder heads. d
- е
- Requires Crane Multi Fit valve stem locks. Machined steel, heat treated. f
- g h
- Machined steel, heat treated. Machined steel, heat treated, Multi Fit. For engines with non-adjustable pedestal mount rocker arms, heavy wall, heat treated. For 302 H.O. engines with adjustable rocker arms with Pushrod Guideplate Conversion Kit (36655-16), heavy wall, heat treated. See page 305 for details. i
- Pro Series one-piece. j

- **k** Performance steel billet gears and roller chain set.
- L Pro Series steel billet gears and roller chain set.
- Energizer 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, 0 includes Rocker Arm Pedestal Shim Kit.
- 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes p Rocker Arm Pedestal Shim Kit.
- 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes q
- Rocker Arm Pedestal Shim Kit. 1.6 ratio, 3/8" stud, must machine cylinder heads and install **99156-16** rocker arm studs and **36650-1** pushrod guideplates, or use **36655-16** Conversion Kit on pedestal mount cylinder heads r for street applications.

						СОМ	PLETE C	AM SPE	CIFICATI	ONS	
	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
	Hydraulic Roller Camsha	fts									
	Good mid range to upper RPM torque and HP, fair idle, normally used with 1.7 rocker arms, moderate perfor- mance usage, F303 upgrade, bracket racing, auto trans with 3000 converter, 3200-3600 cruise RPM, good with 347+ cu.in, 8.5 to 11.0 compression ratio advised. Good w/centrifugal or Roots supercharger, 22 lbs. maximum boost w/8.0 maximum compression ratio advised, also good with manifold nitrous system.	HR-226/320-25-14	2600- 6600	449651°	36530-16ª 36532-16 ^b		288 294	114	4 42 55 (3)		.544° .559°
	Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, Z303 upgrade, bracket racing, auto trans with 3000+ converter, 3400-3800 cruise RPM, good with 347+ cu.in, with modified intake and cylinder heads, 10.0 to 11.5 compression ratio advised. Good w/centrifu- gal or Roots supercharger, 24 lbs. maximum boost with 8.5 maximum compression ratio advised, also good with manifold nitrous system.	HR-228/345-2S1-14	2600- 6600	449681°	36530-16ª 36532-16 ^b		290 249	114	5 43 55 (3)	.000 .000	
-	Good upper RPM torque and HP, fair idle performance usage, bracket racing, auto w/3000+ converter, 3600- 4000 cruise RPM, suitable for upper RPM with 347+ cu. in. with upgraded intake system and cylinder heads, 10.25 to 12.0 compression ratio advised. Good w/large centrifugal or Roots supercharger, 24 lbs. maximum boost with 9.0 maximum compression ratio, also good with large manifold nitrous system.	HR-228/345-25-14	2600- 6600	449691° 3	36530-16ª 36532-16 ^b		290 298	114	5 93 57 (1)	.000 .000	
	Good upper RPM torque and HP, fair idle, performance usage, bracket racing, auto w/3000+ converter, 3400- 4000 cruise RPM, 10.0 to 11.5 compression ratio advised, best with 347+ cu.in Good w/Roots supercharger, 20 lbs. maximum boost w/8.0 maximum compression ratio advised, also good with SEFI-type or manifold nitrous system.	HR-232/352-25-12	2800- 6800	449761* •	36530-16ª 36532-16 ^b		294 306	112	9 43 59 5		.563 .595
	Good mid to upper RPM torque and HP, rough idle, per- formance usage, bracket racing, auto trans w/3000+ converter, 3600-4000 cruise RPM, 10.5 to 12.0 compres- sion ratio advised, best with 331+ cu.in.	HR-236/359-25-10	2800- 6800	449641°	36530-16ª 36532-16 ^b	236 244	298 306	110	13 43 57 7	.000 .000	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On

engines equipped with bottleneck type studs, using **99768-16** positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (**99170-1**). Refer to page 304 for details. **NOTE:** Crane offers a Pushrod Guideplate and Rocker Arm Stud

- DTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details
- NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your

hydraulic lifter preload.

NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
 NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft.

The non-retarded sprocket, or degreeing in your canishar. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	A ROCKERS – Gold Race
									1
	96870-16 ^d	99943-16 99969-16°	99820-16ª	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{i,j}	44975-1 ^{*k} 44984-1 ^{*I}		44746-16°	36759-16 36758-16 36750-16
	96870-16 ^d	99943-16 99969-16°	99820-16ª	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{i,j}	44975-1* 44984-1*		44746-16°	36759-10 36758-10 36750-10
	96870-16 ^d	99943-16 99969-16°	99820-16 ^d	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{i,j}	44975-1" ^k 44984-1"		44746-16°	36759-16 36758-16 36750-16
	96870-16 ^d	99943-16 99969-16°	99820-16ª	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{i,j}	44975-1* 44984-1*		44746-16°	36759-16 36758-16 36750-16
	96870-16 ^d	99943-16 99969-16°	99820-16ª	99097-1 ^f 99087-1 ^g	36631-16 ^h 36625-16 ⁱ 95608-16 ^{i,j}	44975-1 ^{°k} 44984-1 ^{°l}		44746-16°	36759-16 36758-16 36750-16

Section Continued 🛰

- For use with standard Ford alignment bars. а
- b Vertical locking bar hydraulic roller lifters, no machining required. Cylinder head removal required for installation in 302 and 302 H.O. applications.
- c Gross valve lift with 1.7 ratio rocker arms.
- d
- Must machine cylinder heads. Requires Crane Multi Fit valve stem locks. е
- Machined steel, heat treated. f
- g
- Machined steel, heat treated, Multi Fit. For engines with non-adjustable pedestal mount rocker arms, heavy wall, heat treated. For 302 H.O. engines with adjustable rocker arms with Pushrod Guideplate Conversion Kit (36655-16), heavy wall, heat treated. See page 305 for details. ĥ i
- j Pro Series one-piece.

- k Performance steel billet gears and roller chain set.
- Pro Series steel billet gears and roller chain set.
- 0 Energizer 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit. p
- 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes q
- Rocker Arm Pedestal Shim Kit. 1.6 ratio, 3/8" stud, must machine cylinder heads and install **99156-16** rocker arm studs and **36650-1** pushrod guideplates, or use **36655-16** Conversion Kit on pedestal mount cylinder heads r for street applications.

					COMPLETE CAM SPECIFICATIONS						
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Camshat	fts										
Rough idle, performance usage, good upper RPM torque and HP, bracket racing, auto trans w/3500+ converter, also supercharged and/or nitrous, 10.0 to 11.5 compres- sion ratio advised.	HR-236/359-2S-14	3000- 7000	449811°	36530-16ª 36532-16⁵	236 244	298 306	114	9 47 61 3	.000 .000	.574 .595	
Moderate performance usage, rough idle, bracket racing, auto trans w/3500+ converter, good w/manifold nitrous system, 10.5 to 12.0 compression ratio advised. Also good w/centrifugal or Roots supercharger, 28 lbs. maxi- mum boost w/8.5 maximum compression ratio.	HR-240/365-251-14	3200- 7000	449711°	36530-16ª 36532-16⁵	240 244	302 306	114	11 49 61 3		.584 .595	
Good high RPM HP, rough idle, competition usage, brack- et racing, auto w/race converter, 347+ cu.in., 11.5 mini- mum compression ratio advised.	HR-244/372-2S-10	3400- 7000	449581°	36530-16ª 36532-16⁵	244 256	306 318	110	17 47 63 13		.595 .595	
Good high RPM HP, rough idle, competition usage, brack- et racing, auto w/race converter, 347 + cu.in., 12.0 mini- mum compression ratio advised. Also good for mild supercharged or mild nitrous.	HR-244/372-2S-12	3600- 7000	449571°	36530-16ª 36532-16 ^b	244 256	306 318	112	15 49 65 11		.595 .595	
Performance usage, for 347 + cu.in., NMRA, good w/ large plate nitrous, aftermarket aluminum cylinder heads advised, auto trans w/race converter, 13.0 minimum compression ratio advised. Also good w/centrifugal or Roots supercharger, 34 lbs. maximum boost w/8.5 maxi- mum compression ratio.	HR-252/400-25-14	3800- 7200	449741°	36532-16 ⁶	252 260	322 330	114	15.5 56.5 68 12		.640 .640	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.

- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
 NOTE: To provide the most accurate valve adjustment on hydraulic
- NOTE: To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On

engines equipped with bottleneck type studs, using **99768-16** positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (**99170-1**). Refer to page 304 for details.

- NOTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (**36655-16**) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- page 305 for details. NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your

hydraulic lifter preload.

- NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact (rane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	N ROCKERS – Gold Race
	0.0070 1.0	00042.46	00000 16	00007.40	26624 464	44075 4*i			26750.46
	96870-16 [,]	99943-16 99969-16ª	99820-16 [,]	99097-1° 99087-1 ^f	36631-16 ^g 36625-16 ^h 95608-16 ^{h,i}	44975-1* ⁱ 44984-1* ^k		44746-16"	36759-16 36758-16 36750-16
	96870-16 [.]	99943-16 99969-16 ^d	99820-16 [.]	99097-1° 99087-1 ^f	36631-16 ⁹ 36625-16 ^h 95608-16 ^{h,i}	44975-1 ^{*j} 44984-1* ^k		44746-16 ⁿ	36759-16 36758-16 36750-16
	96870-16 [.]	99943-16 99969-16ª	99820-16 [.]	99097-1° 99087-1 ^r	36631-16 ^g 36625-16 ^h 95608-16 ^{h,i}	44975-1 ^{*j} 44984-1* ^k		44746-16 ⁿ	36759-16 36758-16 36750-16
	96870-16 [.]	99943-16 99969-16ª	99820-16 [.]	99097-1° 99087-1 ^f	36631-16 ^g 36625-16 ^h 95608-16 ^{h,i}	44975-1 ^{*j} 44984-1 ^{*k}		44746-16 ⁿ	36759-16 36758-16 36750-16
	96870-16'	99943-16 99969-16ª	99820-16 [.]	99097-1° 99087-1 ^f	36631-16 ^g 36625-16 ^h 95608-16 ^{h,i}	44975-1 ^{*j} 44984-1 ^{*k}		44746-16"	36759-16 36758-16 36750-16

For use with standard Ford alignment bars. а

- b Vertical locking bar hydraulic roller lifters, no machining required. Cylinder head removal required for installation in 302 and 302 H.O. applications.
- Must machine cylinder heads. c
- Requires Crane Multi Fit valve stem locks. d
- Machined steel, heat treated. е
- Machined steel, heat treated, Multi Fit.
- For engines with non-adjustable pedestal mount rocker arms, heavy wall, heat treated. For 302 H.O. engines with adjustable rocker arms with Pushrod Guideplate Conversion Kit g h (36655-16), heavy wall, heat treated. See page 305 for details.
- Pro Series one-piece. Performance steel billet gears and roller chain set. i

- k Pro Series steel billet gears and roller chain set.
- Energizer 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit. n
- 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes 0 Rocker Arm Pedestal Shim Kit.
- 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit. р
- 1.6 ratio, 3/8" stud, must machine cylinder heads and install 99156-16 rocker arm studs and q 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on pedestal mount cylinder heads for street applications.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf	fts						•			
Brute low end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 compres- sion ratio advised.	H-192/2667-2S-10	800- 4200	440501°	99280-16	192 204	248 260	110	(9) 21 37 (13)	.000 .000	.427 .456
Great low end torque and HP, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200-2600 cruise RPM, marine application: primarily used in 302 cu.in. (firing order change required) and 351W cu.in. near-stock engines for mild performance applications in heavy boats, O.K. for through-prop exhaust, 8.0 to 9.5 compression ratio advised. (50 state legal, pre-computer, C.A.R.B. E.O. D-225-32).	H-260-2	1200- 4800	443901 443902° •	99280-16	204 216	260 272	112	(5) 29 45 (9)	.000 .000	
Good mid-range and top end torque and HP, works well with most engine modifications, for non-roller equipped 351 cu.in. Lightning trucks with speed density (or mass airflow) style F.I. (50 state legal, C.A.R.B. E.O. D-225-46)	2030	1400- 5200	444232* ^b	99280-16	206 214	268 276	114	(6) 32 46 (12)	.000 .000	.448 .464
Great low end torque and HP, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200-2600 cruise RPM, marine application: primarily used in 302 cu.in. (firing order change required) and 351W cu.in. near-stock engines for mild performance applications in heavy boats, O.K. for through-prop exhaust, 8.0 to 9.5 compression ratio advised.	Z-256-2	1200- 5000	443501° 443502° ^b	99280-16	206 212	256 262	112	(4) 30 43 (11)	.000 .000	
Good low end and mid range torque, good idle, daily usage, off road, fuel efficiency plus performance, 2600- 3000 cruise RPM, 8.75 to 10.0 compression ratio advised.	Energizer 272 H10	1600- 5200	18005* 180052*ª 3	99280-16	216 216	272 272	110	3 33 43 (7)	.000 .000	.484 .484
Good low end and mid range torque and HP, good idle, daily usage, off road, towing, economy, performance and fuel efficiency, 2600-3000 cruise RPM, marine applica- tion: primarily used in 351W cu.in. near-stock to mildly modified engines for mild performance applications in light boats, O.K. for through-prop exhaust, 8.75 to 10.0 compression ratio advised. Good w/centrifugal or small Roots supercharger, 8 lbs. maximum boost w/8.5 maxi- mum compression ratio advised, good for plate nitrous system, (50 state legal, pre-computer C.A.R.B. E.O. D-225-32).	H-272-2	1800- 5400	443941 443942 ^b	99280-16	216 228	272 284	112	1 35 51 (3)	.000 .000	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these
- engines, providing the appropriate kit components are used. **NOTE:** To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On

engines equipped with bottleneck type studs, using **99768-16** positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (**99170-1**). Refer to page 304 for details.

- NOTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
 NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your hydraulic lifter preload.
- **NOTE:** Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: Left hand rotation hydraulic camshafts are available on special order. Contact Crane's Performance Consultants for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER	VALVE		VALVE STEM	VALVE STEM		TIMING CHAIN AND GEAR	STEEL ROCKER	— ALUMINUN	GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
26200.46	0(000 1/(0004646		00007.14	05644.469	44075 4*4	2004 4 ch		26750.4
36308-1 [.]	96803-16 [.]	99946-16		99097-1 ⁴	95644-16° 36622-16 ^f	44975-1 ^{*9}	36801-16 ^h 36800-16 ⁱ	11746-16 ^k 44746-16 ⁱ	36750-1 36759-1 36758-1
36308-1 '	96803-16 [.]	99946-16		99097-1 ^d	95644-16°	44975-1 ^{*g}	36801-16 ^h		36750-1
					36622-16 ^f		36800-16 ⁱ	11746-16 ^k 44746-16 ⁱ	36759-1 36758-1
36308-1 [.]	96803-16 [.]	99946-16		99097-1 ⁴	95644-16° 36622-16 ^f	44975-1 ^{*9}	36801-16 ^h 36800-16 ⁱ	11746-16 ^k 44746-16 ⁱ	36750-1 36759-1 36758-1
36308-1 '	96803-16 [,]	99946-16		99097-1ª	95644-16° 36622-16 ^f	44975-1* ⁹	36801-16 ^h 36800-16 ⁱ	11746-16 ^k	36750-1 36759-1
					50022-10		50000-10	44746-16 ¹	36758-1
36308-1	96803-16'	99946-16		99097-1ª	95644-16°	44975-1 ^{*g}	36801-16 ^h		36750-1
20200-1	90003-10	97940-10		3303 /-1	36622-16 ^f	449/ 3-1 2	36800-16 ⁱ	11746-16 ^k	36759-1
								44746-16 ¹	36758-1
36308-1	96803-16 [.]	99946-16		99097-1ª	95644-16°	44975-1 ^{*9}	36801-16 ^h		36750-1
					36622-16 ^f		36800-16 ⁱ	11746-16 ^k 44746-16 ⁱ	36759-1 36758-1

Section Continued 🛰

Cam and Lifter Kit, includes installation lubricants. а

- b Cam and Lifter Kit, includes installation lubricants, and rocker arm adjusting nuts.
- Contains standard diameter valve springs, no machining required. C
- d Machined steel, heat treated.
- Pro Series one-piece, for 351 engines, heavy wall, heat treated, for use with or without pushrod е guideplate cylinder heads.
- f
- ĥ
- guideplate cylinder heads. For 302 engines, heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. For 73-93 engines, performance steel billet gears and roller chain set. 1.6 ratio, cast, rail type for 3/8" studs for 69-76 engines, non-adjustable with 5/16" top bottleneck studs, adjustable if straight 3/8" studs and locking nuts are installed. 1.6 ratio, cast, non-rail type for 3/8" studs, must machine cylinder heads and install **99156-16** rocker arm studs and **36650-1** pushrod guideplates, or use **36655-16** Conversion Kit on 77-93 pedestal mount cylinder heads for treast applications i pedestal mount cylinder heads for street applications.
- k Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- Energizer, 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- m 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications. 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes
- n Rocker Arm Pedestal Shim Kit. 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes
- 0 Rocker Arm Pedestal Shim Kit.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf		TUTUL	Emissions couc		int, Exit		Separation			LAIN
Good low end and mid range torque and HP, good idle, daily usage, off road, towing, economy, performance and fuel efficiency, 2600-3000 cruise RPM, marine applica- tion: primarily used in 351W cu.in. near-stock to mildly modified engines for mild performance applications in light boats, 0K for through-prop exhaust, 8.75 to 10.0 compression ratio advised. Good w/centrifugal or small Roots supercharger, 8 lbs. maximum boost w/8.5 maxi- mum compression ratio advised, good for plate nitrous system.	Z-268-2	1800- 5600	443511° 443512°a	99280-16	218 224	268 274	112	2 36 49 (5)		.490 .504
Performance usage, bracket racing, Street, Heavy, auto trans w/3000+ converter, oval track: Street Stock, 4-bbl, 1/4-3/8 mile, serious off road, 9.0 to 10.5 compression ratio advised.	H-220/307-2-10	2400- 5800	440131°	99280-16 99380-16™	220 230	280 290	110	535 500		.491 .509
Performance usage, Street Stock, Enduro, Hobby, 2-bbl or 4-bbl, 1/4-3/8 mile, 9.0 to 10.5 compression ratio advised.	H-222/3114-10	2600- 6000	440211°	99280-16 99380-16" ^ь	222 222	278 278	110	6 36 46 (4)		.498 .498
Good mid range RPM torque and HP, fair idle, moderate performance usage, bracket racing, good w/aluminum cylinder heads, auto trans w/2000+ converter, 3000- 3400 cruise RPM, 9.25 to 11.0 compression ratio advised. Good w/centrifugal or Roots supercharger, 10 lbs. Maximum boost w/8.5 maximum compression ratio advised, good w/plate or manifold nitrous system.	H-224/315-251-10	2800- 6200	440221°	99280-16 99380-16* ^ь	224 230	274 280	110	7 37 50 0		.504 .518
Performance usage, bracket racing, Street, Heavy, auto trans w/3000+ converter, oval track: Street Stock, Enduro, Hobby, 4-bbl, 1/4-3/8 mile, 9.5 to 11.0 compres- sion ratio advised.	H-226/314-2-10	2800- 6200	440141°	99280-16 99380-16" ^ь	226 236	286 296	110	8 38 53 3		.502 .520

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.	engines equipped with bottleneck type studs, using 99768- 16 positive locking nuts will permit valve adjustment. For	NOTE:	Son cess
IMPORTANT: Adjustable Vacuum Advance Kit available. See page	engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily		reta Con
313 for details.	remedied by using Crane's Rocker Arm Pedestal Shim Kit	NOTE:	
	(99170-1) Refer to page 304 for details		oric

- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- **NOTE:** To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On

- (99170-1). Refer to page 304 for details. **NOTE:** Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (**36655-16**) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your hydraulic lifter preload.
- engines equipped with bottleneck type studs, using 99768- NOTE: Some engines have long valve stems which will result in exssive valve spring assembly height. Different springs and tainers may be required to prevent excessive shimming. ontact Crane's Performance consultants for details.
 - any 1972 and later Ford-Mercury V-8 engines are riginally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
 - NOTE: Left hand rotation hydraulic camshafts are available on special order. Contact Crane's Performance Consultants for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER	VALVE	DETAINEDC	VALVE STEM	VALVE STEM	DUCUDADC	TIMING CHAIN AND GEAR	STEEL ROCKER	ALUMINUN	GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
36308-1°	96803-16 [,]	99946-16		99097-1 ^f	95644-16 ^h	44975-1 * ^j	36801-16 ¹		36750-16
50500 1					36622-16 ⁱ		36800-16 ^m	11746-16º 44746-16 ^p	36759- 36758-

96874-16 ⁴	99943-16 99969-16°	99820-16ª	99097-1 ^f 99094-1 ^g	95644-16 ^h 36622-16 ⁱ	44975-1 ^{*j} 44984-1 ^{*k}	36801-16 ¹ 36800-16 ^m	11746-16º 44746-16 ^p	36750-16ª 36759-16' 36758-16'
96874-16ª	99943-16 ୨୨୨6୨-16ଂ	99820-16ª	99097-1 ^f 99094-1 ^g	95644-16 ^h 36622-16 ⁱ	44975-1 ^{*j} 44984-1 ^{*k}	36801-16 ^I 36800-16 [™]	11746-16º 44746-16 ^p	36750-16ª 36759-16' 36758-16 ^s
96874-16ª	99943-16 99969-16°	99820-16 ^d	99097-1 ^f 99094-1 ^g	95644-16 ^h 36622-16 ⁱ	44975-1 ^{*j} 44984-1* ^k	36801-16 ¹ 36800-16 ^m	11746-16º 44746-16º	36750-16ª 36759-16' 36758-16 ^s
96874-16 ^d	99943-16 99969-16°	99820-16 ^d	99097-1 ^f 99094-1 ^g	95644-16 ^h 36622-16 ⁱ	44975-1 ^{*j} 44984-1 ^{*k}	36801-16¹ 36800-16™	11746-16° 44746-16 [°]	36750-16ª 36759-16' 36758-16'

Section Continued 🛏

Cam and Lifter Kit, includes installation lubricants, and rocker arm adjusting nuts.

- Optional Hi Intensity hydraulic lifters, see page 272 for details. b
- Contains standard diameter valve springs, no machining required. c
- Must machine cylinder heads. d
- Requires Crane Multi Fit valve locks. е
- Machined steel, heat treated. f
- Machined steel, heat treated, Multi Fit.
- h
- For Series one-piece, for 351 engines, for use with or without pushrod guideplate cylinder heads. For 302 engines, heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. For 73-93 engines, performance steel billet gears and roller chain set.

- For 73-93 engines, Pro Series steel billet gears and roller chain set. 1.6 ratio, cast, rail type for 3/8" studs for 69-76 engines, non-adjustable with 5/16" top bottleneck studs, adjustable if straight 3/8" studs and locking nuts are installed.
- m 1.6 ratio, cast, non-rail type for 3/8" studs, must machine cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93 pedestal mount cylinder heads for street applications.
- Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker 0 arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- percent and the second appreciation of the second appreciation
- I.G. ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount q
- cylinder heads for street applications. 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes r Rocker Arm Pedestal Shim Kit.
- s 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.

					СОМ	PLETE C	AM SPE	CIFICAT	IONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe	Open/Close @ .050" Cam Lift Int/Exh	e Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf	fts										
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, bracket racing, auto trans w/2500+ converter, 3200-3600 cruise RPM, 9.5 to 11.0 compression ratio advised. Good w/centrifugal or Roots supercharger, 10 lbs. Maximum boost w/8.5 maximum compression ratio advised, good w/plate or manifold nitrous system.	H-286-2	2800- 6600	444551° 444552°ª	99280-16 99380-16" ^ь	226 236	286 296	112	6 40 55 1	.000 .000		
Performance usage, good mid-range to upper RPM torque and HP, Street Stock, Enduro, Hobby, 2-bbl or 4-bbl, 1/4-3/8 mile, serious off road, 9.0 to 10.5 com- pression ratio advised.	H-228/3200-6	2800- 6400	440551°	99280-16 99380-16" ^ь	228 228	284 284	106	12 36 44 4		.512 .512	
Performance usage, bracket racing, Street, Heavy, auto trans w/3000+ converter, oval track 1/4-3/8 mile: Street Stock, Enduro, Hobby, 4-bbl, 10.0 to 11.5 compression ratio advised.	H-230/318-2-8	3000- 6600	440151°	99280-16 99380-16" ^ь	230 240	290 300	108	12 38 53 7	.000 .000	.509 .526	
Performance usage, radical street, bracket racing, good mid range to upper RPM torque and HP, Street, Heavy, auto trans w/3000+ converter, oval track: good low to mid-range torque and HP, Street Stock, Enduro, Hobby, 2-bbl or 4-bbl, 1/4-3/8 mile, 10.0 to 11.5 compression ratio advised.	H-234/3294-25-10	3200- 6800	440161°	99280-16 99380-16 ^{*b}	234 238	290 294	110	12 42 54 4		.527 .536	
Performance usage, bracket racing, good upper RPM torque and HP, Street, Heavy, Pro ET, auto trans w/race converter, 10.5 to 11.5 compression ratio advised.	H-236/325-2S-10	3400- 7000	440171°	99280-16 99380-16" ^ь	236 240	296 300	110	13 43 55 5	.000 .000	.520 .526	
Performance usage, bracket racing, good upper RPM HP, Street, Heavy, Pro ET, good w/manifold nitrous system, auto trans w/race converter, 10.5 to 11.5 compression ratio advised. Good with supercharger, 15 lbs. maximum boost w/8.0 maximum compression ratio advised.	H-236/325-25-14	3400- 7200	440231°	99280-16 99380-16⁵	236 240	296 300	114	9 47 59 1			

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.

- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On engines equipped with bottleneck type studs, using 99768-

16 positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.

- NOTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (**36655-16**) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your hydraulic lifter preload.
- NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: Left hand rotation hydraulic camshafts are available on special order. Contact Crane's Performance Consultants for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING AND RETAINER	VALVE	DETAILEDC	VALVE STEM	VALVE STEM	DUCUDADO	TIMING CHAIN AND GEAR	STEEL ROCKER	ALUMINUN	GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACI
	96874-16 [,]	99943-16	99820-16 [,]	99097-1°	95644-16 ⁹	44975-1 ^{*i}	36801-16 ^k		36750-1
		99969-16 ^d		99094-1 ^f	36622-16 ^h	44984-1* ^j	36800-16 ¹	11746-16ª 44746-16º	36759-1 36758-1
	96874-16 [,]	99943-16	99820-16 ^c	99097-1°	95644-16 ⁹	44975-1* ⁱ	36801-16 ^k		36750 -1
		99969-16 ⁴		99094-1 ^f	36622-16 ^h	44984-1 ^{*j}	36800-16 ¹	11746-16° 44746-16°	36759-1 36758-1
	96874-16 [,]	99943-16 99969-16ª	99820-16 [.]	99097-1° 99094-1 ^f	95644-16ª 36622-16 ^h	44975-1* ⁱ 44984-1* ^j	36801-16 ^k 36800-16 ⁱ	11746-16ª 44746-16°	36750-1 36759-1 36758-1
	96874-16 [.]	99943-16 99969-16ª	99820-16 ^c	99097-1° 99094-1 ^f	95644-16 ⁹ 36622-16 ^h	44975-1 ^{*i} 44984-1 ^{*j}	36801-16 ^k 36800-16 ⁱ	11746-16"	36750-1 36759-1
		99909-10"		99094-1 [.]	30022-10"	44984-1 '	30800-10 [.]	44746-16°	36758-1 36758-1
	96874-16'	99943-16	99820-16 '	99097-1°	95644-16 ⁹	44975-1 ^{*i}	36801-16 ^k		36750 -1
		99969-16 ⁴		99094-1 ^f	36622-16 ^h	44984-1 ^{*j}	36800-16 ¹	11746-16 ⁿ 44746-16°	36759-1 36758-1
	96874-16 [.]	99943-16	99820-16 [.]	99097-1°	95644-16 ⁹	44975-1 ^{*i}	36801-16 ^k	11746 160	36750-1
		99969-16 ^d		99094-1 ^f	36622-16 ^h	44984-1 * ^j	36800-16 ¹	11746-16" 44746-16°	36759- 36758-

Section Continued

- Cam and Lifter Kit, includes installation lubricants, and rocker arm adjusting nuts. а
- Carn and Litter Ni, includes instantion fubricants, and rocker a Optional Hi Intensity hydraulic lifters, see page 272 for details. Must machine cylinder heads. Requires Crane Multi Fit valve locks. Machined steel, heat treated. b
- c
- h
- e f
- Machined steel, heat treated, Multi Fit.
- Pro Series one piece, for 351 engines, for use with or without pushrod guideplate cylinder heads. g
- For 302 engines, heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
- For 73-93 engines, performance steel billet gears and roller chain set.
- For 73-93 engines, Pro Series steel billet gears and roller chain set.
- k 1.6 ratio, cast, rail type for 3/8" studs for 69-76 engines, non-adjustable with 5/16" top bottleneck studs, adjustable if straight 3/8" studs and locking nuts are installed.
- I.6 ratio, cast, non-rail type for 3/8" studs, must machine cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93 pedestal mount cylinder heads for street applications.
 n Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- pedestal mount cylinder heads for street applications.
- Energizer, 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, 0 includes Rocker Arm Pedestal Shim Kit.
- 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs р and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes q Rocker Arm Pedestal Shim Kit.
- 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes r Rocker Arm Pedestal Shim Kit.

COMPLETE CAM SPECIFICATIONS

Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273 LIFTERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/C @ .05 Cam L Int/E	50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaft Rough idle, performance usage, radical street, good upper RPM HP, bracket racing, auto trans w/3500+ con- verter, 3800-4200 cruise RPM, 10.5 to 112.0 compression ratio advised. Good w/Roots supercharger, 15 lbs. maxi- mum boost w/8.0 maximum compression ratio advised, good w/manifold nitrous system.	F <mark>ts</mark> H-238/3347-2-10	3400- 7200	440661°	99280-16 99380-16"ª	238 248	294 304	110	14 59	44 9	.000 .000	.536 .560	
Moderate competition, bracket racing, Heavy, Pro ET, Super ET, auto trans w/race converter, 11.0 to 12.0 com- pression ratio advised.	H-242/310-6	3400- 7000	440241*	99280-16 99380-16*ª	242 242	300 300	106		43 11		.496 .496	
Moderate competition, bracket racing, Heavy, Pro ET, Super ET, auto trans w/race converter, 11.0 to 12.5 com- pression ratio advised.	H-246/3334-6	3600- 7200	440181°	99280-16 99380-16 ^{*a}	246 246	306 306	106		45 13		.533 .533	
Moderate competition, good upper RPM HP, bracket rac- ing, auto trans w/race converter, 11.5 to 13.0 compres- sion ratio advised.	H-246/336-2S-8	3800- 7200	440191°	99280-16 99380-16 ^{*a}	246 254	306 314	108		46 14		.538 .550	
Competition only, good upper RPM HP, bracket racing w/ light car, flat tappet restricted classes, auto trans w/race converter, 12.5 minimum compression ratio advised.	H-260/360-2S-8	4200- 7200	440201°	99280-16 99380-16 ^{*a}	260 268	330 338	108		53 21	.000 .000	.576 .595	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.

- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On engines equipped with bottleneck type studs, using 99768-

16 positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.

- NOTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
 NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your hydraulic lifter preload.
- NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: Left hand rotation hydraulic camshafts are available on special order. Contact Crane's Performance Consultants for details.

CRANE VALV	E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKERS — Gold Race
	96874-16 ^b	99943-16	99820-16 ^ь	99097-1ª	95644-16 ^f	44975-1 ^{*h}	36801-16 [;]		36750-16°
		99969-16		99094-1°	36622-16 ^g	44984-1* ⁱ	36800-16 ^k	11746-16 ^m 44746-16 ⁿ	36759-16 ^p 36758-16 ^q
	96874-16 ^ь	99943-16 99969-16'	99820-16 ^ь	99097-1ª 99094-1°	95644-16 ^f 36622-16 ^g	44975-1* ^h 44984-1* ⁱ	36801-16 [;] 36800-16 ^k	11746-16 ^m	36750-16° 36759-16 ^p
								44746-16 [°]	36758-16 ^q
	96874-16 ^ь	99943-16 99969-16'	99820-16 ^ь	99097-1ª 99094-1°	95644-16 ^f 36622-16 ^g	44975-1 ^{*h} 44984-1 ^{*i}	36801-16 ⁱ 36800-16 ^k	11746-16 ^m 44746-16 ⁿ	36750-16º 36759-16º 36758-16٩
	96874-16 ^ь	99943-16 99969-16'	99820-16 ^b	99097-1ª 99094-1°	95644-16 ^f 36622-16 ^g	44975-1 ^{*h} 44984-1 ^{*i}	36801-16 ⁱ 36800-16 ^k	11746-16 ^m 44746-16 ⁿ	36750-16° 36759-16° 36758-16°
	96874-16 ^ь	99943-16 99969-16'	99820-16 ^ь	99097-1ª 99094-1°	95644-16 ^f 36622-16 ^g	44975-1 ^{*h} 44984-1 ^{*i}	36801-16 [;] 36800-16 ^k	11746-16 ^m 44746-16 ⁿ	36750-16° 36759-16 ^p 36758-16 ^q

Optional Hi Intensity hydraulic lifters, see page 272 for details. а

- b
- Must machine cylinder heads. Requires Crane Multi Fit valve locks. c
- Machined steel, heat treated. h
- Machined steel, heat treated, Multi Fit.
- f Pro Series one-piece, for 351 engines, heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
- For 302 engines, heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. For 73-93 engines, performance steel billet gears and roller chain set.
- For 73-93 engines, Pro Series steel billet gears and roller chain set.
- 1.6 ratio, cast, rail type for 3/8" studs for 69-76 engines, non-adjustable with 5/16" top bottleneck j studs, adjustable if straight 3/8" studs and locking nuts are installed.
- 1.6 ratio, cast, non-rail type for 3/8" studs, must machine cylinder heads and install 99156-16 k rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93 pedestal mount cylinder heads for street applications.
- m Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install **99156-16** rocker arm studs and **36650-1** pushrod guideplates, or use **36655-16** Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- n Energizer, 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs 0 and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- 1.6 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes р Rocker Arm Pedestal Shim Kit.
- q 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.

					СОМ	PLETE C	AM SPE	CIFI	CATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	l Degrees Lobe Separation	Open/ @.C Cam Int/)50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Camsha	fts — Retrofit	t										
Excellent low end torque and HP, smooth idle, daily usage, towing, economy, also mild turbocharged, 2200- 3000 cruise RPM, 8.0 to 9.5 compression ratio advised. (50 state legal, C.A.R.B. E.O. D-225-46)	2020	800- 4800	444211 ^{*a,b} 444212 ^{*a,b,c}	36530-16ª 36532-16°	208 216	262 270	112	(3) 45	31 (9)	.000 .000	.530 .530	
Good low end torque and HP, good idle, daily usage, per- formance and fuel efficiency, off road, towing, 2400- 3000 cruise RPM, 8.75 to 10.0 compression ratio advised.	HR-216/325-25-12	1400- 5400	449541 ^{*a,b}	36530-16 ^d 36532-16 ^e	216 224	278 286	112	1 49	35 (5)	.000 .000	.520 .542	
Good low end and mid range torque and HP, good idle, moderate performance usage, 2600-3200 cruise RPM, good w/plate nitrous system, 9.0 to 10.5 compression ratio advised. Also good w/supercharger, 20 lbs. maxi- mum boost w/ 8.5 maximum compression ratio advised.	HR-220/332-252-14	1600- 5600	449631 ^{*a,b}	36530-16ª 36532-16º	220 228	282 290	114	1 53	39 (5)	.000 .000	.531 .552	
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2000+ converter, serious off road, 2800-3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	HR-224/339-25-12	1800- 5800	449601 ^{*a,b}	36530-16 ^d 36532-16 ^e	224 232	286 294	112	5 53	39 (1)	.000 .000	.542 .563	
Good mid range torque and HP, fair idle, performance usage, bracket racing, auto trans with 2500+ converter, 3000-3600 cruise RPM, 10.0 to 11.5 compression ratio advised. Also good w/centrifugal or Roots supercharger, 24 lbs. maximum boost with 8.5 maximum compression ratio advised, also good with manifold nitrous system.	HR-228/345-2S1-14	2400- 6400	449681* ^{a,b}	36530-16⁴ 36532-16⁰	228 232	290 294	114	5 55	43 (3)	.000 .000	.552 .563	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.	NOTE:	To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On	NOTE:	Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your hydraulic lifter preload.
IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.		engines equipped with bottleneck type studs, using 99768- 16 positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms	NOTE:	Some engines have long valve stems which will result in ex- cessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming.
NOTE: Cylinder head removal will be required in 82-84 302 H.O. applications in order to install the 36532-16 or 36560-16 hydraulic roller tappets.		and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.	NOTE:	Contact Crane's Performance consultants for details. Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket.
NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hy- draulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.		Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.		This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre- 1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.

Camshaft has standard base circle diameter, for use with **36532-16** or **36560-16** hydraulic roller lifters. Also applicable to 94-97 351W engines.

а

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	1 ROCKERS – Gold Race
44308-1 ^f 44309-1 ^w	96870-16 ⁹	99943-16 99969-16 ^h	99820-16ª	99097-1 ⁱ 99087-1 ^j	95636-16 ^k 95640-16 ⁱ	44975-1 ^{°m} 44984-1 ^{°n}	36801-16º 36800-16 ^p	11746-16' 44746-16'	36750-16 36759-16 36758-16
44308-1 ^f 44309-1 ^w	96870-16 ⁹	99943-16 99969-16 ^h	99820-16 ^h	99097-1 ⁱ 99087-1 ^j	95636-16 ^k 95640-16 ⁱ	44975-1* ^m 44984-1* ⁿ	36801-16° 36800-16 ^p	11746-16' 44746-16'	36750-16 36759-16 36758-16
	96870-16 ^g	99943-16 99969-16 ^h	99820-16 ^h	99097-1 ⁱ 99087-1 ^j	95636-16 ^k 95640-16 ⁱ	44975-1 ^{*m} 44984-1 ^{*n}	36801-16° 36800-16 ^p	11746-16' 44746-16'	36750-10 36759-10 36758-10
	96870-16 ^g	99943-16 99969-16 ^h	99820-16 ^h	99097-1 ⁱ 99087-1 ^j	95636-16 ^k 95640-16 ⁱ	44975-1 ^{°m} 44984-1 ^{°n}	36801-16º 36800-16 ^p	11746-16' 44746-16'	36750-16 36759-16 36758-16
	96870-16 ⁹	99943-16 99969-16 ^h	99820-16 ^h	99097-1 ⁱ 99087-1 ^j	95636-16 ^k 95640-16 ⁱ	44975-1* ^m 44984-1* ⁿ	36801-16° 36800-16 ^p	11746-16' 44746-16'	36750-16 36759-16 36758-16

Section Continued 🛰

b	Requires 36970-1 (.467" I.D.) or 44970-1 (.531" I.D.) steel, or 36990-1 (.467" I.D.) or 44990-1	р	1.6 ratio, cast, non-rail type for 3/8" studs, must machine cylinder heads and install 99156-16
	(.531"I.D.) aluminum-bronze distributor drive gear.		rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93
c	Cam and spring kit, includes 44308-1 kit, containing valve springs, valve spring retainers, and valve		pedestal mount cylinder heads for street applications.
	stem locks.	r	Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker
d	For use with standard Ford alignment bars, on engines originally equipped with hydraulic roller lifters.		arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00
е	Vertical locking bar hydraulic roller lifters, no machining required. Cylinder head removal required in		pedestal mount cylinder heads for street applications.
	82-84 302 H.O. applications. Appropriate pushrods required.	s	Energizer, 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required,
f	Optional conical spring, retainer, and lock kit for 79-93 engines, no machining required.		includes Rocker Arm Pedestal Shim Kit.
g	Must machine cylinder heads.	t	1.6 ratio, 3/8" stud, must machine cylinder heads and install 99156-16 rocker arm studs and
ĥ	Requires Crane Multi Fit valve locks.		36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93 pedestal mount cylinder
i	Machined steel, heat treated.		heads for street applications.
j	Machined steel, heat treated, Multi Fit.	u	1.6 ratio, non-adjustable, for 77-93 pedestal mount cylinder heads, no machining required, includes
k	Pro Series one-piece, for 351W engines with non-adjustable pedestal mount rocker arms.		Rocker Arm Pedestal Shim Kit.
1	Pro Series one -piece, for 351W engines with adjustable rocker arms with Pushrod Guideplate	V	1.7 ratio, non-adjustable, for 77-93 pedestal mount cylinder heads, no machining required, includes
	Conversion Kit (36655-16). See page 305 for details.		Rocker Arm Pedestal Shim Kit.
m	For 73-93 engines, performance steel billet gears and roller chain set.	w	Optional conical spring, retainer, and lock kit for GT40P and similar long exhaust valve cylinder
n	For 73-93 engines, Pro Series steel billet gears and roller chain set.		heads. No machining required.

• 1.6 ratio, cast, rail type for 3/8" studs. Non-adjustable with 5/16" top bottleneck studs, adjustable with straight 3/8" studs and locking nuts.

- C(1.1	D	- 7	СЛ			C 1	- 1	СЛ		NS
	•,	1.1			-	111	-	<u> </u>				

Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274 LIFTERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Camshar Good mid range torque and HP, fair idle, performance usage, supercharged, nitrous, bracket racing, auto trans w/3000+ converter, 3400-3800 cruise RPM, 10.0 to 11.5 compression ratio advised.	fts — Retrofit HR-232/352-251-12	2600- 6600	449561*a,b	36530-16° 36532-16ª	232 240	294 302	112	9 43 57 3	.000 .000	.563 .584	
Good mid to upper RPM torque and HP, rough idle, per- formance usage, bracket racing, auto trans w/3000+ converter, 3600-4000 cruise RPM, 10.5 to 12.0 compres- sion ratio advised.	HR-236/359-2S-10	2800- 6800	449641 ^{*a,b}	36530-16° 36532-16ª	236 244	298 306	110	13 43 57 7	.000 .000	.574 .595	
Moderate performance usage, rough idle, bracket racing, auto trans w/3500+ converter, good w/manifold nitrous system, 3600-4000 cruise RPM, 10.5 to 12.0 compression ratio advised. Also good w/centrifugal or Roots super- charger, 28 lbs. maximum boost w/8.5 maximum com- pression ratio.	HR-240/365-251-14	3000- 7000	449711 ^{*a,b}	36530-16ª 36532-16ª	240 244	302 306	114	11 49 61 3	.000 .000	.584 .595	
Moderate performance usage, rough idle, performance usage, supercharged, nitrous, for 400+ cu.in., bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 11.5 minimum compression ratio advised.	HR-244/372-2S-12	3200- 7000	449571 ^{*a,b}	36530-16° 36532-16ª	244 256	306 318	112	15 49 65 11	.000 .000	.595 .595	
Performance usage, for 400+ cu.in., bracket racing, good w/large plate nitrous, auto trans w/4000+ converter, 12.5 minimum compression ratio advised. Also good w/ centrifugal or Roots supercharger, 34 lbs. maximum boost w/8.5 maximum compression ratio.	HR-252/400-25-14	3600- 7200	449741 ^{*a,b}	36532-16 ^d	252 260	322 330	114	15.5 56.5 68 12	.000 .000	.640 .640	

RPM range shown is for average usage. These cam profiles No will RPM higher, depending upon application.

- **IMPORTANT:** Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Cylinder head removal will be required in 82-84 302 H.O. applications in order to install the **36532-16** or **36560-16** hydraulic roller tappets.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O., and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: To provide the most accurate valve adjustment on hydraulic roller camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On engines equipped with bottleneck type studs, using 99768-16 positive locking nuts will permit valve adjustment. For engines equipped with pedestal mounted rocker arms and hydraulic lifters, excessive lifter preload can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.
 NOTE: Crane offers a Pushrod Guideplate and Rocker Arm
- OTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. See page 353 for checking your hydraulic lifter preload.
- NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.

CRANE VALV	E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	N ROCKERS — Gold Race
	96870-16°	99943-16 99969-16 ^ŕ	99820-16°	99097-1 ⁹ 99087-1 ^h	95636-16 ⁱ 95640-16 ⁱ	44975-1 ^{*k} 44984-1 ^{*i}	36801-16™ 36800-16°	11746-16 ^p 44746-16 ^q	36750-16' 36759-16' 36758-16'
	96870-16°	99943-16 99969-16 ^f	99820-16°	99097-1º 99087-1ʰ	95636-16 ⁱ 95640-16 ⁱ	44975-1 ^{*k} 44984-1 ^{*i}	36801-16 ^m 36800-16 ⁿ	11746-16 ^p 44746-16 ^q	36750-16' 36759-16' 36758-16'
	96870-16°	99943-16 99969-16 ^f	99820-16°	99097-1º 99087-1ʰ	95636-16 ⁱ 95640-16 ⁱ	44975-1 ^{*k} 44984-1* ⁱ	36801-16ª 36800-16ª	11746-16 ^p 44746-16 ^q	36750-16' 36759-16' 36758-16'
	96870-16°	99943-16 99969-16'	99820-16°	99097-1 ^g 99087-1 ^h	95636-16 ⁱ 95640-16 ^j	44975-1 ^{*k} 44984-1* ⁱ	36801-16 ^m 36800-16 ⁿ	11746-16 ^p 44746-16 ^q	36750-16' 36759-16' 36758-16'
	96870-16°	99943-16 99969-16 ^f	99820-16°	99097-1 ⁹ 99087-1 ^h	95636-16 ⁱ 95640-16 ^j	44975-1 ^{*k} 44984-1 ^{*i}	36801-16 ^m 36800-16 ⁿ	11746-16º 44746-16º	36750-16' 36759-16' 36758-16'

- Camshaft has standard base circle diameter, for use with 36532-16 or 36560-16 hydraulic roller а lifters. Also applicable to 94-97 351W engines. Requires **36970-1** (.467" I.D.) or **44970-1** (.531" I.D.) steel, or **36990-1** (.467" I.D.) or **44990-1** b
- (.531"I.D.) aluminum-bronze distributor drive gear.
- For use with standard Ford alignment bars, on engines originally equipped with hydraulic roller lifters. Vertical locking bar hydraulic roller lifters, no machining required. Cylinder head removal required in d 82-84 302 H.O. applications. Appropriate pushrods required.
- Must machine cylinder heads.
- Requires Crane Multi Fit valve locks.
- Machined steel, heat treated. g h
- Machined steel, heat treated, Multi Fit.
- For 351W engines with non-adjustable pedestal mount rocker arms.
- Pro Series one -piece, for 351W engines with adjustable rocker arms with Pushrod Guideplate Conversion Kit (**36655-16**). See page 305 for details.

- For 73-93 engines, performance steel billet gears and roller chain set.
 For 73-93 engines, Pro Series steel billet gears and roller chain set.
 n.6 ratio, cast, rail type for 3/8" studs. Non-adjustable with 5/16" top bottleneck studs, adjustable with straight 3/8" studs and locking nuts.

- n 1.6 ratio, cast, non-rail type for 3/8" studs, must machine cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93 pedestal mount cylinder heads for street applications.
- p Energizer, 1.6 ratio 3/8" stud, must machine 1966-00 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 1977-00 pedestal mount cylinder heads for street applications.
- Energizer, 1.7 ratio, non-adjustable, for pedestal mount cylinder heads, no machining required, q includes Rocker Arm Pedestal Shim Kit.
- 1.6 ratio, 3/8" stud, must machine cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93 pedestal mount cylinder heads for street applications.
- s 1.6 ratio, non-adjustable, for 77-93 pedestal mount cylinder heads, no machining required, includes Rocker Arm Pedestal Shim Kit.
- 1.7 ratio, non-adjustable, for 77-93 pedestal mount cylinder heads, no machining required, includes t Rocker Arm Pedestal Shim Kit.

				COMPLETE CAM SPECIFICATIONS							
	Camshaft Series/	rpm Power	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050″	Advertised Degrees Duration	Degrees Lobe	Open/ @.0 Cam		Lash Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/	Exh	Exh.	Exh.
<u> 1echanical Lifter Camsh</u>											
iood mid range torque & HP, performance usage, brack- t racing, Street, Heavy, auto trans w/3000+ converter, val track Sportsman, etc., 2-bbl or 4-bbl, 1/4-3/8 mile, erious off road, 10.5 to 11.5 compression ratio advised.	F-238/3200-8	2800- 6600	441161*	99257-16	238 238	300 300	108	16 52	42 6	.022 .022	.512 .512
· · ·	F 246/2467 262 6	2200	•	00257.16	246	270	107	20	10	010	
Performance usage, bracket racing, good mid-range orque, Heavy, Pro ET, auto trans w/race converter, oval rack Sportsman, IMCA, etc., 2-bbl or 4-bbl, 1/4-3/8 mile,	F-246/3467-252-6	3200- 6800	440881*	99257-16	246 250	278 282	106	20 54	46 16	.012 .012	
1.0 to 12.5 compression ratio advised.			€								
erformance usage, bracket racing, good mid-range orque and HP, Heavy, Pro ET, auto trans w/race convert- r, oval track Late Model, Sportsman, IMCA, etc., 4-bbl,	F-248/3334-2-8	3400- 7200	441231*	99257-16	248 258	310 320	108	21 62	47 16	.022 .022	
/4-3/8 mile, serious off road, 11.0 to 12.5 compression atio advised.			•								
lough idle, performance usage, radical street, good Ipper RPM HP, bracket racing, auto trans w/3500+ con- erter, 3800-4200 cruise RPM, 10.5 to 112.0 compression	F-252/3574-251-10	3800- 7400	440991*	99257-16	252 256	288 292	110	20 62	52 14	.026 .026	
atio advised. Good w/Roots supercharger, 15 lbs. maxi- num boost w/8.0 maximum compression ratio advised, lood w/manifold nitrous system.			•								
erformance usage, bracket racing, good mid-range HP, ro, Pro ET, Super ET, auto trans w/race converter, oval rack Late Model, etc., 4-bbl, 3/8-1/2 mile, 11.5 mini-	F-252/3574-2S-6	3800- 7200	440981*	99257-16	252 260	288 296	106	22 58	50 22	.026 .026	.572 .591
num compression ratio advised.			•								
erformance usage, bracket racing, good mid-range HP, ro, Pro ET, Super Pro, auto trans w/race converter, oval rack: Late Model, etc., 4-bbl, 3/8-1/2 mile, 11.5 mini-	F-256/3634-2S-6	4000- 7400	441301 [*]	99257-16	256 264	292 300	106	25 61	51 23	.026 .026	.581 .601
num compression ratio advised.			•								
erformance usage, bracket racing, good mid to upper	F-260/3694-257-6	4200-	441431*	99257-16	260	296	106	27	53	.026	.591
IPM HP, Pro, Super Pro, etc., auto trans w/race converter, val track Late Model, etc., 2-bbl or 4-bbl, 3/8-1/2 mile, 1.5 minimum compression ratio advised.		7600	•		264	300		61	23	.026	.601
ompetition only, bracket racing, good upper RPM HP,	F-268/394-2S5-8	4600-	441551*	99257-16	268	304	108	29	59	.018	.630
ro, Super Pro, auto trans w/race converter, high RPM ong oval track, 12.0 minimum compression ratio dvised.		8000	•		272	308		67	25	.018	.640
ompetition only, good mid and upper RPM torgue and	F-272/400-2S-6	4800-	441591*	99257-16	272	308	106	32	60	.018	.640
IP, flat tappet restricted classes, bracket racing, auto rans w/race converter, 1/2 - 5/8 mile oval track, good vith aftermarket cylinder heads, 12.0 minimum com-		8200	•		276	312		66	30		.650
ression ratio advised.			•								
tadical competition only, good upper RPM torque and IP, flat tappet restricted classes, bracket racing, good vith aftermarket cylinder heads, auto trans w/race con- erter, 12.5 minimum compression ratio advised.	F-276/406-2S1-8	5000- 8400	441621*	99257-16	276 284	312 320	108	34 74	62 30	.018 .018	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.

- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O. engines, and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: Ford 221 thru 302 camshafts can be used in 351 Windsor engines if the engine is changed to 221 thru 302 firing order (1-5-4-2-6-3-7-8). Ford 351W firing order is 1-3-7-2-6-5-4-8.
- NOTE: In order to effect valve adjustment when using mechanical lifter camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped). On engines equipped with bottleneck type studs, using 99768-16 positive locking nuts will permit valve adjustment.
- NOTE: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (36655-16) for street applications, enabling the 1977-00 302 cu.in. and 351W engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. Refer to page 305 for details.
- NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: Left hand rotation mechanical camshafts are available on special order. Contact Crane's Performance Consultants for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUM	
AND RETAINER KITS	VALVE SPRINGS	RETAINERS	STEM SEALS	STEM LOCKS	PUSHRODS	AND GEAR ASSEMBLY	ROCKER ARMS	ENERGIZER	GOL RAC
	96877-16ª	99943-16	99820-16ª	99097-1°	95644-16°	44975-1 ^{*h}			36750-
		99969-16 ⁵		99087-1 ⁴	36622-16 ^f 95618-16 ^g	44984-1 ^{*i}			86757- 36757-
	96877-16ª	99943-16 _.	99820-16ª	99097-1 [°]	95644-16°	44975-1 ^{*h}			36750 -1
		99969-16 ^ь		99087-1 ⁴	36622-16 ^f 95618-16 ^g	44984-1 ^{*i}			86757- 36757-
	96877-16ª	99943-16	99820-16ª	99097-1 °	95644-16°	44975-1 ^{*h}			36750-
		99969-16 ^b		99087-1 ^d	36622-16 ^f 95618-16 ^g	44984-1 ^{*i}			86757- 36757-
					33010-10 ³				30/3/-
	96877-16ª	99943-16	99820-16ª	99097-1°	95644-16°	44975-1 ^{*h}			36750-
		99969-16 ^ь		99087-1 ^ª	36622-16 ^f 95618-16 ^g	44984-1 ^{*i}			86757- 36757-
	96877-16ª	99943-16 99969-16⁵	99820-16ª	99097-1° 99087-1ª	95644-16° 36622-16 ^f	44975-1 ^{*h} 44984-1 ^{*i}			36750- 86757-
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	95618-16 ⁹				36757-
	96877-16ª	99943-16	99820-16ª	99097-1°	95644-16°	44975-1 ^{*h}			36750-
		99969-16 ^ь		99087-1 ⁴	36622-16 ^f 95618-16 ^g	44984-1 ^{*i}			86757- 36757-
	96877-16ª	99943-16	99820-16ª	99097-1	95644-16°	44975-1 ^{*h}			36750-
		99969-16 ⁶		99087-1 ^₄	36622-16 ^f 95618-16 ^g	44984-1 ^{*i}			86757- 36757-
	96877-16ª	99956-16	99820-16ª	99097-1 [°]	95644-16°	44975-1 ^{*h}			36750-
		99973-16 ⁶		99087-1 ⁴	36622-16 ^f 95618-16 ^g	44984-1 ^{*i}			86757- 36757-
	96877-16ª	99956-16	99820-16ª	99097-1	95644-16°	44975-1 ^{*h}			36750-
		99973-16 ^b		99087-1 ⁴	36622-16 ^f 95618-16 ^g	44984-1 ^{*i}			86757- 36757-
	96877-16ª	99956-16 99973-16 ^b	99820-16ª	99097-1° 99087-1ª	95644-16° 36622-16 ^f	44975-1 ^{*h} 44984-1 ^{*i}			36750- 86757-
		377/3-10 ⁻		5500/-1-	95618-16 ⁹	44704-1			36757-

- а
- b
- c
- Must machine cylinder heads. Requires Crane Multi Fit valve locks. Machined steel, heat treated. Machined steel, heat treated, Multi Fit. d
- For Series one-piece, for 351 engines, for use with or without pushrod guideplate cylinder heads. For 302 engines, heavy wall, heat treated, for use with or without pushrod guideplate cylinder e f
- heads. Pro Series one-piece, for 302 engines, for use with or without pushrod guideplate cylinder heads. g h
- For 73-93 engines, performance steel billet gears and roller chain set.

- For 73-93 engines, Pro Series steel billet gears and roller chain set. 1.6 ratio, 3/8" stud, must machine 66-93 cylinder heads and install **99156-16** rocker arm studs and **36650-1** pushrod guideplates, or use **36655-16** Conversion Kit on 77-93 pedestal mount cylinder k heads for street applications.
 1.6 ratio, 7/16" stud, must machine 66-93 cylinder heads and install **99157-16** rocker arm studs
- and 36650-1 pushrod guideplates.
- m 1.7 ratio, 7/16" stud, must machine 66-93 cylinder heads and install 99157-16 rocker arm studs and 36650-1 pushrod guideplates.

					COMPLETE CAM SPECIFICATIONS							
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe	.@.)50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Mechanical Roller Camsh		NANGE	ETHISSIONS CODE	LIFTERS	IIII/EXII.	IIII/EXII.	Separation	IIIt/	LXII	EXII.	EXII.	
Excellent low end and mid range torque and HP, good idle, daily performance usage, mild bracket racing, auto trans w/2500+ converter, 3000-3400 cruise RPM, 9.5 to	SR-230/338-25-10	2400- 6400	448501*ª	44518-16 44570-16⁵	230 238	280 288	110	10 54	40 4	.020 .020		
11.0 compression ratio advised.			••									
Rough idle, performance usage, good low to mid-range torque & HP, bracket racing, auto trans w/3000+ con- verter, good w/manifold nitrous system, 10.5 to 12.0 compression ratio advised. Good w/Roots supercharger, 16 lbs. maximum boost w/8.0 maximum compression ratio advised.	TR-244/3867-25-10	3200- 7000	448031*ª	44518-16 44570-16 ^b	244 252	284 292	110	15 59	49 13	.022 .022		
Fair idle, moderate performance usage, good mid-range torque and HP, bracket racing, auto trans w/3500+ con- verter, good w/manifold nitrous system, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised. Good w/Roots supercharger, 16 lbs. maximum boost w/8.0 maximum compression ratio advised.	SR-246/362-25-10	3400- 7200	448601 ^{*a}	44518-16 44570-16 ^b	246 254	296 304	110	15 59	51 15	.020 .020	.579 .598	
Performance usage, bracket racing, good mid-range torque and HP, Heavy, Pro, etc., auto trans w/race con- verter, oval track 2-bbl or 4-bbl, 1/4-3/8 mile, 11.0 to 12.5 compression ratio advised.	R-252/420-2S-8	3600- 7400	448801*ª	44518-16 44570-16 ^b	252 258	284 290	108	22 61	50 17	.020 .020	.672 .672	
Performance usage, bracket racing, good mid-range torque and HP, Heavy, Pro, etc., auto trans w/race con- verter, oval track 2-bbl or 4-bbl, 1/4-3/8 mile, 11.0 to 12.5 compression ratio advised.	R-254/420-2S2-8	3800- 7600	448821*ª	44518-16 44570-16⁵	254 258	286 290	108	23 61	51 17	.020 .020	.672 .672	
Rough idle, performance usage, w/manifold nitrous sys- tem, good mid and upper RPM torque and HP, bracket racing, auto trans w/3500+. converter, 4200-4600 cruise RPM, 11.0 minimum compression ratio advised. Good w/ Roots supercharger, 20 lbs. maximum boost w/8.0 maxi- mum compression ratio advised.	SR-254/374-2S-10	3800- 7800	448511'ª	44518-16 44570-16 ^b	254 262	304 312	110	22 66	52 16	.020 .020		
Performance usage, bracket racing, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/ race converter, oval track, 2-bbl or 4-bbl, 1/4-3/8 mile, 12.0 minimum compression ratio advised.	R-258/420-2S-8	4000- 7600	448831*ª	44518-16 44570-16 ^b	258 262	290 294	108	25 63	53 19		.672 .672	
Rough idle, performance usage, w/large nitrous system, good mid to upper RPM torque & HP, bracket racing, auto trans w/3500+ converter, 11.5 minimum compression ratio advised. Good w/Roots supercharger, 20 lbs. maxi- mum boost w/8.0 maximum compression ratio advised.	R-258/420-25-10	4000- 7800	448861*ª	44518-16 44570-16 ^b	258 262	290 294	110		55 17	.020 .020	.672 .672	
Performance usage, bracket racing, good mid to upper RPM HP, Pro, Super Pro, etc., auto trans w/race converter, good with small nitrous system, aftermarket cylinder heads advised, 12.0 minimum compression ratio advised.	R-260/452-2S-10	4000- 8000	448301*ª	44518-16 44570-16⁵	260 268	289 300	112	25 68	55 20	.020 .020		
Performance usage, bracket racing, good mid to upper RPM torque and HP, Pro, Super Pro, etc., auto trans w/ race converter, oval track, 2-bbl or 4-bbl, 3/8-1/2 mile, 12.0 minimum compression ratio advised.	R-262/420-253-8	4200- 7800	448841*a	44518-16 44570-16⁵	262 268	294 300	108	27 66	55 22	.020 .020	.672 .672	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT:** Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Camshafts for engines with 52mm, 52.8mm (2.081"), and 55mm diameter camshaft bearing journals are available on special order.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O. engines, and all 94-97 351 Windsor engines are equipped
- with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical, or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: Ford 221 thru 302 camshafts can be used in 351 Windsor engines if the engine is changed to 221 thru 302 firing order (1-5-4-2-6-3-7-8). Ford 351W firing order is 1-3-7-2-6-5-4-8. NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft spro This may cause idling and performance problems w installing aftermarket camshafts. We recommend u
- NOTE: In order to effect valve adjustment when using roller lifter camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped).
- NOTE: Some engines have long valve stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
 NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.

CRANE VAL	E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKERS Gold Race
	99893-16 [,]	99953-16	99820-16 [.]	99097-1°	95644-16ª 36622-16 ^h 95618-16 ⁱ	44975-1 ^{*j} 44984-1* ^k			36750-1 86757-1 36757-1
	99885-16 [,]	99956-16 99970-16ª	99826-16 [.]	99097-1° 99087-1 ^f	95644-16ª 36622-16 ^h 95618-16 ⁱ	44975-1 ^{*j} 44984-1* ^k			36750-10 86757-10 36757-10
	99893-16 [.]	99953-16	99820-16 [,]	99097-1°	95644-16 ⁹ 36622-16 ^h 95618-16 ⁱ	44975-1 ^{*j} 44984-1* ^k			36750-1 86757-1 36757-1
	99885-16 [,]	99956-16 99970-16ª	99826-16'	99097-1° 99087-1 ^f	95644-16 ⁹ 36622-16 ^h 95618-16 ⁱ	44975-1 ^{*j} 44984-1* ^k			36750-1 86757-1 36757-1
	99885-16 [,]	99956-16 99970-16ª	99826-16'	99097-1° 99087-1 ^f	95644-16ª 36622-16 ^h 95618-16 ⁱ	44975-1* ^j 44984-1* ^k			36750-1 86757-1 36757-1
	99893-16 [.]	99953-16	99820-16 [.]	99097-1°	95644-16ª 36622-16 ^h 95618-16 ⁱ	44975-1 ^{*j} 44984-1* ^k			36750-1 86757-1 36757-1
	99885-16 [,]	99956-16 99970-16ª	99826-16'	99097-1° 99087-1 ^f	95644-16ª 36622-16 ^h 95618-16 ⁱ	44975-1 ^{*j} 44984-1 ^{*k}			36750-1 86757-1 36757-1
	99885-16 [,]	99956-16 99970-16ª	99826-16'	99097-1° 99087-1 ^f	95644-16 ⁹ 36622-16 ^h 95618-16 ⁱ	44975-1 ^{*j} 44984-1* ^k			36750-1 86757-1 36757-1
	99885-16 [,]	99956-16 99970-16ª	99826-16'	99097-1° 99087-1 ^f	95644-16 ⁹ 36622-16 ^h 95618-16 ⁱ	44975-1 ^{°j} 44984-1 ^{*k}			36750-1 86757-1 36757-1
	99885-16 [.]	99956-16 99970-16ª	99826-16 [,]	99097-1° 99087-1 ^f	95644-16ª 36622-16 ^h 95618-16 ⁱ	44975-1 ^{*j} 44984-1 ^{*k}			36750-1 86757-1 36757-1

Section Continued 👐

- a Requires 36970-1 (.467"1.D.), 36971-1 (.500"1.D.), or 44970-1 (.531"1.D. SVO) steel, or 36990-1 (.467"1.D.), 36989-1 (.500"1.D.), or 44990-1 (.531"1.D. SVO), aluminum-bronze distributor drive gear, and 7/16-20 x 1-1/4" grade 8 cam gear bolt and hardened washer.
- **b** Ultra Pro Series roller lifters.
- c Must machine cylinder heads.
- d Requires Crane Multi Fit valve locks.
- e Machined steel, heat treated.
- f Machined steel, heat treated, Multi Fit.
- g Pro Series one-piece, for 351 engines, for use with or without pushrod guideplate cylinder heads.
 h For 302 engines, heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.

Pro Series one-piece, for 302 engines, for use with or without pushrod guideplate cylinder heads. For 73-93 engines, performance steel hillet gears and roller chain set

- For 73-93 engines, performance steel billet gears and roller chain set.
 For 73-93 engines, Pro Series steel billet gears and roller chain set.
- m 1.6 ratio, 3/8" stud, must machine 66-93 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93 pedestal mount cylinder heads for street applications.
- n 1.6 ratio, 7/16" stud, must machine 66-93 cylinder heads and install 99157-16 rocker arm studs and 36650-1 pushrod guideplates.
- 1.7 ratio, 7/16" stud, must machine 66-93 cylinder heads and install 99157-16 rocker arm studs and 36650-1 pushrod guideplates.

						СОМ	PLETE C	AM SPE	CIFI	CATI	ONS		
Application		Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/ @.0 Cam Int/	Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Mechanical Roller	Camsh	afts						·					
Rough idle, performance usage, good w/ nitrous system, good upper RPM HP, brac trans w/4000+ converter, 4400-4800 cru minimum compression ratio advised. Goo supercharger, 22 lbs. maximum boost w/ compression ratio advised.	nanifold tet racing, auto se RPM, 11.5 d w/Roots	SR-262/374-25-10	4400- 7800	448671*ª	44518-16 44570-16 ⁶	262 274	312 323	110	26 72			.598 .584	
Competition only, good w/large nitrous s mid to upper RPM HP, bracket racing, aut converter, 12.0 minimum compression ra Good w/Roots supercharger, 24 lbs. maxi w/8.0 maximum compression ratio advis	o trans w/race tio advised. num boost	R-266/420-2S3-10	4600- 8000	448871*ª	44518-16 44570-16 ⁶	266 276	298 308	110	27 72	59 24	.020 .020		
Competition only, good mid to upper RP/ racing, auto trans w/race converter, 12.0 pression ratio advised, aftermarket alumi heads advised, good w/large nitrous syst Roots supercharger, 24 lbs. maximum bo mum compression ratio advised.	ninimum com- num cylinder em. Good w/	R-266/452-2S-10	4600- 8200	448311* ^ª	44570-16 ^b	266 276	295 306	110	28 73	58 23	.020 .022		
Performance usage, bracket racing, good torque and HP, Super Pro, etc., auto trans er, oval track, high RPM 3/8-1/2 mile, 12. compression ratio advised.	w/race convert-	R-268/420-251-8	4800- 8200	448851*ª	44518-16 44570-16 ^b	268 272	300 304	108	30 68		.020 .020		
Competition only, bracket racing, good u torque and HP, Super Pro, etc., auto trans er, aftermarket aluminum cylinder heads minimum compression ratio advised.	w/race convert-	R-272/4381-251-8	5000- 8400	448891*ª	44518-16 44570-16 ^b	272 278	304 310	108	31 70	61 28	.020 .022		
Competition only, bracket racing, good u torque and HP, Super Pro, Super Gas, etc., race converter, aftermarket aluminum cy advised, 12.5 minimum compression rati	auto trans w/ inder heads	R-276/4334-2S-8	5200- 8400	448291*ª	44518-16 44570-16 ^b	276 284	316 284	108	33 73		.026 .026		
Competition only, bracket racing, good u torque and HP, Super Pro, Super Gas, etc., race converter, aftermarket aluminum cy advised, 12.5 minimum compression rati	auto trans w/ inder heads	R-280/452-2S-10	5400- 8600	448881*ª	44570-16 ^ь	280 288	310 320	110	35 78	65 30	.020 .020		
Competition only, good upper RPM HP, st w/race converter, designed for large man system, professionally prepared cylinder minimum compression ratio advised.	fold nitrous	R-284/466-2S-15	5400- 8800	448321*ª	44570-16 ^ь	284 296	316 336	115	30 87		.020 .030		
Competition only, good upper RPM HP, st w/race converter, professionally prepared 13.5 minimum compression ratio advised	cylinder heads,	R-286/456-251-10	5200- 8800	448331*ª	44570-16 ^ь	286 290	326 330	110	36 78	70 32	.026 .026		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Camshafts for engines with 52mm, 52.8mm (2.081"), and 55mm diameter camshaft bearing journals are available on special order.
- NOTE: Many 1985-87 302 engines, all 88-97 302 passenger car engines, all 96-00 302 truck engines, all 85-95 302 H.O. engines, and all 94-97 351 Windsor engines are equipped with hydraulic roller camshafts and lifters. Conventional hydraulic, mechanical,
- or roller lifters can be easily installed in these engines, providing the appropriate kit components are used.
- NOTE: Ford 221 thru 302 camshafts can be used in 351 Windsor engines if the engine is changed to 221 thru 302 firing order (1-5-4-2-6-3-7-8). Ford 351W firing order is 1-3-7-2-6-5-4-8.
- NOTE: In order to effect value adjustment when using roller lifter camshafts, the heads must be machined to accept screw-in studs (on engines not originally equipped).
- NOTE: Some engines have long value stems which will result in excessive valve spring assembly height. Different springs and retainers may be required to prevent excessive shimming. Contact Crane's Performance consultants for details.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 44975-1 or 44984-1 timing chain and assemblies, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.

CRANE VAL	/E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUM	ROCKERS -
AND RETAINER	VALVE		STEM	STEM		AND GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	00000 1.6	00053.46	00020 4.6	00007.4	05644.46	44075 4*k			26750.44
	99893-16 [,]	99953-16	99820-16 ^c	99097-1 ^f	95644-16 ^h 36622-16 ⁱ	44975-1 ^{*k} 44984-1 ^{*i}			36750-10 86757-10
					95618-16 ^j	44704-1			36757-10
					<i>y</i>				50757 10
	99885-16 ^c	99956-16	99826-16 [°]	99097-1 ^f	95644-16 ^h	44975-1* ^k			36750-1
	7700J-10	99970-16 ^d	77020-10	99087-1 ⁹	36622-16 ⁱ	44984-1* ¹			86757-1
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	95618-16 ^j	10011			36757-1
	99885-16 [,]	99956-16	99826-16 [,]	99097-1 ^f	95644-16 ^h	44975-1* ^k			36750-1
		99970-16 ^d		99087-1 ⁹	95618-16 [;]	44984-1 ^{*1}			86757-1
									36757-1
	00005 4.4	00054.44	00006 4.6	00007 4	orcas ach	44075 4*b			26750 4
	99885-16 [°]	99956-16 99970-16₫	99826-16 ^c	99097-1 ^f 99087-1 ^g	95644-16 ^h 36622-16 ⁱ	44975-1 ^{*k} 44984-1 ^{*i}			36750-1 86757-1
		33370-10		33007-1 5	95618-16 ⁱ	44704-1			36757-1
	99885-16 [,]	99956-16	99826-16 ^c	99097-1 ^f	95644-16 ^h	44975-1* ^k			36750-1
		99970-16 ^d		99087-1º	36622-16 ⁱ	44984-1 ^{*1}			86757-1
					95618-16 [;]				36757-1
	99885-16 [.]	99956-16	99826-16 [.]	99097-1 ^f	95644-16 ^h	44975-1 ^{*k}			36750-1
		99970-16 ^d		99087-1 ⁹	36622-16 ⁱ	44984-1 ^{*i}			86757-1
					95618-16 ⁱ				36757-1
	96886-16 [.]	99681-16°	99826-16 [.]	99097-1 ^f	95644-16 ^h	44984-1 ^{*i}			36750-1
					95618-16 ^j				86757-1
									36757-1
	96886-16 [.]	99681-16°	99826-16 [.]	99097-1 ^f	95644-16 ^h	44984-1 ^{*1}			36750-1
					95618-16 ^j				86757-1
									36757-1
	96886-16 [.]	99681-16°	99826-16 ^c	99097-1 ^f	95644-16 ^h	44984-1 ^{*1}			36750-1
					95618-16 ⁱ				86757-1 36757-1
									50/5/-

- а Requires **36970-1** (.467" I.D.), **36971-1** (.500" I.D.), or **44970-1** (.531" I.D. SVO) steel, or **36990-1** (.467" I.D.), 36989-1 (.500" I.D.), or 44990-1 (.531" I.D. SVO), aluminum-bronze distributor drive gear, and 7/16-20 x 1-1/4" grade 8 cam gear bolt and hardened washer.
- b Ultra Pro Series roller lifters.
- Must machine cylinder heads. C
- d Requires Crane Multi Fit valve locks.
- Titanium, must use 99097-1 valve stem locks (included with the retainers). е
- Machined steel, heat treated. f
- Machined steel, heat treated, Multi Fit. g h
- Pro Series one-piece, for 351 engines, for use with or without pushrod guideplate cylinder heads.
- For 302 engines, heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads. Pro Series one-piece, for 302 engines, for use with or without pushrod guideplate cylinder heads.
- For 73-93 engines, performance steel billet gears and roller chain set. For 73-93 engines, Pro Series steel billet gears and roller chain set. Е
- n 1.6 ratio, 3/8" stud, must machine 66-93 cylinder heads and install 99156-16 rocker arm studs and 36650-1 pushrod guideplates, or use 36655-16 Conversion Kit on 77-93 pedestal mount cylinder heads for street applications.
- 1.6 ratio, 7/16" stud, must machine 66-93 cylinder heads and install **99157-16** rocker arm studs and **36650-1** pushrod guideplates.
 1.7 ratio, 7/16" stud, must machine 66-93 cylinder heads and install **99157-16** rocker arm studs 0
- р and 36650-1 pushrod guideplates.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Lash Hot Int.	Gross Lift Int. Evch
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	int/exn.	Separation	Int/Exh	Exh.	Exh.
Hydraulic Lifter Camshaf Brute low end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 compres- sion ratio advised.	KS H-192/2667-25-14	800- 4200	520581°	99280-16	192 204	248 260	114	(13) 25 41 (17)	.000 .000	.461 .493
Good low end torque, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-260-2	1200- 4800	523901* 523902*a	99280-16	204 214	260 276	112	(5) 29 44 (10)		.493 .502
Good low end torque and HP, smooth idle, daily usage, fuel economy, light towing, off road, 2200-2700 cruise RPM, 8.5 to 10.0 compression ratio advised.	Energizer 266 H10	1400- 4800	13303° 133032° ^b	99280-16	210 210	266 266	110	0 30 40 (10)	.000 .000	.508 .508
Excellent low end and mid range torque and HP, good idle, daily usage, off road, towing, fuel economy, 2400- 2800 cruise RPM, 8.5 to 10.0 compression ratio advised.	H-266-2	1500- 5000	523921* 523922*ª 3	99280-16	210 218	266 280	112	(2) 32 46 (8)	.000 .000	.508 .510
Good low end and mid range torque and HP, good idle, daily usage, off road, highway towing, fuel efficiency plus performance, 2600-3000 cruise RPM, 8.75 to 10.0 com- pression ratio advised.	Energizer 272 H10	1600- 5200	13304 [*] 133042 ^{*a}	99280-16	216 216	272 272	110	3 33 43 (7)		.524 .524
Good low end and mid range torque, good idle, daily usage and off road, towing, performance and fuel effi- ciency, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio advised.	H-272-2	1800- 5400	523941* 523942* ^b	99280-16	216 228	272 284	112	1 35 51 (3)	.000 .000	.524 .519
Good mid range torque and HP, good to fair idle, daily usage, mild bracket racing, auto trans w/2500+ convert- er, 2700-3200 cruise RPM, 9.5 to 10.75 compression ratio advised.	Energizer 278 H10	2200- 5600	13313° 133132°a 3	99280-16 99380-16		278 278	110	6 36 46 (4)		.539 .539
Good mid range torque and HP, good idle, daily perfor- mance usage, mild bracket racing, auto trans w/2000+ converter, 3000-3400 cruise RPM, 9.5 to 10.75 compres- sion ratio advised.	H-278-2	2200- 5800	523801* 523802*a 3	99280-16 99380-16	222 234	278 290	114	2 40 56 (2)		.539 .534
Rough idle, moderate performance usage, limited oval track, bracket racing, auto trans w/3000+ converter, 9.5 to 11.0 compression ratio advised.	H-226/314-2S-6	2400- 6000	520341* 3	99280-16 99380-16	226 ° 230	286 290	106	11 35 45 5	.000 .000	.543 .550
Good mid range to upper RPM torque and HP, fair idle, moderate performance usage, bracket racing, auto trans w/2500+ converter, 3200-3600 cruise RPM, 9.5 to 11.0 compression ratio advised.	H-288-2	2400- 6200	524421* 524422*a 3	99280-16 99380-16	226 3 230	288 292	110	8 38 50 0		.528 .536

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- IMPORTANT: If your hydraulic lifter preload is excessive, this can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.
- IMPORTANT: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (52655-16) for street applications, enabling the 351C-351M-400 cu.in. engines with pedestal mounted rockers to have adjustable

rocker arms without cylinder head removal or machining. See page 305 for details.

- NOTE: To provide the most accurate valve adjustment on hydraulic lifter camshafts, the heads must be machined to accept 99159-16 screw-in studs and 52650-1 pushrod guideplates. Special length pushrods can be ordered to provide proper hydraulic lifter preload. Refer to page 353 for checking your hydraulic lifter preload.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our **52975-1**

timing chain and gear assembly, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The **non-retarded** sprocket will have the alignment dot and keyway slot directly in line with each other.

IMPORTANT NOTE: Many problems can occur if the proper valve spring retainers are not used on 351C-351M and 400 cu.in. engines. Ford made a number of production changes in these engines, possibly causing a misapplication of parts. Please refer to page 177 to insure that the proper components are being used.

CAMSHAFTS

CRANE VALV									
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINU Energizer	M ROCKERS – Gold Race
52308-1ª 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ^j 99969-16 ^k		99097-1 ^ı 99094-1™	52621-16ª 95650-16°	52975-1* ^p	52800-16ª	27744-16 ^s	27750-16 27771-16
52308-1 ⁴ 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ^j 99969-16 ^k		99097-1 ¹ 99094-1™	52621-16ª 95650-16°	52975-1*°	52800-16ª	27744-16°	27750-16 27771-16
52308-1ª 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ^j 99969-16 ^k		99097-1 ¹ 99094-1™	52621-16° 95650-16°	52975-1* [»]	52800-16ª	27744-16°	27750-16 27771-16
52308-1ª 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ⁱ 99969-16 ^k		99097-1 [।] 99094-1™	52621-16ª 95650-16º	52975-1* ^p	52800-16ª	27744-16 ^s	27750-16 27771-16
52308-1ª 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ^j 99969-16 ^k		99097-1 ¹ 99094-1™	52621-16" 95650-16°	52975-1*°	52800-16ª	27744-16°	27750-16 27771-16
52308-1 ⁴ 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ^j 99969-16 ^k		99097-1 ¹ 99094-1™	52621-16ª 95650-16°	52975-1*°	52800-16ª	27744-16 ^s	27750-16 27771-16
52308-1ª 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ^j 99969-16 ^k		99097-1 ¹ 99094-1™	52621-16ª 95650-16º	52975-1* [»]	52800-16ª	27744-16 ^s	27750-16 27771-16
52308-1ª 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ⁱ 99969-16 ^k		99097-1' 99094-1™	52621-16ª 95650-16°	52975-1* ^p	52800-16ª	27744-16°	27750-16 27771-16
	96877-16 ^h	99944-16 ⁱ 99948-16 ⁱ 99969-16 ^k		99097-1' 99094-1™	52621-16ª 95650-16°	52975-1*°	52800-16ª	27744-16°	27750-16 27771-16
52308-1ª 35308-1°	96801-16 ^f 99839-16 ^g	99944-16 ⁱ 99948-16 ⁱ 99969-16 ^k		99097-1 [∣] 99094-1™	52621-16° 95650-16°	52975-1* ^p	52800-16ª	27744-16 ^s	27750-16 27771-16

Section Continued 🛰

Cam and Lifter Kit, includes installation lubricants.

- Cam and Lifter Kit, includes assembly lubricant b
- Optional Hi Intensity hydraulic lifters, see page 272 for details. C
- For 70-77 351C-351M-400 engines, contains standard diameter valve springs, no machining required. d
- For 71-72 Boss 351 and 79-82 351M-400 engines, contains standard diameter valve springs, no е
- machining required. f
- Standard diameter valve springs, no machining required. Optional high rate 1.800" assembly height springs.
- g h
- Must machine cylinder heads. 11/32" type, see **IMPORTANT NOTE** for correct application.
- 3/8" type, see **IMPORTANT NOTE** for correct application.

- k Requires Crane Multi Fit valve locks.
- Machined steel, heat treated 11/32" single groove type, see **IMPORTANT NOTE** for correct application. Machined steel, heat treated, Multi Fit 11/32" single groove type, see **IMPORTANT NOTE** for correct application. For 70-74 351C, heavy wall, heat treated, for use with or without pushrod guideplate cylinder heads.
- m
- n
- 0 Pro Series one-piece, for 71-72 Boss 351, for use with or without pushrod guideplate cylinder heads.
- Performance steel billet gears and roller chain set. p
- q
- 1.71 ratio, for 351C-351M-400 engines, pedestal mount, non-adjustable.
 Energizer 1.72 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page.
 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. t
- u posite page.

Ford-Mercury "Cleveland" V-8 70-82

Boss 351-351C-351M-400 cu.in.

					СОМ	PLETE C	AM SPE	CIFICAT	IONS		
	Camshaft Series/	rpm Power	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot	Gross Lift Int.	
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.	
Hydraulic Lifter Camshaf											
Good mid range HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ convert er, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised.		2600 6400		99280-16 99380-16 ^{*d}	228 228	284 284	112	74 51(0.554 0.554	
			•								
Good mid range to upper RPM HP, fair idle, moderate per formance usage, bracket racing, auto trans w/2500+ con verter, 3400-3800 cruise RPM, 10.0 to 11.5 compression ratio advised. Good w/nitrous, also mild supercharged.	- H-292-2 -	2800 6600		99280-16 99380-16 ^{*d}	230 234	292 296	114	6 4 56 (2		0 .536 0 .545	
Good upper RPM HP, rough idle, performance usage, bracket racing, oval track 3/8-1/2 mile, auto trans w/3000+ converter, 3400-3800 cruise RPM, 10.75 to 12.5 compression ratio advised.	H-238/3347-10	3200 6800		99280-16 99380-16*ª	238 238	294 294	110			0 .579 0 .579	
Rough idle, performance usage, good upper RPM HP, bracket racing, auto trans w/3500+ converter, 11.25 to 13.0 compression ratio advised.	H-250/340-25-10	3600 7200		99280-16 99380-16 ^{*d}	250 254	310 314	110			0.588 0.595	
Hydraulic Roller Camshaf	its — Retrofit		•								
Excellent low end torque and HP, good idle, daily usage, performance and fuel efficiency, off road, tow- ing, mild turbocharged, 2400-3200 cruise RPM, 8.75 to 10.0 compression ratio advised.	HR-216/325-2S-12	1600 5600		36532-16°	216 224	278 286	112	1 3 49 (1	35 .00 5) .00	0 .562 0 .586	
Good low and mid range torque and HP, fair idle, moc erate performance usage, mild bracket racing, auto trans w/2000+ converter, 2800-3400 cruise RPM, 9.5 to 10.75 compression ratio advised.		2000 6000		36532-16°	224 232	286 294	112	5 3 53 (0 .586 0 .609	
Good mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3200-3800 cruise RPM, 10.0 to 11.5 compression ratio advised.	HR-228/345-2S-12	2500 6500		36532-16°	228 232	290 294	112	7 4 53 (0 .597 0 .609	
Good mid range to upper RPM torque and HP, rough idle, radical street, bracket racing, auto trans w/2500- converter, 3400-4000 cruise RPM, 10.0 to 11.5 com- pression ratio advised.	HR-232/352-25-10 +	2600 6800		36532-16°	232 236	294 298	110	11 4 53		0 .609 0 .621	
Good mid range to upper RPM torque and HP, rough idle, performance usage, mild bracket racing, auto trans w/3000+ converter, 3600-4200 cruise RPM, 10. to 12.0 compression ratio advised.	HR-236/359-25-12	3000 7000		36532-16°	236 240	298 302	112		15 .00 3 .00	0 .621 0 .631	
Rough idle, performance usage, good upper RPM torque and HP, bracket racing, auto trans w/3500+ converter, 4200-5000 cruise RPM, good with aftermarket cylinder heads, 11.0 to 12.5 compression ratio advised.	e HR-240/365-25-10	3200 7200		36532-16°	240 244	302 306	110	15 4 57	15 .00 7 .00	0 .631 0 .644	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application. NOTE: To provide the most accurate valve adjustment on hydraulic lifter and hydraulic roller camshafts, the heads must be

IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.

IMPORTANT: If your hydraulic lifter preload is excessive, this can be easily remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details.

IMPORTANT: Crane offers a Pushrod Guideplate and Rocker Arm Stud Conversion Kit (52655-16) for street applications, enabling the 351C-351M-400 cu.in. engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. See page 305 for details.

lifter and hydraulic roller camshafts, the heads must be machined to accept **99159-16** screw-in studs and **52650-1** pushrod guideplates. Special length pushrods can be ordered to provide proper hydraulic lifter preload. Refer to page 353 for checking your hydraulic lifter preload. **NOTE:** Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our **52975-1** timing chain and gear assembly, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The **non-retarded** sprocket will have the alignment dot and keyway slot directly in line with each other.

IMPORTANT NOTE: Many problems can occur if the proper valve spring retainers are not used on 351C-351M and 400 cu.in. engines. Ford made a number of production changes in these engines, possibly causing a misapplication of parts. Please refer to page 177 to insure that the proper components are being used.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
	15	15			15				
VALVE SPRING			VALVE	VALVE		TIMING CHAIN	STEEL	ALUMINUN	
AND RETAINER	VALVE	0.574.005.06	STEM	STEM	DUCUDADC	AND GEAR	ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	0.0077 4.6	00044.16	00020 16	00007.4	52 (24 4 (m	52075 4*r	52000 1 ()		27754 4
	96877-16 ^f	99944-16 ⁹	99820-16 ^f	99097-1 ^j	52621-16 ^m	52975-1*r	52800-16 ^s	27744 16	27750-1
		99948-16 ^h 99969-16 ⁱ		99094-1 ^k	95650-16°			27744-16 ^u	27771-1
		99909-10							
	96877-16 ^f	99944-16 ⁹	99820-16 ^f	99097-1 ^j	52621-16 ^m	52975-1*r	52800-16 ^s		27750-1
		99948-16 ^h		99094-1 ^k	95650-16"			27744-16 ^u	27771-1
		99969-16 ⁱ							
	96877-16 ^f	99944-16 ⁹	99820-16 ^f	99097-1 ^j	52621-16 ^m	52975-1*r	52800-16 ^s		27750-1
		99948-16 ^h	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99094-1 ^k	95650-16"			27744-16 ^u	27771-1
		99969-16 ⁱ							
	96877-16 ^f	99944-16 ⁹	99820-16 ^f	99097-1 ^j	52621-16 ^m	52975-1*r	52800-16 ^s		27750-1
	20077-10	99948-16 ^h	JJ020-10	99094-1 ^k	95650-16 ⁿ	JZ77 J-1	52000-10	27744-16"	27771-1
		99969-16 ⁱ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2// 11 10	
	99890-16 ^f	99970-16 ¹	99820-16 ^f	99094-1 ^k	95654-16°	52975-1*r	52800-16 ^s		27750-1
					95658-16 ^p			27744-16 ^u	27771-1
					95636-16 ^q				
	99890-16 ^f	99970-16 ¹	99820-16 ^f	99094-1 ^k	95654-16°	52975-1*r	52800-16 ^s		27750-1
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		95658-16 ^p			27744-16 ^u	27771-1
					95636-16 ⁴				
	99890-16 ^f	99970-16 ¹	99820-16 ^f	99094-1 ^k	95654-16°	52975-1*r	52800-16 ^s		27750-1
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>))</i> 020 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	95658-16 ^p	52775 1	52000 10	27744-16"	27771-1
					95636-16 ^q				
	99890-16 ^f	99970-16 ¹	99820-16 ^f	99094-1 ^k	95654-16°	52975-1* ^r	52800-16 ^s		27750-1
	22020-10	<i>yyyy</i> 10	JJ020-10	JJUJ T I	95658-16 ^p	52775-1	52000-10	27744-16"	27771-1
					95636-16ª				
	99890-16 ^f	99970-16 ¹	99820-16 ^f	99094-1 ^k	95654-16°	52975-1*r	52800-16°		27750-1
					95658-16 ^p			27744-16 ^u	27771-1
					95636-16ª				
	99890-16 ^f	99970-16 ¹	99820-16 ^f	99094-1 ^k	95654-16°	52975-1*r	52800-16 ^s		27750-1
					95658-16 ^p			27744-16"	27771-1

- Cam and Lifter Kit, includes assembly lubricant.
- Camshaft has standard base circle diameter, for use with 36532-16 hydraulic roller lifters. b
- c Requires 52970-1 (.500" I.D.) or 52971-1 (.531" I.D.) steel or 52990-1 (.500" I.D.) or 52989-1
- (.531"I.D.) aluminum-bronze distributor drive gear.
- Optional Hi Intensity hydraulic lifters, see page 272 for details. d
- Vertical locking bar hydraulic roller lifters, no machining required. Appropriate pushrods required. е
- f
- Must machine cylinder heads. 11/32" type, see **IMPORTANT NOTE** for correct application. g
- ĥ

- 1/32 type, see **IMPORTANT NOTE** for correct application. 3/8" type, see **IMPORTANT NOTE** for correct application. Requires Crane Multi Fit valve locks with 11/32" single groove valve stems. Machined steel, heat treated 11/32" single groove type, see **IMPORTANT NOTE** for correct application. Machined steel, heat treated, Multi Fit 11/32" single groove type, see **IMPORTANT NOTE** for correct application.
- Multi Fit type retainers. Use 99094-1 valve stem locks for single groove 11/32" applications, and standard valve stem locks for multiple groove 3/8" type applications. See IMPORTANT NOTE for L correct application.

- m For 70-74 351C, heavy wall, heat treated.
- Pro Series one-piece, for 71-72 Boss 351. n
- 0 Pro Series, one-piece, for 71-82 351M-400 engines with non-adjustable pedestal-mount rocker arms.
- Pro Series, one-piece, for 71-82 351M-400 engines with adjustable rocker arms with Crane's р Pushrod Guideplate Conversion Kit (52655-16). See page 305 for details.
- Pro Series, one-piece, for 70-74 351C engines with adjustable rocker arms with Crane's Pushrod Guideplate Conversion Kit (**52655-16**). See page 305 for details. Performace steel billet gears and roller chain set. q
- S
- 1.71 ratio, for 351C-351M-400 engines, pedestal mount, non-adjustable. Energizer 1.72 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. u
- v
- 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opw posite page.

Ford-Mercury "Cleveland" V-8 70-82

Boss 351-351C-351M-400 cu.in.

						СОМ	PLETE C	AM SPE	ECIFICATI	ONS		1
	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Duration @ .050"	Advertised Degrees Duration Int/Exb	Degrees	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Lift Int.	
	Mechanical Lifter Camsh						III LAII.	Separation		LAII.	LAII.	
	Replacement for factory Boss 351 camshaft.	BluePrinted D1ZZ-6250-B	2000- 6000	520321°	99257-16	5 228 228	294 294	109	3 45 55 (7)		.502 .502	
	Good low end and mid range torque and HP, fair idle, moderate performance usage, limited oval track, mild bracket racing, auto trans w/2000+ converter, 3200- 3600 cruise RPM, 10.0 to 11.0 compression raito advised.	F-232/330-25-8	2800- 6600	521131°	99257-16	5 232 238	264 270	108	(5) 29 44 (10)		.571 .581	
	Good low end and mid range torque and HP, fair idle, moderate performance usage, limited oval track, mild bracket racing, auto trans w/2500+ converter, 3400- 3800 cruise RPM, 10.5 to 11.5 compression raito advised.	F-238/3200-2-8	2800- 6600	521141°	99257-16	5 238 248	300 310	108	16 42 57 11		.554 .577	
	Good mid range torque and HP, rough idle, performance usage, short oval track, bracket racing, auto trans w/3500+ converter, 11.0 to 12.5 compression raito advised.	F-246/3294-2-8	3200- 7000	521211°	99257-16	5 246 256	282 292	108	18 48 59 17		.570 .590	
_	Good mid range to upper RPM torque and HP, rough idle, performance usage, bracket racing, auto trans w/race converter, also mild nitrous, mild supercharged, 11.5 minimum compression ratio advised.	F-256/3634-2S1-10	4000- 7500	521321°	99257-16	5 256 266	292 302	110	22 54 66 20		.629 .610	
	Good mid range to upper RPM HP, performance usage, 1/4 - 1/2 mile oval track, bracket racing, auto trans w/ race converter, 11.5 minimum compression ratio advised.	F-260/3694-6	4200- 7600	521421°	99257-16	5 260 260	296 296	106	26 54 58 22			
	Competition only, good mid and upper RPM torque and HP, flat tappet restricted classes, bracket racing, 1/2 - 5/8 mile oval track, good with aftermarket cylinder heads, auto trans w/race converter, 12.0 minimum compression ratio advised.	F-266/400-2S-8	4600- 8000	521501° (99257-16	5 266 276	298 312	108	30 56 70 26			
	Radical competition only, good upper RPM torque and HP, flat tappet restricted classes, bracket racing, good with aftermarket cylinder heads, auto trans w/race con- verter, 12.5 minimum compression ratio advised.	F-276/3934-8	4800- 8200	521631°	99257-16	5 276 276	312 312	108	33 63 69 27			

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: In order to effect valve adjustment on 351C-351M-400 cu.in. engines when using mechanical lifter camshafts, the heads must be machined to accept 99159-16 screw-in studs and 52650-1 pushrod guideplates.
- NOTE: On engines with cylinder heads equipped with exhaust valve rotators, valve springs and retainers must be changed to allow for proper valve travel.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 52975-1 timing chain and gear assembly, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded

sprocket will have the alignment dot and keyway slot directly in line with each other. IMPORTANT NOTE: Many problems can occur if the proper valve spring retainers are not used on 351C-351M and 400 min environ. and 400 cu.in. engines. Ford made a number of production changes in these engines, possibly causing a misapplication of parts. Please refer to page 177 to insure that the proper components are being used.

CRANE VAL	/E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS – Gold Race
	96870-16ª	99969-16 ^ь	99820-16ª	99094-1 [.]	52621-16ª 95650-16°	52975-1* ^f			27750-16 27771-16
	96870-16ª	99969-16 ^b	99820-16ª	99094-1'	52621-16 ^d 95650-16 ^e	52975-1*f			27750-16 27771-16
	96870-16ª	99969-16 ^ь	99820-16ª	99094-1 '	52621-16ª 95650-16°	52975-1* ^f			27750-16 27771-16
	96870-16ª	99969-16 ^ь	99820-16ª	99094-1°	52621-16ª 95650-16ª	52975-1*f			27750-16 27771-16
	96870-16ª	99969-16 ^ь	99820-16ª	99094-1 '	52621-16 ^d 95650-16 ^e	52975-1*f			27750-16 27771-16
	96870-16ª	99969-16 ⁶	99820-16ª	99094-1°	52621-16 ^d 95650-16 ^e	52975-1* ^f			27750-16 27771-16
	96870-16ª	99969-16 ^b	99820-16ª	99094-1 '	52621-16ª 95650-16ª	52975-1*f			27750-16 27771-16
	96870-16ª	99969-16 ^b	99820-16ª	99094-1 '	52621-16 ^d 95650-16 ^e	52975-1* ^f			27750-16 27771-16

а

Must machine cylinder heads. Requires appropriate Crane Multi Fit valve locks, see IMPORTANT NOTE for correct application. Machined steel, heat treated, Multi Fit 11/32" single groove type, see IMPORTANT NOTE for correct h b C

application. d For 70-74 351C, heavy wall, heat treated, for use with pushrod guideplate cylinder heads.

Pro Series one piece, for 71-72 Boss 351, for use with pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. 1.73 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. See notes on op-posite page. i posite page.

					СОМ	PLETE C	AM SPE	CIFIC	ATIO	IS
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe	Open/C @ .05 Cam L Int/E	ift lı	ish Gros ot Lift nt. Int ch. Exh
Mechanical Roller Camsh	afts									
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 10.5 to 11.5 compression ratio advised.	SR-238/350-25-12	2800- 6800	528511*ª 3	44518-16 44570-16 ^b	238 246	288 296	112	12 4 60		020 .606 020 .626
Good mid range torque and HP, rough idle, moderate performance usage, short oval track, bracket racing, auto trans w/3000+ converter, 11.0 to 12.5 compression ratio advised.	R-246/3236-2-8	3200- 7200	528371*ª	44518-16 44570-16 ^b	246 256	284 294	108			24 .560 26 .585
Good mid range torque and HP, rough idle, moderate performance usage, mild bracket racing, auto trans w/3000+ converter, 3600-4000 cruise RPM, 11.0 to 12.0 compression ratio advised.	SR-246/362-2S-12	3200- 7200	528521*ª	44518-16 44570-16 ^b	246 254	296 304	112	16 64		20 .626 20 .647
Good mid range torque and HP, rough idle, performance usage, oval track, bracket racing, auto trans w/race con- verter, 11.5 to 12.5 compression ratio advised.	R-252/420-2-8	3600- 7600	528801*ª	44518-16 44570-16 ^b	252 262	284 294	108	22 63		20 .727 20 .727
Good mid range to upper RPM torque and HP, rough idle, performance usage, oval track, bracket racing, auto trans w/race converter, 12.0 minimum compression ratio advised.	R-262/420-2-8	4000- 8000	528811*ª 3	44518-16 44570-16 ^b	262 272	294 304	108	27 68		20 .727 20 .727
Competition only, good mid range to upper RPM torque and HP, bracket racing, NMRA, NMCA, auto trans w/race converter, 12.5 minimum compression ratio advised.	R-262/4381-25-8	4200- 8200	528411*ª 3	44518-16 44570-16 ^b	262 268	294 300	108	26 65		26 .758 22 .758
Competition only, good upper RPM HP, bracket racing, auto trans w/race converter, 12.5 minimum compression ratio advised.	R-272/420-2-8	4400- 8200	528821*ª	44570-16 ^b	272 282	304 314	108	32 73		20 .727 20 .727
Radical competition only, good upper RPM HP, bracket racing, NMCA, NMRA, good with nitrous, auto trans w/ race converter, 13.5 minimum compression ratio advised.	R-278/5002-2S-12	4600- 8400	528831°ª	44570-16 ^b	278 292	306 320	112			20 .865 22 .865
Radical competition only, good upper RPM HP, bracket racing, NMCA, NMRA, good w/ 400+ cu.in. and after- market cylinder heads, auto trans w/race converter, 14.0 minimum compression ratio advised.	R-282/5001-2S-10	5000- 8800	528841*ª	44570-16 ^b	282 286	314 318	110	33.5 68 78 2		20 .865 16 .832

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: In order to effect valve adjustment on 351C-351M-400 cu.in. engines when using roller lifter camshafts, the heads must be machined to accept 99159-16 screw-in studs & 52650-1 pushrod guideplates.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our **52975-1** timing chain and gear assembly, a pre-1972 crankshaft sprocket, or degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- IMPORTANT NOTE: Many problems can occur if the proper valve spring retainers are not used on 351C-351M and 400 cu.in. engines. Ford made a number of production changes in these engines, possibly causing a misapplication of parts. Please refer to page 177 to insure that the proper components are being used.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER	VALVE	DETAINEDC	VALVE STEM	VALVE STEM	DUCUDODC	TIMING CHAIN AND GEAR	STEEL ROCKER		GOLD
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	RACE
	99893-16 [,]	99953-16°	99820-16 ^d	99097-1 ⁱ	52621-16 ^k	52975-1* ^m			27750-1
	JJ0JJ-10	99954-16 ^f	77020 -10	99094-1 ^j	95650-16 ¹	52775-1			27771-1
	99893-16 ^c	99953-16° 99954-16 ^f	99820-16 ^d	99097-1 ⁱ 99094-1 ^j	52621-16 ^k 95650-16 ⁱ	52975-1 ^{*m}			27750-1 27771-1
		99954-10		99094-1 [,]	92020-10				2///1-1
	99893-16 [,]	99953-16°	99820-16 ^d	99097-1 ⁱ	52621-16 ^k	52975-1*m			27750-1
		99954-16 ^f		99094-1 ^j	95650-16 ¹				27771-1
	99885-16 [,]	99956-16°	99820-16 ^d	99097-1 ⁱ	52621-16 ^k	52975-1* ^m			27750-1
		99970-16 ^f		99094-1 ^j	95650-16 ¹				27771-1
	99885-16 [,]	99956-16°	99820-16 ^d	99097-1 ⁱ	52621-16 ^k	52975-1 ^{*m}			27750-1
		99970-16 ^f		99094-1 ^j	95650-16 ¹				27771-1
	99885-16 [,]	99956-16°	99820-16 ^d	99097-1 ⁱ	52621-16 ^k	52975-1* ^m			27750-1
		99970-16 ^f		99094-1 ^j	95650-16 ¹				27771-1
	99885-16 ^c	99956-16°	99820-16 ^d	99097-1 ⁱ	52621-16 ^k	52975-1* ^m			27750-1
		99970-16 ^f		99094-1 ¹	95650-16 ¹				27771-1
	96888-16 ⁴	99681-16 ⁹	99820-16 ⁴	99097-1 ⁱ	52621-16 ^k	52975-1*m			27750-1
	961226-16 ^{c,d}	99661-16°			95650-16 ¹				27771-1
	96888-16 ^c	99681-16 ⁹	99820-16 ^d	99097-1 ⁱ	52621-16 ^k	52975-1* ^m			27750-1

Requires **52970-1** (.500" I.D.) or **52971-1** (.531" I.D.) steel, or **52990-1** (.500" I.D.) or **52989-1** (.531" I.D.) aluminum-bronze distributor drive gear. Ultra Pro Series roller lifters. Must machine cylinder heads. For 2.100" assembly height, requires **99661-16** titanium retainers. 11/32" type, see **IMPORTANT NOTE** and page 177 for correct application. 20" type con **IMPORTANT NOTE** and page 177 for correct application. а

- b
- C
- d
- е
- f
- 3/8" type, see **IMPORTANT NOTE** and page 177 for correct application. Titanium 11/32" type, must use **99097-1** valve stem locks, included with the retainers, see **IMPOR**g TANT NOTE for correct application.
- h Titanium, for 961226-16 valve springs, requires Crane Multi Fit valve stem locks.
- Machined steel, heat treated 11/32" single groove type, see **IMPORTANT NOTE** for correct application. Machined steel, heat treated Multi Fit 11/32" single groove type, see **IMPORTANT NOTE** for correct application. For 70-74 351C, heavy wall, heat treated, for use with pushrod guideplate cylinder heads.
- k
- For 71-72 Boss 351, for use with or without pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. Т
- m
- 0 1.73 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. р 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266 FOLLOWERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Valve Lift Int/Exh	Lash Gross Hot Lift Int. Int. Exh. Exh.	-
Hydraulic Roller Followe	r Camshafts									
Good low end and mid range torque and HP, good idle, daily usage, off road, mild supercharged, mild nitrous, 2200-2600 cruise RPM.	HR-218/500-2-16	2000- 5000	379501*ª		218 228	254 264	116	(2) 40 55 (7)	.000 .500 .000 .500	
			•							
Good mid range torque and HP, fair idle, performance usage, bracket racing, computer upgrades required, 2600-3000 cruise RPM.	HR-228/500-2S-12	2400- 6200	379511 ^{*a}		228 234	264 270	112	7 41 54 0	.000 .500 .000 .500	
Excellent low end torque and HP, smooth idle, daily usage, towing, 1600-2200 cruise RPM.	HR-212/550-2S-15	1600- 5500	379601 ^{*b}		212 218	248 254	115	(4) 36 49 (11)	.000 .550 .000 .550	
Good low end and mid range torque and HP, good idle, daily usage, off road, mild supercharged, mild nitrous, 2200-2600 cruise RPM.	HR-218/550-2-16	2000- 5800	379611 ^{°b}		218 228	254 264	116	(2) 40 55 7	.000 .550 .000 .550	
Good mid range torque and HP, fair idle, performance usage, bracket racing, auto w/2000+ converter, comput- er upgrades required, must check valve to piston clear- ance, 2600-3000 cruise RPM.	HR-228/550-2S-12	2400- 6200	379621 ^{°b}		228 234	264 270	112	7 41 54 0	.000 .550 .000 .550	
Good mid range to upper RPM torque and HP, rough idle, performance usage, bracket racing, auto w/2500+ con- verter, increased compression ratio required, computer upgrades required, must check valve to piston clearance, 2800-3400 cruise RPM. Also mild supercharged or nitrous.	HR-236/600-25-14	2800- 6600	379631*b		236 242	272 278	114	6 50 57 5	.000 .600 .000 .600	

CAMSHAFTS

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

NOTE: Installing camshafts having greater than .500" valve lift in other than Performance Improvement 2V cylinder heads will require cylinder head machining to achieve correct valve spring assembly heights.

IMPORTANT NOTE: 1997 and later applications will require Ford bolt-on gears: Ford part number F8AZ-6256-AA for the right gear, and F8AZ-6256-BA for the left gear. One of the YF7Z-6279-AA bolt kits, two F1AZ-6278-A washers, and two F3AZ-6265-A spacers will also be required.

CRANE VALV	E TRAIN CO	OMPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	ROCKERS — GOLD RACE
	37830-16 [.]	37660-16 ^d							
	37830-16 [,]	37660-16 ^d							
	37830-16 [.]	37660-16 ^d							
	37830-16 [,]	37660-16 ^d							
	37830-16 [,]	37660-16 ^d							
	37830-16 [.]	37660-16 ^d							

a Pair of camshafts for 1992 and later engines with standard cylinder heads. 1997 and later applications will require Ford bolt-on gears: Ford part number F8AZ-6256-AA for the right gear, and F8AZ-6256-BA for the left gear.
 b Pair of camshafts for 1999 and later engines with Power Improvement cylinder heads. Requires Ford bolton gears: Ford part number F8AZ-6256-AA for the left gear.

c Standard diameter ovate wire valve springs, no machining required. Can be used with stock valve spring retainers.
 d Titanium retainers, for use with standard valve stem locks.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266 FOLLOWERS	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Valve Lift Int/Exh	Hot Int.	Gross Lift Int. Exh.	
Hydraulic Roller Follower	r Camshafts										
Good low end and mid range torque and HP, good idle, daily usage, off road, computer upgrades required, mild supercharged, mild nitrous, 2200-2600 cruise RPM.	HR-218/500-12	2000- 5800	409501 ^{*a,e} 409502 ^{*b,e} 409503 ^{*c,e} 409504 ^{*d,e}	•	218 218	254 254	112	(3) 41 41 (3)		.500 .500	
Good low end and mid range torque and HP, good idle, daily usage, off road, computer upgrades required, mild supercharged, mild nitrous, 2600-3000 cruise RPM.	HR-228/500-12	2400- 6200	409511 ^{*a,e} 409512 ^{*b,e} 409513 ^{*c,e} 409514 ^{*d,e}	•	228 228	264 264	112	2 46 46 2		500 500	
Good mid range to upper RPM torque and HP, rough idle, performance usage, bracket racing, auto w/2500+ con- verter, increased compression ratio required, computer upgrades required, must check valve to piston clearance, 2800-3400 cruise RPM. Also mild supercharged or nitrous.	HR-234/500-12	2800- 6600	409521 ^{*a,e} 409522 ^{*b,e} 409523 ^{*c,e} 409524 ^{*d,e}	•	234 234	270 270	112	5 49 49 5		.500 .500	
Good mid range torque and HP for 5.7L, good idle, per- formance usage, off road, computer upgrades required, mild supercharged, mild nitrous, 2600-3200 cruise RPM.	HR-230/575-12	2400- 6200	409601 ^{*a,e,f} 409602 ^{*b,e,f}	•	230	266	112	3 47	.000 .	575	
Good mid range to upper RPM torque and HP for 5.7L, rough idle, performance usage, bracket racing, auto w/2500+ converter, increased compression ratio required, computer upgrades required, must check valve to piston clearance, 2800-3400 cruise RPM. Also mild supercharged or nitrous.	HR-234/575-12	2800- 6600	409611 ^{*a,e,f} 409612 ^{*b,e,f}	>	234	270	112	7 49	.000 .	575	
Good upper RPM torque and HP for 5.7L, rough idle, per- formance usage, bracket racing, auto w/2800+ converter, increased compression ratio required, computer upgrades required, must check valve to piston clearance, 3000-3600 cruise RPM. Also mild supercharged or nitrous.	HR-238/575-12	3200- 6800	409621 ^{*a,e,f} 409622 ^{*b,e,f}	•	238	274	112	7 51	.000 .	575	

Ford-Mercury V-8 05-15

4.6-5.4 Litre SOHC 3 Valve

Hydraulic Roller Followe	r Camshafts								
Good low end and mid range torque and HP, smooth idle, daily usage, 5.4L towing, 2200-2600 cruise RPM, valve spring upgrades required. Also mild supercharged or mild nitrous.	ZHR-208/468-25-14	1800- 5000	399501 ^{*j}	204 224	256 272	114	()	 .000 .468 .000 .516	
Good mid range torque and HP, good idle, performance usage, bracket racing, good w/supercharger or mild nitrous, 2600-3000 cruise RPM, valve spring and com- puter upgrades required.	ZHR-216/492-2S-14	2200- 5400	399511" ^{j,k}	216 236	264 284	114	. ,	.000 .492 .000 .552	
Good mid to upper RPM torque and HP, fair idle, perfor- mance usage, bracket racing, auto trans w2000+ con- verter, 11.0+ compression ratio advised, 3000-3600 cruise RPM, valve spring and computer upgrades required.	ZHR-228/528-25-12	2600- 6200	399521" ^{j,k}	228 244	276 292	112	7 59	 .000 .528 .000 .576	
Good upper RPM HP, rough idle, performance usage, bracket racing, auto trans w2500+ converter, 11.0+ compression ratio advised, 3200-3800 cruise RPM, valve spring and computer upgrades required.	ZHR-236/552-2S-12	2800- 6600	399531° ^{j,k}	236 252	284 300	112	11 63	.000 .552 .000 .600	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application. IMPORTANT NOTE: The 4V high lift (.575") intake camshafts listed

ORTANT NOTE: The 4V high Int (.5/5") intake camshafts liste are for use in 4.7 or 5.4L cylinder heads that have aftermarket intake valves with relocated valve lock grooves (with the valve tip extending 10.65mm above the groove). This permits the necessary assembly height required, without follower interference. IMPORTANT NOTE: In 3V applications, the use of stock pistons, cam phaser, and factory tuning can cause possible exhaust valve to piston contact when using performance camshafts. One, or more, of the following changes must occur: Install a fixed position cam gear that eliminates phaser retard; Install aftermarket pistons with increased piston to valve clearances; Install aftermarket tuning with altered phaser strategy.

NOTE: When changing 3-valve camshafts, use Ford timing chain and wedge handle ESST 303-636 and ESST 303-637 to hold chain in place. When changing valve springs, use Ford valve spring compressor ESST 303-1039.

CAMSHAFTS

			MPONENTS							
	See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
	ALVE SPRING ND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	ROCKERS Gold Race
		40830-32 ⁹	40660-32 ⁱ							
		40830-32 ⁹	40660-32 ⁱ							
		40830-32 ⁹	40660-32 ⁱ							
		37830-16 ^h	37660-16 ⁱ							
		37830-16 ^h	37660-16 ⁱ							
		37830-16 ^h	37660-16 ⁱ							
		37830-24 ^ı	39660-24 ^m							
		37830-24 ¹	39660-24 ™							
		37830-24 ¹	39660-24 ^m							
		37830-24 ¹	39660-24 [™]							
c d e f	Right intake camsh Left exhaust camsh Right exhaust cams Install adjustable c performance leve	aft. Iaft. shaft. am gears for best per ls. relocated keeper grou iers.	formance. Install after oves must be installed,	along with recomme	i j k ieve desired ended valve	Titanium retainers, for Must install 37830-2 The use of stock pisto contact. At least on phaser retard; Insta ket tuning with alte Standard diameter o	vate wire valve springs, ro or use with standard valve 24 valve springs and 396 ons, cam phaser, and factu e of the following is nece: II aftermarket pistons wit red phaser strategy. vate wire valve springs, re or use with standard valve	e stem locks. 60-24 valve spring ory tuning can caus sary: Install a fixec h increased piston equires 37660-24 (retainers. Te possible exhaust va I position cam gear th to valve clearance; Ins	lve to pisto at elimina tall afterm

1963-1976 352-360-390-406-410-427-428 FE V8

Ford's legendary big block FE engine series provided the foundation for their passenger car, truck and performance applications for nearly two decades. Actually, this series was introduced in 1958, with the early 332-352-390 FE engines having a different camshaft and cam drive configuration than the 1963-1976 engines, preventing their direct interchangeability. The early engines did not have a camshaft thrustplate, but relied on a spring to control cam endplay. These engines can use the later camshafts if the thrustplate is installed by removing the plugs in the front of the block on either side of the cam thrust surface, and tapping the holes for the 5/16-18 attaching bolts. A later model timing chain and gear set will also have to be installed.

There were also FT engines, used in truck applications. These were basically the same power plants as the FE, but with four-ring pistons installed.

For marine usage, some left hand rotation engines were produced, requiring a special camshaft and distributor drive gear.

Crane's 34 prefix designates this engine series, with a full line of camshafts and valve train components available. Hydraulic, retrofit hydraulic roller, mechanical, and mechanical roller camshafts are offered.

Do not confuse the FE with the MEL engine family that Ford offered from 1958 to 1968 (383-410-430-462 cu. in.). Note that a 410 cu.in. engine was also included in that series. About the only common parts between the two engine families were the lifters and the rocker arms.

FE engines were factory equipped with either hydraulic and mechanical lifter camshafts from the factory, depending upon horsepower requirements. The factory adjustable shaft mounted rocker arms have a 1.76:1 ratio, while the non-adjustable rockers have a 1.73:1 ratio. Lifter bores are inline, as are the valves in the cylinder heads.

Oiling for the top end of the engine is directed up through passages in the block and heads, through the rocker shaft stands and shafts, then out via holes on the rocker arms.

Watch for the 1965-1967 side-oiler 427 engines (and some rare 390 versions) specifically designed for mechanical lifter only usage. These blocks do not have oil galleys to supply hydraulic lifters. Therefore, hydraulic and hydraulic roller camshafts and lifters can not be used. The camshafts used in these blocks also require grooves in the second and fourth cam bearing journals (.044" wide and .035" deep, with a .022" radius) for proper oiling.

Cylinder head configurations ranged from the basic lowrise, the drag race and oval track oriented high-rise, a medium-rise, and the tunnel port. All employed the same valve layout, so no camshaft changes were required. The rocker arm shaft stands varied per version, although the lowriser and the tunnel port did share the same components.

A thriving aftermarket provides sufficient components to build an FE from scratch. We plan on supplying camshaft and valve train components for well into the future for this icon of Ford performance.

1963-1965 427 SOHC V8

Developed for oval track and drag racing, the single overhead cam 427 V8 was a real show of engineering force from Ford. Although this engine was banned from use at the big ovals, drag racing certainly benefited from this escalation of factory technology. Crane was fortunate to be involved in camshaft design for these engines from the beginning, and continues to custom produce tool steel camshafts for The "Cammer". We also offer valve springs, retainers, and valve locks. Our 32-prefix designates these camshafts.

Based on a variant of the 427 FE side oiler block, the iron cylinder heads incorporate one camshaft per bank, actuating valves in a hemispherical combustion chamber via shaft mounted mechanical roller followers, which have an effective 1.32:1 ratio. Valve lash adjustments are achieved by installing varying thickness lash caps on top of the valves. Single and dual four barrel carbureted versions were factory produced. There were a limited number of aluminum cylinder heads produced for the factory supported racers, but these did not come installed on any engines.

Although never officially "factory" installed in any vehicles, connected outside contractors did obtain complete engines, and put them into Mustangs, Fairlanes, and Galaxies for sale to the racing community.

This engine is also experiencing a rebirth by the aftermarket, with numerous components being offered. Expect more reproduction parts to be available in the next year.

1968–1997 370-429-460 (7.5L) V8

The final Ford big block family is the 385 series. Replacing the FE, newer casting techniques were used, along with more efficient cylinder heads, and a lighter valve train.

Crane's 35 prefix indicates parts specific to these engines. Hydraulic, retrofit hydraulic roller, mechanical, and mechanical roller camshafts and a full line of valve train components are offered.

The lifter bores in the block are inline, but the valves are staggered in the cylinder heads for better breathing and combustion. The standard 1.73:1 ratio rocker arms are stamped steel and either stud mounted (1968–1971) or pedestal mounted (1972–1997). The rocker arms were primarily non-adjustable, with a few exceptions. The 1970–1971 Cobra Jet 429 engines had adjustable rocker arms and pushrod guideplates, while the 1970–1971 Super Cobra Jet 429's came equipped with mechanical lifter camshafts and adjustable rocker arms and guideplates.

Oiling for the top end of the engine is conducted through the lifters and pushrods, providing lubrication for the rocker arm pivots and valve springs.

The 1968–1971 engines are equipped with bottleneck configuration rocker arm studs. Our 99768-16 positive locking nuts can be installed to permit individual valve adjustment. To conveniently convert the non-adjustable pedestal mounted rocker arm cylinder heads to a fully adjustable configuration, Crane offers two Pushrod Guideplate and Rocker Arm Stud conversion kits. Part number 52655-16 enables the installation of 7/16" stud mounted rocker arms and 5/16" diameter pushrods, while part number 35655-16 is for 7/16" stud mounted rocker arms and 3/8" diameter pushrods. Either set installs on the cylinder heads with no machining required, and are suitable for most street and moderate performance applications. For racing, we advise that the heads be machined for our 99159-16 7/16" diameter studs, and heat treated pushrod guideplates. There are also a number of aftermarket cylinder heads available that already include studs and guideplates, permitting full adjustment.

For serious racing applications, we offer 8620 steel billet camshafts with either the standard firing order (1-5-4-2-6-3-7-8), or the SFO1 firing order (1-5-4-8-6-3-7-2).

1969–1970 429 Boss Hemi V8

Available only in the Boss 429 Mustang and the Torino Talladega , this rare variation of the 385 series has a number of unique features. Although quite similar to the standard blocks, the Boss has a wet deck surface, requiring individual sealing rings at the cylinder head interface in order to properly seal around each cylinder, and also around each oil and water passage. The other feature of the Boss block is the oiling system, with oiling to the top end coming up through passages in the block, cylinder heads, and rocker arm shafts, not up the pushrods.

Crane's 30 prefix indicates parts specific to these engines. Hydraulic, retrofit hydraulic roller, mechanical, and mechanical roller camshafts and a full line of valve train components are offered. Even though the camshaft is interchangeable with the 385 series engines, the different rocker arm ratios and valve spring requirements necessitate a different specification card.

The early 1969 S-series engines were equipped with a hydraulic lifter camshaft and lifters. The later 1969 and 1970 T-series engines had mechanical lifter camshafts and lifters. The "semi-hemi" cylinder heads are aluminum, and offered in oval track and street versions. The oval track heads had 1.75:1 ratio intake and exhaust rocker arms, with smaller diameter rocker shafts than the street version, which was equipped with 1.65:1 intake and 1.75:1 exhaust rocker arms. Different length pushrods are required for the intake and exhaust valves. Specific hydraulic and mechanical roller lifters are also required for proper pushrod clearance, due to the different angular displacement of the intake and exhaust pushrods.

For serious racing applications, we offer 8620 steel billet camshafts with either the standard firing order (1-5-4-2-6-3-7-8), or the SFO1 firing order (1-5-4-8-6-3-7-2).

Ford-Mercury V-8 63-76

352-360-390-406-410-427-428 cu.in.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.
lydraulic Lifter Camshaf										
Brute low end torque, F-150 pickup, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 compression ratio advised.	H-248-2	800- 4200	343971*	99281-16	192 204	248 260	114	(13) 25 41 (17)	.000. .000	
			3							
Good low end torque, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200-2600	H-260-2	1200- 4800	343901* 343902*ª	99281-16	204 216	260 272	112	(5) 29 45 (9)	.000 .000	
cruise RPM, 8.0 to 9.5 compression ratio advised.			•							
Good low and mid range torgue, smooth idle, daily	Energizer	1400-	13404*	99281-16	210	266	110	0 30	.000	.516
usage, light towing, off road, 2200-2700 cruise RPM, 8.5 to 10.0 compression ratio advised.	266 H10	4800	134042 ^{*a}		210	266		40 (10)	.000	
			•							
Good mid range torque, good idle, daily usage, off road, highway towing, fuel efficiency plus performance, 2600-	Energizer	1800-	13405*	99281-16	216	272	110	3 33	.000	
3000 cruise RPM, 8.75 to 10.5 compression ratio advised.	272 H10	5200	134052 ^{*a}		216	272		43 (7)	.000	.533
			•							
Good low and mid-range torque, good idle, daily usage and off road, towing, performance and fuel efficiency,	H-272-2	1800- 5200	343941* 343942*ª	99281-16	216 228	272 284	112	1 35 51 (3)		.533 .563
2600-3000 cruise RPM, 8.75 to 10.75 compression ratio advised.		5200	3		220	204		(כ) וכ	.000	.005
Replacement for over-the-counter Ford Factory	BluePrinted	1800-	340301	99281-16	220	278	116	(1) 41		.498
Performance camshaft (also referred to as SK-39789)	C8AX-6250-C	5200	•		230	290		56 (6)	.000	.498
			•							
Good mid-range torque, good idle, daily performance usage, mild bracket racing, 3000-3400 cruise RPM, 9.5 to	H-278-2	2000- 5400	343801* 343802*ª	99281-16 99381-16⁵⁵	222 234	278 290	114	2 40 56 (2)	.000 .000	
10.75 compression ratio advised.		5400	343802	99301-10	234	290		JU (2)	.000	.300
Good mid-range torque and HP, fair idle, moderate perfor-	H-288	2200-	344341*	99281-16	226	288	112	6 40	.000	.537
mance usage, bracket racing, 3200-3600 cruise RPM, 9.5 to 11.0 compression ratio advised.		5600	344342 ^{*a}	99381-16 ^{*b}	226	288		50 (4)	.000	.537
			3							
Fair idle, performance usage, good mid-range HP, 3800-	H-296-2	2800-	344621*	99281-16	234	296	112	10 44		.554
4200 cruise RPM, 10.0 to 11.5 compression ratio advised.		6200		99381-16 ^{*b}	238	300		56 2	.000	.563
			3							
Rough idle, performance usage, good mid-range and upper RPM torque and HP, auto trans w/2500+ converter,	H-298	3000- 6500	344561*	99281-16 99381-16⁵⁵	236 236	298 298	108	15 41 51 5	.000 .000	
good with aftermarket aluminum cylinder heads, 3600- 4000 cruise RPM, 10.0 to 11.5 compression ratio advised.		0000	•	JJJ01-10	250	270		5 1	.000	.572
Performance usage, good upper RPM torque and HP,	H-246/330-10	3400-	340721*	99281-16	246	308	110	18 48	.000	.581
bracket racing, auto trans w/3500+ converter, good with	11 2-10/330-10	6800	J-TV/21	99381-16 ^{*b}	240	308	110	58 8	.000	
aftermarket aluminum cylinder heads, 10.5 to 12.0 com- pression ratio advised.			3							

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.

NOTE: Specify if late 62-406 cu.in. or 63-76 block is used, as the cam is different than the one used in 58-62 block.

- NOTE: All grinds shown use the stock Ford 1.76 ratio adjustable rocker arms - Ford part number B8A-6564-B or Crane adjustable ductile iron rocker arms, **34772-16**, in order to achieve the listed gross valve lift figures.
- NOTE: To provide the most accurate valve adjustment on hydraulic lifter camshafts, the use of Crane adjustable rocker arms (34772-16 or 34791-1) and appropriate pushrods (34621-16 or 95819-16) is highly recommended.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
 NOTE: Some cylinder heads have removable lower spring seats
 - OTE: Some cylinder heads have removable lower spring seats with an inner spring step. This step must be removed to allow the inner springs to set flush with the outer springs.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 30
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS GOLD RACE
13309-1 °	96801-16 [,]	99957-16 99969-16°	99822-16 ^d	99098-1 ^f	34621-16 ⁹ 95819-16 ^h		34772-16 ⁱ		
13309-1'	96801-16'	99957-16 99969-16°	99822-16 ^d	99098-1 ^f	34621-16 ⁹ 95819-16 ^h		34772-16 ⁱ		
13309-1'	96801-16'	99957-16 99969-16°	99822-16 ^d	99098-1 ^f	34621-16 ⁹ 95819-16 ^h		34772-16 ⁱ		
13309-1 [.]	96801-16 [,]	99957-16 99969-16°	99822-16 ^d	99098-1 ^f	34621-16 ⁹ 95819-16 ^h		34772-16 ⁱ		
13309-1'	96801-16'	99957-16 99969-16°	99822-16 ^d	99098-1 ^f	34621-16 ⁹ 95819-16 ^h		34772-16 ⁱ		
13309-1'	96801-16 [,]	99957-16 99969-16°	99822-16 ^d	99098-1 ^f	34621-16 ⁹ 95819-16 ^h		34772-16 ⁱ		
13309-1'	96801-16 ^c	99957-16 99969-16°	99822-16 ^d	99098-1 ^f	34621-16 ⁹ 95819-16 ^h		34772-16 ⁱ		
13309-1'	96801-16 ^c	99957-16 99969-16°	99822-16ª	99098-1 ^f	34621-16º 95819-16ʰ		34772-16 ⁱ		
	96877-16 ^d	99969-16°	99822-16ª	99098-1 ^f	34621-16ª 95819-16 ^h		34772-16 ⁱ		
	96877-16ª	99969-16°	99822-16ª	99098-1 ^f	34621-16ª 95819-16 ^h		34772-16 ⁱ		
	96877-16 ^d	99969-16°	99822-16 ^d	99098-1 ^f	34621-16 ⁹ 95819-16 ^h		34772-16 ⁱ		

- Cam and Lifter Kit, includes installation lubricants. Optional Hi Intensity hydraulic lifters, see page 272 for details. Standard diameter valve springs, no machining required. Must machine cylinder heads. Requires **99098-1** valve locks. a b
- c d
- е

- **f** Machined steel, heat treated.
- Heavy wall, heat treated, for use with 34772-16 adjustable rocker arms with ball type adjusters.
 Pro Series one-piece, for use with 34791-1 adjustable rocker arms with cup type adjusters.
 1.76 ratio, ductile iron, adjustable, requires appropriate 34645-16 Crane pushrods.

					СОМ	PLETE C	AM SPE	CIFIC	ATIO	ONS		
Anglington	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 274	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	0pen/0 @ .05 Cam	50″ Lift	Hot Int.	Gross Lift Int.	
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/E	xh	Exh.	Exh.	
Hydraulic Roller Camsha					24.4	274	442	<u>,</u>	2.4			
Good low end torque, smooth idle, daily usage, towing, economy, also mild turbocharged, 2200-3000 cruise RPM, 8.0 to 9.5 compression ratio advised.	HR-214/319-25-12	1400- 5400	349511**	35532-16 ⁶	214 222	276 284	112	0 48	34 (6)	.000 .000		
			3									
Excellent low and mid-range torque and HP, good idle, moderate performance usage, mild bracket racing, 2800- 3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	HR-222/320-251-12	1800- 5600	349551*ª	35532-16 ^b	222 226	286 290	112	3 49	39 (3)		.563 .563	
			•									
Excellent low and mid-range torque and HP, fair idle, moderate performance usage, mild bracket racing, 3000- 3600 cruise RPM, good with aftermarket aluminum cylin- der heads, 10.0 to 11.5 compression ratio advised.	HR-226/3201-25-12	2000- 5800	349561**	35532-16 ^b	226 236	290 302	112	5 54	41 2	.000 .000	.563 .581	
·		2400	•		22.4	200	440	•	45		(22)	
Excellent mid-range & upper RPM HP, lightweight kit car, rough idle, performance usage, good mid-range HP, mild bracket racing, auto trans w/2500+ converter, works well with aftermarket aluminum cylinder heads, 3600- 4200 cruise RPM, 10.5 to 12.0 compression ratio advised.	HR-234/354-2S-12	2400- 6200	349571 ^{*a}	35532-16 [⊾]	234 242	298 306	112	9 57	45 5		.623 .651	
Good mid-range and upper RPM HP, lightweight kit car,	HR-242/350-2S-12	2800-	349581*ª	35532-16 ^b	242	308	112	13	49	.000	.616	
rough idle, performance usage, mild bracket racing, auto trans w/3000+ converter, good with 450+ cu.in., good with aftermarket aluminum cylinder heads, 3800-4400 cruise RPM, 11.0 to 13.0 compression ratio advised.	111 242/330 23 12	6400		55552 10	248	312	112	60	8		.616	
Mechanical Lifter Camsh	afts											
Good mid range torque, fair idle, moderate performance usage, good low and mid-range HP, off road, bracket rac- ing, 3400-3800 cruise RPM, mild supercharged, 10.0 to 11.5 compression ratio advised.		2400- 6000	341191°	99257-16 99256-16'	238 248	300 310	114	10 63	48 5	.026 .026	.563 .584	
Replacement for factory 425 HP, 427 cu.in. camshaft.	BluePrinted C3AZ-6250-AA	3000- 6600	340321*	99257-16 99256-16'	244 244	284 284	114	13 61	51 3	.018 .022	.524 .524	
Good mid range torque and HP, rough idle, moderate	F-248/3334-12	3400-	340471*	99257-16	248	310	112	17	51	.026	.587	
performance usage, good mid-range HP, 3600-4200 cruise RPM, 10.5 to 12.0 compression ratio advised.	F-240/3334-12	7000- 7000	\$	99257-16 99256-16'	248	312	112	61	7	.026		
Moderate competition only, good mid and upper RPM torque and HP, bracket racing, auto w/race converter, 11.5 to 12.5 compression ratio advised.	F-254/382-2S-10	3800- 7200	341341*	99257-16 99256-16'	254 262	286 298	110		52 17	.018 .018	.672 .678	
Notesta constitue esta sociational	F 3///2520.0	1200	•	00057.46	244	202	100	20	57	0.27	(21	
Moderate competition only, good mid and upper RPM HP, bracket racing, auto w/race converter, good with after- market aluminum cylinder heads, 12.0 minimum com- pression ratio advised.	F-266/3528-8	4200- 7600	341461*	99257-16 99256-16'	266 266	302 302	108		56 20		.621 .621	

- RPM range shown is for average usage. These cam profiles N will RPM higher, depending upon application.
- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- **NOTE:** Specify if late 62-406 cu.in. or 63-76 block is used, as the cam is different than the one used in 58-62 block.
- NOTE: All grinds shown use the stock Ford 1.76 ratio adjustable rocker arms - Ford part number B8A-6564-B or Crane adjustable ductile iron rocker arms, **34772-16**, in order to achieve the listed gross valve lift figures.
- NOTE: To provide the most accurate valve adjustment on hydraulic roller camshafts, the use of Crane adjustable rocker arms (34772-16 or 34791-1) and appropriate pushrods (special order or 95805-16) is highly recommended.
- NOTE: To effect valve adjustment with mechanical lifter camshafts, the use of Crane adjustable rocker arms (34772-16 or 34791-1) and the appropriate pushrods is required. NOTE: In order to use these mechanical lifter camshafts in mechani-
- IOTE: In order to use these mechanical lifter camshafts in mechanical lifter only side oiler type blocks, you must groove the center of #2 and #4 cam bearing journals with a .022" radius (.044" width) and .035" deep.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.NOTE: Some cylinder heads have removable lower spring seats
- NOTE: Some cylinder heads have removable lower spring seats with an inner spring step. This step must be removed to allow the inner springs to set flush with the outer springs.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 30
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	— ALUMINUM Energizer	ROCKERS – GOLD RACE
	99896-16ª 99832-16°	99970-16 ^f 99976-16 ^g	99822-16ª	99099-1 ⁱ	، 95805-16 ^к		34772-16 ^p		
	99896-16ª 99832-16°	99970-16 ^r 99976-16 ^g	99822-16 ^d	99099-1 ⁱ	i 95805-16 ^k		34772-16 ^p		
	99896-16ª 99832-16°	99970-16 ^f 99976-16 ^g	99822-16 ^d	99099-1 ⁱ	^ј 95805-16 ^к		34772-16 [₽]		
	99896-16ª 99832-16°	99970-16 ^f 99976-16 ^g	99822-16ª	99099-1 ⁱ	; 95805-16 ^k		34772-16 ^p		
	99896-16ª 99832-16°	99970-16 ^f 99976-16 ^g	99822-16 ^d	99099-1 ⁱ	j 95805-16 ^k		34772-16 ^p		

968	77-16 ^ª 9996	99-16 ^h 99822	2-16 ^d 99	3	4621-16 ¹ 3 4622-16 ^m 5819-16 ⁿ 5847-16°	4772-16 ^p
968	77-16 ^ª 9996	99-16 ^h 99822	2-16 ^d 99	3	4621-16 ¹ 3 4622-16 ^m 5819-16 ⁿ 5847-16°	4772-16 ^p
968:	77-16 ^ª 9996	99-16 ^h 99822	2-16 ^d 99	3	4621-16 ¹ 3 4622-16 ^m 5819-16 ⁿ 5847-16°	4772-16 [,]
968	77-16 ^ª 9996	99-16 ^h 99822	2-16 ^d 99	3	4621-16 ¹ 3 4622-16 ^m 5819-16 ⁿ 5847-16°	4772-16 ^p
968:	77-16 ^d 9996	i9-16 ^h 99822	2-16 ^d 99	3	4621-16 ¹ 3 4622-16 ^m 5819-16 ⁿ 5847-16°	4772-16 [,]

- a Requires 34970-1 (.467" I.D.) steel, or 34990-1 (.467" I.D.) aluminum-bronze distributor drive gear, j and 7/16-14 x 1-1/8" grade 8 cam gear bolt and hardened washer.
- Vertical locking bar hydraulic roller lifters, no machining required. Special length pushrods are b required.
- Shell-type lifters, requires 34622-16 pushrods for 34772-16 rocker arms, or 95847-16 pushrods c for 34791-1 rocker arms.
- d Must machine cylinder heads.
- Ovate wire beehive spring, requires 99976-16 retainers. е
- Requires 99099-1 valve locks.
- Steel, for 99832-16 beehive springs.
- g h Requires 99098-1 valve locks.
- Machined steel, heat treated.

- Special length pushrods are required for standard non-adjustable or 34772-16 adjustable rocker arms. k For use with 34791-1 adjustable rocker arms with cup type adjusters.
- Heavy wall, heat treated, for use with **99257-16** lifters and **34772-16** adjustable rocker arms. L.
- Heavy wall, heat treated, for use with 99256-16 lifters and 34772-16 adjustable rocker arms. m
- n Pro Series one-piece, for use with 99257-16 lifters and 34791-1 adjustable rocker arms with cup type adjusters.
- Pro Series one-piece, for use with 99256-16 lifters and 34791-1 adjustable rocker arms with cup 0 type adjusters.
- **p** 1.76 ratio, ductile iron, adjustable, requires appropriate Crane pushrods.

Ford-Mercury V-8 63-76

352-360-390-406-410-427-428 cu.in.

					СОМ	PLETE C	AM SPE	CIFICA	rions	
Application	Camshaft Series/ Grind Number	RPM POWER	Camshaft PART NUMBER/	See pg. 276	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Clos @ .050" Cam Lift	Hot Int.	Gross Lift Int.
Application		RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.
Nechanical Roller Camsh Excellent low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2800+ converter, 3200-3600 cruise rpm, 10.5 to 11.5 compression ratio advised.	SR-240/350-2S-14	2800- 6600	348511*ª	30518-16 35570-16⁵	240 248	290 298	114	11 49 63 5	.020 .020	
Excellent mid range torque and HP, fair idle, moderate performance usage, bracket racing, auto trans w/3500+ converter, 3800-4200 cruise RPM, 11.0 to 12.0 compression ratio advised.	SR-248/362-2S-10	3000- 6800	348521*ª	30518-16 35570-16⁵	248 256	285 292	110	19 49 63 13	.020 .020	.637 .658
Good mid range torque and HP, rough idle, performance usage, bracket racing, auto trans w/3500+ converter, 11.0 to 12.5 compression ratio advised.	R-252/420-2-8	3400- 7200	348801*a	30518-16 35570-16 ^b	252 262	284 294	108	22 50 63 19	.020 .020	.739 .739
Good mid range HP, rough idle, performance usage, bracket racing, auto trans w/race converter, also large plate or manifold nitrous system, 12.0 minimum com- pression ratio advised.	R-260/420-2-10	3800- 7600	348821*ª	30518-16 35570-16 ^b	260 270	292 302	110	24 56 69 21	.020 .020	.739 .739
Competition only, good upper RPM HP, bracket racing, auto trans w/race converter, also manifold nitrous sys- tem, good with aftermarket aluminum cylinder heads, 12.0 minimum compression ratio advised.	R-266/420-2-10	4200- 7800	348831*ª	30518-16 35570-16 ^b	266 276	298 308	110	27 59 72 24	.020 .020	.739 .739
Competition only, good upper RPM HP, bracket racing, auto trans w/race converter, also large manifold nitrous system, good with aftermarket aluminum cylinder heads, 12.5 minimum compression ratio advised.	R-276/420-2-10	4600- 8200	348841*ª	30518-16 35570-16 ^b	276 286	308 318	110	32 64 77 29		.739 .739
Competition only, good upper RPM HP, manual trans or auto trans w/race converter and trans brake, good with aftermarket aluminum cylinder heads, 13.0 minimum compression ratio advised.	R-276/4334-252-10	4800- 8400	348291*ª	35570-16 [⊾]	276 282	316 322	110	31 65 74 28	.026 .026	.763 .727
Competition only, good upper RPM HP, manual trans or auto trans w/race converter and trans brake, good with aftermarket aluminum cylinder heads, 13.0 minimum compression ratio advised.	R-282/427-251-8	5000- 8400	348301*ª	35570-16 [⊾]	282 282	286 320	108	38 64 74 32	.028 .026	.752 .752

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application. IMPORTANT: Adjustable Vacuum Advance Kit available. See page

- 313 for details. **NOTE:** Specify if late 62-406 cu.in. or 63-76 block is used, as the
- cam is different than the one used in 58-62 block. **NOTE:** In order to use these camshafts in mechanical lifter only side oiler type blocks, you must groove the center of #2 and #4 cam bearing journals with a .022" radius (.044" width)
- NOTE: All grinds shown use the stock Ford 1.76 ratio adjustable rocker arms - Ford part number B8A-6564-B or Crane adjustable ductile iron rocker arms, **34772-16**, in order to achieve the listed gross valve lift figures.
- NOTE: To effect valve adjustment with roller lifter camshafts, the use of Crane adjustable rocker arms (34772-16 or 34791-1) and appropriate pushrods (34641-16 or 95818-16) is required.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: Some cylinder heads have removable lower spring seats with an inner spring step. This step must be removed to allow the inner springs to set flush with the outer springs.

and .035" deep.

CDANEVAL		MDONENTS							
CRANE VALV See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 301
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	CAST ROCKER ARMS	ALUMINUM ENERGIZER	
KIIS	SI KINGS	RETAINERS	JERES	LOCKS	1 CONTRODO	ASSEMBEI	ARMS	LNLKGIZEK	NACL
	99893-16 99832-16'	99954-16 99976-16 ^f	99822-16 ^d	99098-1 ⁱ	34641-16 ^j 95818-16 ^k		34772-16 ¹		
	99893-16 99832-16'	99954-16 99976-16 ^f	99822-16 ^d	99098-1 ⁱ	34641-16 ^j 95818-16 ^k		34772-16 ¹		
	96886-16 ^d	99955-16	99822-16 ^d	99098-1 ⁱ	34641-16 ^j 95818-16 ^k		34772-16 ¹		
	96886-16 ^d	99955-16	99822-16 ^d	99098-1 ⁱ	34641-16 ^j 95818-16 ^k		34772-16 ¹		
	96886-16 ^d	99955-16	99822-16 ⁴	99098-1 ⁱ	34641-16 [;] 95818-16 ^k		34772-16 ¹		
	96886-16 ^d	99955-16	99822-16 ^d	99098-1 ⁱ	34641-16 ^j 95818-16 ^k		34772-16 ¹		
	96880-16ª 961246-16°	99679-16º 99662-16ʰ	99822-16 ^d	99098-1 ⁱ	34641-16 ^j 95818-16 ^k		34772-16 ¹		
	96880-16ª 961246-16°	99679-16º 99662-16 ^h	99822-16 ^d	99098-1 ⁱ	34641-16 ^j 95818-16 ^k		34772-16 ¹		

Requires 34970-1 (.467" I.D.) steel, or 34990-1 (.467" I.D.) aluminum-bronze distributor drive gear, g and 7/16-14 x 1-1/8" grade 8 cam gear bolt and hardened washer. а and 7/16-14 x 1-1/8'' grade 8 cam gear bolt and hardened washer. Ultra Pro Series roller lifters.

b

C

d

Ovate wire beehive spring, requires **99976-16** retainers. Must machine cylinder heads. Triple, for 2.050" assembly height, requires **99662-16** titanium retainers. Steel for **99832-16** beehive springs. e f

Must use 99098-1 valve stem locks, included with the retainers.

Titanium, for 961246-16 valve springs.

- Machined steel, heat treated. i
- in additional steep, near clearco.
 For use with 34772-16 adjustable rocker arms, heavy wall, heat treated.
 k Pro Series one-piece, for use with 34791-1 adjustable rocker arms with cup type adjusters.
 1.76 ratio, ductile iron, adjustable, requires appropriate 34641-16 Crane pushrods.

					COMPLETE CAM SPECIFICATIONS					
.	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Lash Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.
Hydraulic Lifter Camshaf Brute low end torque, smooth idle, daily usage, EFI com- patible, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 compression ratio advised.	ts H-192/2667-2S-10	800- 4200	350501°	99280-16 [,]	192 204	248 260	110	(9) 21 37 (13)	.000 .000	.456 .487
Good low end torque, smooth idle, daily usage, EFI com- patible, off road, towing, economy, also mild turbo- charged, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-260-2	1200- 4800	353901* 353902*a	99280-16 ^c	204 216	260 272	112	(5) 29 45 (9)		.487 .518
Good low end torque, towing, good idle, daily usage, mild off road, economy, good low and mid-range torque and HP, also mild turbocharged, 2400-2800 cruise RPM, 8.5 to 10.0 compression ratio advised.	H-266-2	1400- 5000	353931° 353932°a 3	99280-16 [,]	210 218	266 274	114	(4) 34 48 (10)	.000 .000	.487 .504
Excellent low end and mid range torque and HP, good idle, daily usage and off road, towing, performance and fuel efficiency, marine performance, mild supercharged, 2200-2600 cruise RPM, 8.75 to 10.5 compression ratio advised.	H-272-2	1800- 5400	353941* 353942*a 35	99280-16 [.]	216 228	272 284	112	1 35 51 (3)		.518 .513
Fair idle, performance usage, good mid-range torque and HP, auto w/2200+ converter, 3200-3600 cruise RPM, serious off road, heavy limited oval track, bracket racing: Street, Heavy; 9.0 to 10.5 compression ratio advised.	H-226/314-2-8	2200- 5800	350541°	99280-16° 99380-16°°	226 236	286 296	108	10 36 51 5	.000 .000	.537 .556
Fair idle, performance usage, good mid-range HP, auto w/2500 + converter, 3400-3800 cruise RPM, oval track: Street Stock, Enduro, Hobby, 1/4-3/8 mile; bracket racing: Street, Heavy, Pro E.T., Super E.T.; Also mild super- charged, 9.5 to 11.0 compression ratio advised.	H-288-2	2400- 6000	354551° 354552° ^b	99280-16 99380-16	226 230	288 292	112	6 40 52 (2)		.522 .530

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- **IMPORTANT:** Adjustable Vacuum Advance Kit available. See page 313 for details.
- **IMPORTANT:** Check your hydraulic lifter preload, with your original pushrods, to first determine if different pushrods may be required. On 72-97 engines, if your hydraulic lifter preload is excessive, this can be remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170-1). Refer to page 304 for details. IMPORTANT: Crane offers Pushrod Guideplate and Rocker Arm Stud Conversion Kits, (35655-16 and 52655-16) for street applica-tions are blined 5270-130. (Consist or such as details)
- tions, enabling the 370-429-460 cu.in. engines with pedestal

mounted rockers to have adjustable rocker arms without cylinder head removal or machining. See page 305 for details.

- NOTE: To provide the most accurate valve adjustment on hydraulic lifter camshafts, in other than 429 Super C.J. engines, a method of effecting valve adjustment is required. On 68-71 engines equipped with bottleneck type studs, using **99768**-16 positive locking nuts will permit valve adjustment. On 72-97 engines, the heads must be machined to use **99159-16** screw-in studs and pushrod guideplates.
- **NOTE:** Special length pushrods can be ordered to provide proper hydraulic lifter preload. Refer to page 353 for checking your hydraulic lifter preload.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our 35975-1 timing chain and gear set, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: These camshafts also fit the 1969-70 Ford 429 Boss Hemi V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

CAMSHAFTS

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	N ROCKERS Gold Race
35308-1°	96801-16° 99839-16 ^f	99944-16 99969-16ª	99820-16 ^h	99097-1 ⁱ 99094-1 ^j	35622-16 ^k 35621-16 ⁱ	35975-1* ⁿ	52800-16°	27744-16ª	27750-1 27771-1
35308-1°	96801-16° 99839-16 ^f	99944-16 99969-16 ^g	99820-16 ^h	99097-1 ⁱ 99094-1 ^j	35622-16 ^k 35621-16 ⁱ	35975-1* ⁿ	52800-16°	27744-16ª	27750-1 27771-1
35308-1°	96801-16° 99839-16 ^f	99944-16 99969-16ª	99820-16 ^h	99097-1 ⁱ 99094-1 ^j	35622-16 ^k 35621-16 ⁱ	35975-1* ⁿ	52800-16°	27744-16ª	27750-1 27771-1
35308-1°	96801-16° 99839-16 ^f	99944-16 99969-16ª	99820-16 ^h	99097-1 ⁱ 99094-1 ^j	35622-16 ^k 35621-16 ⁱ	35975-1* ⁿ	52800-16°	27744-16ª	27750-1 27771-1
	99893-16	99953-16	99820-16 ^h	99097-1 ⁱ	35622-16 ^k 35621-16 ^l 95653-16 ^m	35975-1* ⁿ	52800-16°	27744-16ª	27750-1 27771-1
	99893-16	99953-16	99820-16 ^h	99097-1 ⁱ	35622-16 ^k 35621-16 ^l 95653-16 ^m	35975-1* ⁿ	52800-16°	27744-16ª	27750-1 27771-1

Section Continued 🛰

Cam and Lifter Kit, includes installation lubricants.

- Cam, lifter, valve spring, and retainer kit, includes installation lubricants. May require appropriate Crane pushrods, see **IMPORTANT NOTE** on opposite page. b
- C
- Optional Hi Intensity hydraulic lifters, see page 272 for details. d
- е
- Optional II meeting of Marketer valve springs, no machining required for installation. Optional 1.800" assembly height springs, requires **99969-16** retainers and **99094-1** valve locks. f Requires 99094-1 Multi Fit valve locks.

g h Must machine cylinder heads.

- Machined steel, heat treated.
- Machined steel, heat treated Multi Fit.
- , k Heavy wall, heat treated, for non-guideplate or guideplate cylinder heads.

- For 429 Super CJ, heavy wall, heat treated, for use with pushrod guideplate cylinder heads. Pro Series one-piece, for use with pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. 1
- m
- n
- 0
- 1.71 ratio, pedestal mount, non-adjustable, for 72-97 engines. Energizer, 1.72 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opq posite page. Valve Train Stabilizer Available, see page 343.
- 1.73 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343.
- 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. Valve Train Stabilizer s available, see page 343.

				COMPLETE CAM SPECIFICATIONS							
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/ @.0 Cam Int/)50″ Lift	Lash Hot Int. Exh.	Gross Lift Int. Exh.
Hydraulic Lifter Camshaf	fts										
Fair idle, performance usage, good mid-range HP, 3600- 4000 cruise RPM, auto w/3000+ converter, bracket rac- ing: Pro E.T., Super E.T., Super Pro; good with plate nitrous system, 11.0 to 12.0 compression ratio advised. Good with supercharger, 15 lbs. maximum boost w/8.5 maximum compression ratio advised.	H-230/318-2-14	2600- 6200	350551°	99280-16 ^b 99380-16 ^{b,c}	230 240	290 300	114	6 59	44 1	.000 .000	.544 .563
Fair idle, performance usage, good mid-range HP, 3800- 4200 cruise RPM, auto w/3000+ converter, oval track: Street Stock, Enduro, Hobby, 3/8-1/2 mile; bracket racing: Pro E.T., Super E.T., Super Pro, Hot Rod; 10.0 to 11.5 com- pression ratio advised.		3000- 6600	354561° 354564°a 354564°a	99280-16 ^b 99380-16 ^{b,c}	236 240	296 300	110	13 55	43 5	.000 .000	.556 .563
Performance usage, good upper RPM HP, rough idle, bracket racing, auto w/race converter, good with mani- fold nitrous system, 11.5 to 13.0 compression ratio advised.	H-244/3439-2S-12	3200- 6800	350561°	99280-16 ^b 99380-16 ^{b,c}	244 252	300 308	112	15 63	49 9	.000 .000	.588 .599
Performance usage, good upper RPM HP, bracket racing, auto w/race converter, aluminum cylinder heads advised, 12.0 to 13.5 compression ratio advised.	H-248/3500-8	3400- 7000	350681°	99280-16 ^b 99380-16 ^{b,c}	248 248	304 304	108	21 57	47 11	.000 .000	.599 .599
Performance usage, good upper RPM HP, drag racing, auto w/race converter, good with manifold nitrous sys- tem, aluminum cylinder heads recommended, 13.5 to 14.5 compression ratio advised. Good w/Roots super- charger, 22 lbs. maximum boost w/8.5 maximum com- pression ratio advised.	H-252/364-2S-12	3800- 7200	350571*	99280-16 ^b 99380-16 ^{b,c}	252 262	304 314	112	19 68	53 14	.000 .000	.622 .604

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- IMPORTANT: Check your hydraulic lifter preload, with your original pushrods, to first determine if different pushrods may be required. On 72-97 engines, if your hydraulic lifter preload is excessive, this can be remedied by using Crane's Rocker Arm Pedestal Shim Kit (99170–1). Refer to page 304 for details.
- IMPORTANT: Crane offers Pushrod Guideplate and Rocker Arm Stud Conversion Kits, (35655-16 and 52655-16) for street applications, enabling the 370-429-460 cu.in. engines with pedestal

mounted rockers to have adjustable rocker arms without cylinder head removal or machining. See page 305 for details. F. To provide the most accurate value adjustment on bydrauli

- NOTE: To provide the most accurate valve adjustment on hydraulic lifter camshafts, in other than 429 Super C.J. engines, a method of effecting valve adjustment is required. On 68-71 engines equipped with bottleneck type studs, using 99768-16 positive locking nuts will permit valve adjustment. On 72-97 engines, the heads must be machined to use 99159-16 screw-in studs and pushrod guideplates.
- NOTE: Special length pushrods can be ordered to provide proper hydraulic lifter preload. Refer to page 353 for checking your hydraulic lifter preload.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our **35975-1** timing chain and gear set, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: These camshafts also fit the 1969-70 Ford 429 Boss Hemi V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

CAMSHAFTS

CRANE VAL	/E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	N ROCKERS – Gold Race
	99893-16	99953-16	99820-16 ^d	99097-1°	35622-16 ^f 35621-16 ^g	35975-1* ⁱ	52800-16 ⁱ	27744-16 ¹	27750-16 27771-16
	00002 16	99953-16	99820-16 ^d	99097-1°	25622 16	35975-1*i	52800-16 ⁱ		27750 1
	99893-16	99955-10	99820-10"	99097-1	35622-16 ^f 35621-16 ^g	339/2-1	52800-10	27744-16 ¹	27750-1 27771-1
	99893-16	99953-16	99820-16 ^d	99097-1°	35622-16 ^f 35621-16 ^g	35975-1*i	52800-16 ⁱ	27744-16 ¹	27750-10
					95653-16 ^h				
	99893-16	99953-16	99820-16 ^d	99097-1°	35622-16 ^f	35975-1 ^{*i}	52800-16 ^j		27750-16
					35621-16 ⁹			27744-16 ¹	27771-10
	99893-16	99953-16	99820-16 ^d	99097-1°	35622-16 ^f	35975-1* ⁱ	52800-16 ⁱ		27750-1
					35621-16 ⁹ 95653-16 ^h			27744-16 ¹	27771-1

а

- Cam and lifter kit, includes installation lubricants. May require appropriate Crane pushrods, see **IMPORTANT NOTE** on opposite page. Optional Hi Intensity hydraulic lifters, see page 272 for details. b
- C
- Must machine cylinder heads. d
- Machined steel, heat treated. e f
- Heavy wall, heat treated, for non-guideplate or guideplate cylinder heads.
- For 429 Super CJ, heavy wall, heat treated, for use with pushrod guideplate cylinder heads. Pro Series one-piece, for use with pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set.
- g h
- i

- 1.71 ratio, pedestal mount, non-adjustable, for 72-97 engines. Energizer, 1.72 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343. Ì.
- m 1.73 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343.
 n 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. Valve Train Stabilizer
- available, see page 343.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 274	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.
			ETTISSIONS CODE	LIFTERS	IIIt/EXII.	IIIU/EXII.	Separation	IIIL/EXII	EXII.	EXII.
Hydraulic Roller Camsha Brute low end torque, smooth idle, daily usage, off road,	HR-200/311-25-12	800-	359331*ª	35532-16 ^b	200	262	112	(7) 27	000	.532
towing, economy, also mild turbocharged, 2200-3000 cruise RPM, 8.0 to 9.5 compression ratio advised.	nn-200/311-23-12	4600	333331	33332-10	200	202 274	112	43 (11)		.568
Excellent low end torque and HP, smooth idle, daily	HR-212/332-2S-14	1200-	359371*ª	35532-16 ^b	212	274	114	(3) 35	.000	568
usage, off road, towing, performance and fuel efficiency, also mild turbocharged, 2400-3200 cruise RPM, 8.5 to 10.0 compression ratio advised.	III(~2 2/ JJ2~2J~ 4	5000	•	55552-10	212	274	114	(5) 55 47 (11)	.000	
Good low end torque, good idle, daily usage, off road,	HR-216/325-25-12	1400-	▼ 359341*ª	35532-16 ^b	216	278	112	1 35	.000	556
towing, performance and fuel efficiency, 2600-3400 cruise RPM, 8.75 to 10.5 compression ratio advised.	nr-210/323-23-12	5400	333341	33332-10	224	286	112	49 (5)	.000	
Good mid range torque and HP, fair idle, moderate per-	HR-228/345-2S-14	2200-	359351*a	35532-16 ^b	228	290	114	5 43	.000	.590
formance usage, mild bracket racing, auto w/2500+ converter, mild supercharged, 3000-3800 cruise RPM, 9.5 to 11.0 compression ratio advised.		6200	•		238	300		58 0	.000	
Good mid range torque and HP, rough idle, moderate	HR-234/340-2S-10	2400-	¥ 359381*ª	35532-16 ^b	234	300	110	12 42	.000	.581
performance usage, mild bracket racing with heavy car, serious off road, auto w/2800+ converter, 3200-3800 cruise RPM, 10.0 to 11.5 compression ratio advised.		6400	•		242	308		56 6	.000	
Good mid to upper RPM torque and HP, fair idle, perfor-	HR-238/359-2S-12	3000-	359361*ª	35532-16 ^b	238	300	112	12 46	.000	614
mance usage, bracket racing, auto trans w/3000+ con- verter, also mild supercharged, best with 514+ cu.in., 10.5 to 12.0 compression ratio advised.	111 230,333 23 12	6600	•	55552 10	246	308	112	60 6	.000	
•			•							
Good mid to upper RPM torque and HP, rough idle, per- formance usage, bracket racing, auto trans w/3500+	HR-246/372-2S-12	3200- 6800	359391*ª	35532-16 ^b	246 250	308 312	112	16 50 62 8	.000. .000	.636 .636
converter, best with 514+ cu.in., 11.0 to 12.5 compres- sion ratio advised.		0000	•		250	JIZ		02 0	.000	.000
Performance usage, bracket racing, auto trans w/race	HR-258/372-2S-14	3600-	359401*a	35532-16 ^b	258	320	114	20 58	.000	
converter, good w/large manifold nitrous system, best with 540+ cu.in., 12.5 minimum compression ratio advised. Good with large Roots supercharger, 22 lbs. maximum boost w/8.5 maximum compression ratio advised.		6800	\$		266	328		72 14	.000	.636
Performance usage, best in 570+ cu.in., auto trans w/ race converter, 13.5 minimum compression ratio advised.	HR-264/400-2S-14	4000- 6800	359411*ª	35532-16 ^b	264 268	334 338	114	22.5 61.5 72.5 15.5	.000 .000	
Good with large Roots supercharger w/aluminum cylin- der heads, 26 lbs. maximum boost w/8.5 maximum compression ratio advised.		0000	•		200	000		C.CI C.21	.000	.004

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- NOTE: Special length pushrods must be ordered to provide proper hydraulic roller lifter preload. Refer to page 353 for checking your hydraulic lifter preload.
- IMPORTANT: Crane offers Pushrod Guideplate and Rocker Arm Stud Conversion Kits, (35655-16 and 52655-16) for street applications, enabling the 370-429-460 cu.in. engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. See page 305 for details.
 - NOTE: To provide the most accurate valve adjustment on hydraulic roller lifter camshafts, in other than 429 Super C.J. engines, a method of effecting valve adjustment is required. On 68-71 engines equipped with bottleneck type studs, using 99768-16 positive locking nuts will permit valve adjustment. On 72-97 engines, the heads must be machined to use 429 Super C.J. rockers, studs, and pushrod guideplates.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our **35975-1** timing chain and gear assembly, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
- NOTE: These camshafts also fit the 1969-70 Ford 429 Boss Hemi V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

		OMPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	I ROCKERS - Gold Race
	96870-16	99957-16 99969-16'	99820-16 ^d	99097-1° 99094-1 ^f	95639-16 ^g 95641-16 ^h	35975-1* ⁱ	52800-16 ⁱ	27744-16 ¹	27750-10 27771-10
	96870-16	99957-16 99969-16'	99820-16 ⁴	99097-1° 99094-1 ^f	95639-16ª 95641-16 ^h	35975-1* ⁱ	52800-16 ^j	27744-16 ¹	27750-10 27771-10
	96870-16	99957-16 99969-16°	99820-16 ^d	99097-1° 99094-1 ^f	95639-16 ⁹ 95641-16 ^h	35975-1*i	52800-16 ^j	27744-16 ¹	27750-10 27771-10
	99896-16	99956-16 99970-16'	99820-16 ⁴	99097-1° 99094-1 ^f	95639-16ª 95641-16 ^h	35975-1 ^{*i}	52800-16 ^j	27744-16 ¹	27750-10 27771-10
	99896-16	99956-16 99970-16°	99820-16 ^d	99097-1° 99094-1 ^f	95639-16 ⁹ 95641-16 ^h	35975-1*i	52800-16 ^j	27744-16 ¹	27750-1 27771-1
	99896-16	99956-16 99970-16'	99820-16 ⁴	99097-1° 99094-1 ^f	95639-16ª 95641-16 ^h	35975-1 ^{*i}	52800-16 ^j	27744-16 ¹	27750-10 27771-10
	99896-16	99956-16 99970-16'	99820-16 ^d	99097-1° 99094-1 ^f	95639-16ª 95641-16 ^h	35975-1*i	52800-16 ^j	27744-16 ¹	27750-1 27771-1
	99896-16	99956-16 99970-16'	99820-16 ^d	99097-1° 99094-1 ^f	95639-16ª 95641-16 ^h	35975-1* ⁱ	52800-16 ^j	27744-16 ¹	27750-1 27771-1
	99896-16	99956-16 99970-16'	99820-16 ^d	99097-1° 99094-1 ^f	95639-16 ⁹ 95641-16 ^h	35975-1*i		27744-16 ¹	27750-1 27771-1

- Requires 52970-1 (.500" I.D.) or 52971-1 (.531" I.D.) steel, or 52990-1 (.500" I.D.) or 52989-1 а (.531" I.D.) aluminum-bronze distributor drive gear, and 7/16-20 x 1-1/4" grade 8 cam gear bolt and hardened washer.
- Vertical locking bar hydraulic roller lifters, no machining required. Special length pushrods are b required.
- Requires Crane Multi Fit valve locks. c
- Must machine cylinder heads. d
- Machined steel, heat treated. е
- Machined steel, heat treated, Multi Fit. f
- Pro Series one-piece, for non-guideplate cylinder heads. g

h Pro Series one-piece, for use with pushrod guideplate cylinder heads.

- i
- Performance steel billet gears and roller chain set. 1.71 ratio, pedestal mount, non-adjustable, for 72-97 engines. Energizer, 1.72 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on op-posite page. Valve Train Stabilizer available, see page 343.
- m 1.73 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343.
- n 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343.

						COM	PLETE C	AM SPE	CIFIC	ATIONS		I
		Camshaft Series/	rpm Power		See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	.05 @ Cam L	ift Int.	Lift Int.	
	Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Ex	ch Exh.	. Exh.	_
	lechanical Lifter Camsh											
m He	ood low end and mid range torque and HP, fair idle, noderate performance usage, bracket racing: Super Pro, lot Rod, auto trans w/2500+ converter; off road, 10.0 to 1.5 compression ratio advised.	F-238/3200-2-12	3000- 6600	351201*	99257-16 [⊾]	238 248	300 310	112	12 4 61		2 .547 2 .570	
Sp Ro	ough idle, performance usage, oval track: Late Model, portsman, 1/4-3/8 mile; bracket racing: Super Pro, Hot od, auto trans w/3000+ converter; serious off road, 0.5 to 12.0 compression ratio advised.	F-246/3294-2-8	3600- 7000	351211° 351214°a 3	99257-16 ^ь	246 256	282 292	108	20 4 61 1		.563 .583	
				•								
to	ough idle, performance usage, good mid to upper RPM orque and HP, bracket racing, auto trans w/3500+ con- erter, 11.0 to 12.5 compression ratio advised.	F-256/3412-2-8	4000- 7400	351341*	99257-16 ^ь	256 266	292 302	108	25 <u>5</u> 66 2		.583 .603	
5			2200	•	20257 4 ch	254	202	112	10		500	
ar au	air idle, performance usage, good upper RPM torque nd HP, bracket racing, good w/plate nitrous system, uto trans w/3500+ converter, 11.5 to 12.5 compression atio advised.	F-256/3412-2-12	2200- 6200	351351*	99257-16 [⊾]	256 266	292 302	112	19 <u>5</u> 68 1		.583 .603	
	Noderate competition only, good mid to upper RPM HP,	F-266/3528-2-8	4400-	351511*	99257-16 ^b	266	302	108	30 5	C 026	.603	
br	racket racing, auto trans w/3500+ converter, 11.5 to 3.0 compression ratio advised.	F-200/3320-2-0	7800	3	97237-10	200	302 312	100			.624	
M	Adverte competition only good mid to upper DDM LID	F 272/2074 2C 0	4600	•	20257 1ch	272	200	100	22 1	F0 03((()	
br	Moderate competition only, good mid to upper RPM HP, racket racing, auto trans w/race converter, 12.5 mini- num compression ratio advised.	F-272/3874-25-8	4600- 8000	351601*	99257-16 [⊾]	272 280	308 316	108	33 <u>5</u> 73 2		.662 .683	
	DIA LID brocket racing	5 272/2074 26 12	4900	•	00357 1/h	272	200	117	20 ((1 02)	(()	
go tra ao	ompetition only, good upper RPM HP, bracket racing, ood with large plate or manifold nitrous system, auto rans w/race converter, 13.0 minimum compression ratio dvised. Good w/large Roots supercharger, 22 lbs. maxi- num boost w/8.0 maximum compression ratio advised.	F-272/3874-2S-12	4800- 8200	351611*	99257-16 ^ь	272 280	308 316	112		64 .026 24 .026		
et	ompetition only, good upper RPM torque and HP, brack- t racing in heavy car, good w/514+ cu.in., alunimum ylinder heads advised, auto trans w/race converter, 13.0	F-274/3934-2S-10	4600- 8200	351621*	99257-16 [⊾]	274 278	304 308	110	31 (73 2		.673 .684	
m	ninimum compression ratio advised.			•								
re	adical competition only, good upper RPM HP, flat tappet estricted classes, good w/540+ cu.in.w/ aluminum cyl- ider heads, auto trans w/race converter, 13.5 minimum	F-286/3765-25-12	5000- 8400	351631*	99257-16 ^b	286 292	322 332	112	34 7 83 2		.644 .653	
	ompression ratio advised.			•								

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- IMPORTANT: Crane offers Pushrod Guideplate and Rocker Arm Stud Conversion Kits, (35655-16 and 52655-16) for street applications, enabling the 370-429-460 cu.in. engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. See page 305 for details.
- NOTE: When installing mechanical lifter series cams and kits, in other than 429 Super C.J. engines, a method of effecting valve adjustment is required. On 68-71 engines equipped with bottleneck type studs, using 99768-16 positive locking nuts will permit valve adjustment. On 72-97 engines, the heads must be machined to use 99159-16 screw-in studs and pushrod guideplates.
- NOTE: Many 1972 and later Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when

installing aftermarket camshafts. We recommend using our **35975-1** timing chain and gear assembly, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other. **NOTE:** These camshafts also fit the 1969-70 Ford 429 Boss Hemi V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
			VALVE	VALVE		TIMING CUAIN	CTEFI		D.0.000000-
VALVE SPRING AND RETAINER	VALVE		VALVE STEM	VALVE STEM		TIMING CHAIN AND GEAR	STEEL ROCKER	ALUMINUM	ROCKERS
KITS	SPRINGS	RETAINERS	SEALS	LOCKS	PUSHRODS	ASSEMBLY	ARMS	ENERGIZER	GOLI RACI
KII S	SPRINGS	RETAINERS	JEALS	LUCKS	PUSHKUDS	ASSEMIDLI	AUNIO	ENERGIZER	KAC
	00000.16	00070 4.66	00020 1.4	00004.44	25/24 4/5	25075 4*h			27750 4
	99890-16	99970-16 [.]	99820-16 ^d	99094-1°	35621-16 ^f	35975-1 ^{*h}			27750-1
					95653-16 ⁹				27771 -1
	99890-16	99970-16 [.]	99820-16 ^d	99094-1°	35621-16 ^f	35975-1 ^{*h}			27750 -1
	<i>)))))</i> 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>))</i> 020 10	JJJJJ4 1	95653-16 ⁹	55775 1			27771-
					77077 10				
	99890-16	99970-16 [,]	99820-16 ^d	99094-1°	35621-16 ^f	35975-1* ^h			27750-1
					95653-16 ⁹				27771-1
	99890-16	99970-16 [.]	99820-16 ^d	99094-1°	35621-16 ^f	35975-1 ^{*h}			27750-
					95653-16 ⁹				27771-
	99890-16	99970-16 ^c	99820-16 ^d	99094-1°	35621-16 ^f	35975-1 ^{*h}			27750-
					95653-16 ⁹				27771-
	99890-16	99970-16 [.]	99820-16 ^d	99094-1°	35621-16 ^f	35975-1 ^{*h}			27750-
					95653-16 ⁹				27771-
	99890-16	99970-16 ^c	99820-16 ^d	99094-1°	35621-16 ^f	35975-1 ^{*h}			27750-
					95653-16 ⁹				27771-
	99890-16	99970-16 [,]	99820-16 ^d	99094-1°	35621-16 ^f	35975-1*h			27750-
					95653-16 ⁹				27771-
	99890-16	99970-16 [,]	99820-16 ^d	99094-1°	35621-16 ^f	35975-1*h			
	99890-16	99970-16 [.]	99820-16 ^d	99094-1°	35621-16 ^f 95653-16 ^g	35975-1 ^{*h}			27750-1 27771-1

Cam and lifter kit, includes installation lubricants. а

- a can and mer kit, includes instantation fubricants.
 b Requires appropriate (rane pushrods. c Requires Crane Multi Fit valve locks.
 d Must machine cylinder heads.
 e Machined steel, heat treated, Multi Fit.
 f Heavy wall, heat treated, for use with pushrod guideplate cylinder heads.
- g h
- Pro Series one-piece, for use with pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. 1.73 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343. 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. See notes on op-posite page. Valve Train Stabilizer available, see page 343. j
- k

					COM	IPLETE C	AM SPE	CIFI	CATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050"	Duration	Degrees Lobe	@ .(Cam	n/Close 050″ n Lift /Fyth	Lash Hot Int. Exh.	Lift Int.	
Application		KANGE	Emissions coue	LIFIEND	Int/Exh.	Int/Exh.	Separation	liit/	/Exh	EXII.	EXII.	
Mechanical Roller Camsh												
Excellent low and mid range torque, fair idle, moderate performance usage, good low and mid-range HP, mild bracket racing, auto trans w/2500+ converter, 10.5 to	SR-232/338-25-12	2500- 6500	358501*ª	30518-16 35570-16⁵	232 240	282 290	112	9 57			.578 .599	
11.5 compression ratio advised.			€									
Good low and mid range torque and HP, fair idle, moder- ate performance usage, bracket racing, auto trans	SR-248/362-251-12	3000- 6800	358511*ª	30518-16 35570-16⁵	248 256	298 306	112	17 65	51 11			
w/3500+ converter, 3800-4200 cruise RPM, 10.5 to 12.0 compression ratio advised.		0000	•	32370-10	230	500		05	11	.020	.040	
Good low and mid range torque and HP, rough idle, per- formance usage, bracket racing, auto trans w/3000+ converter, 11.0 to 12.5 compression ratio advised.	R-252/420-2-10	3400- 7200	358801 ^{*a}	30518-16 35570-16 ^b	252 262	284 294	110	20 65	52 17			
			3									
Good mid range torque to upper RPM torque & HP, rough idle, performance usage, 514+ cu.in., Pro Street, bracket racing, auto trans w/3500+ converter, 4200-4600 cruise RPM, 11.0 minimum compression ratio advised.		3200- 7000	358521"ª	30518-16 35570-16⁵	252 260	290 298	110	21 65	51 15			
Good mid range torque and HP, rough idle, radical street, performance usage, serious off road, bracket racing w/ heavy car, auto trans w/3500+ converter, 11.5 to 12.5 minimum compression ratio advised.	R-258/420-25-8	3600- 7400	358201 ^{*a}	30518-16 35570-16⁵	258 268	290 300	108	25 66	53 22		.718 .718	
Performance usage, good mid-range HP, bracket racing, good w/514+ cu.in., auto trans w/race converter, 12.5 minimum compression ratio advised. Good with mani- fold nitrous system.	R-266/434-25-12	3800- 7800	358211 ^{*a}	30518-16 35570-16 ^b	266 278	300 310	112	25 75	61 23		.742 .718	
Performance usage, good mid-range HP, bracket racing, auto trans w/race converter, 12.5 minimum compression ratio advised.	R-268/420-2-10	4000- 7800	358821 [*] ª	30518-16 35570-16⁵	268 278	300 310	110	28 73	60 25			

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- IMPORTANT: Crane offers Pushrod Guideplate and Rocker Arm Stud Conversion Kits, (35655-16 and 52655-16) for street applications, enabling the 370-429-460 cu.in. engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. See page 305 for details. **NOTE:** Roller camshafts with SF01 firing order (1-5-4-8-6-3-7-2)

240

are available on special order. Contact Crane's Performance Consultants for details.

- NOTE: When installing roller lifter series cams and kits, in other than 429 Super C.J. engines, a method of effecting valve adjustment is required. On 68-71 engines equipped with bottleneck type studs, using 99768-16 positive locking nuts will permit valve adjustment. On 72-97 engines, the heads must be machined to use 99159-16 screw-in studs and pushrod guideplates.
- **NOTE:** Many 1972-97 Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may

cause idling and performance problems when installing aftermarket camshafts. We recommend using our **35975-1** timing chain and gear assembly, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The nonretarded sprocket will have the alignment dot and keyway slot directly in line with each other.

NOTE: These camshafts also fit the 1969-70 Ford 429 Boss Hemi V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

CRANE VALV	/E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	ROCKERS - Gold Race
	99893-16	99953-16	99820-16 ⁴	99097-1°	35621-16 ⁹ 95653-16 ^h	35975-1 ^{*i}			27750-16 27771-16
	99893-16	99953-16	99820-16 ^d	99097-1°	35621-16 ⁹ 95653-16 ^h	35975-1* ⁱ			27750-16 27771-16
	99885-16	99956-16	99820-16 ^d	99097-1°	35621-16 ^g	35975-1 ^{*i}			27750-16
	77005-10	99974-16°	99020-10	99094-1 ^f	95653-16 ^h	1-1-1			27771-10
	99893-16	99953-16	99820-16 ^d	99097-1°	35621-16 ⁹ 95653-16 ^h	35975-1* ⁱ			27750-16 27771-16
	99885-16	99956-16 99974-16'	99820-16 ^d	99097-1° 99094-1 ^f	35621-16 ^g 95653-16 ^h	35975-1 ^{*i}			27750-10 27771-10
		33374 -10		99094-1	7 5055-10				2///1-10
	99885-16	99956-16 99974-16'	99820-16 ^d	99097-1° 99094-1 ^f	35621-16 ^g 95653-16 ^h	35975-1* ⁱ			27750-16 27771-16
	99885-16	99956-16 99974-16'	99820-16 ^d	99097-1° 99094-1 ^f	35621-16 ^g 95653-16 ^h	35975-1 ^{*i}			27750-1 27771-1

Section Continued 🛏

a Requires 52970-1 (.500" I.D.) or 52971-1 (.531" I.D.) steel, or 52990-1 (.500" I.D.) or 52989-1 Requires 52970-1 (.500°1.D.) of 52971-1 (.531°1.D.) steel, of 52990-1 (.500°1.D.) of 52989-1 (.531°1.D.) aluminum-bronze distributor drive gear, and 7/16-20 x 1-1/4" grade 8 cam gear bolt and hardened washer. Ultra Pro Series roller lifters. Requires Crane Multi Fit valve locks. Must machine cylinder heads. Machined steel, heat treated.

- b
- C
- d
- e f Machined steel, heat treated, Multi Fit.

- g Heavy wall, heat treated, for use with pushrod guideplate cylinder heads.h Pro Series one-piece.

- g Heavy Wall, heat treated, for use with pushfod guideplate cylinder heads.
 h Pro Series one-piece.
 i Performance steel billet gears and roller chain set.
 k 1.73 ratio, requires 7/16" rocker arm studs and pushfod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343.
 I 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushfod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343.

					СОМ	PLETE C	AM SPE	CIFICA	TIONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 276	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Clo @ .050' Cam Lif Int/Exh	Hot	Gross Lift Int. Exh.	
Mechanical Roller Cams	hafts										
Competition only, good upper RPM torque and HP, brack- et racing, auto trans w/race converter, 12.5 minimum compression ratio advised.	R-272/420-251-10	4200- 8000	358831 ^{*a}	30518-16 35570-16 ^b	272 280	304 312	110	30 62 74 26	.020 .020	.718 .718	
Competition only, good upper RPM torque and HP, brack- et racing, good w/540+ cu.in w/aluminum cylinder heads, good with large manifold nitrous system, auto trans w/race converter, 12.5 minimum compression ratio advised. Good with large Roots supercharger, 24 lbs. maximum boost w/8.0 maximum compression ratio advised.	R-272/436-25-14	4200- 8200	358221*ª	30518-16 35570-16 ^ь	272 280	302 312	114	27 65 79 21		.746 .732	
Competition only, good upper RPM torque and HP, brack- et racing, 510+ cu.in., auto trans w/race converter, 12.5 minimum compression ratio advised.	R-276/420-2-10	4400- 8200	358841*a	30518-16 35570-16 ^ь	276 286	308 318	110	32 64 77 29	.020 .020	.718 .718	
Competition only, good upper RPM HP, bracket racing, good w/540+ cu.in w/aluminum cylinder heads, good with large manifold nitrous system, auto trans w/race converter, 13.0 minimum compression ratio advised. SF01 firing order.	R-276/4334-2S-12 SF01	4600- 8400	358231*ª	30518-16 35570-16⁵	276 286	316 326	112	29 67 78 28	.026 .026	.741 .730	
Radical competition only, NMRA, Top Sportsman, large manifold nitrous system, good with 540+ cu.in., auto trans w/race converter, 14.0 minimum compression ratio advised. SFO1 firing order.	R-280/5152-2S-14 SF01	5000- 8800	358241*ª	35570-16 ^ь	280 296	310 336	114	31 69 87 29	.020 .030	.881 .805	
Radical competition only, Unlimited Street, Quick 16, Top Sportsman, large manifold nitrous system, very large cu.in., auto trans w/race converter, 14.5 minimum com- pression ratio advised. SFO1 firing order.	R-288/5152-25-16 SF01	5400- 9200	358251°a	35570-16 ^ь	288 310	318 346	116	33 75 96 34	.020 .030	.881 .838	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- INFORMENTANT: Crane offers Pushrod Guideplate and Rocker Arm Stud Conversion Kits, (35655-16 and 52655-16) for street applications, enabling the 370-429-460 cu.in. engines with pedestal mounted rockers to have adjustable rocker arms without cylinder head removal or machining. See page 305 for details.
- **NOTE:** Roller camshafts with SF01 firing order (1-5-4-8-6-3-7-2) are available on special order. Contact Crane's Performance Consultants for details.
- NOTE: When installing roller lifter series cams and kits, in other than 429 Super C.J. engines, a method of effecting valve adjustment is required. On 68-71 engines equipped with bottleneck type studs, using **99768-16** positive locking nuts will permit valve adjustment. On 72-97 engines, the heads must be machined to use **99159-16** screw-in studs and pushrod guideplates.
- NOTE: Many 1972-97 Ford-Mercury V-8 engines are originally equipped with a retarded crankshaft sprocket. This may cause idling and performance problems when installing aftermarket camshafts. We recommend using our **35975-1** timing chain and gear assembly, a pre-1972 crankshaft sprocket, or by degreeing in your camshaft. The non-retarded sprocket will have the alignment dot and keyway slot directly in line with each other.
 - NOTE: These camshafts also fit the 1969-70 Ford 429 Boss Hemi V-8 engines. Some kit components will differ. Contact Crane's Performance Consultants for details.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUM Energizer	ROCKERS Gold Race
	99885-16	99956-16 99974-16 ^f	99820-16°	99097-1 [;] 99094-1 ^k	35621-16 [¦] 95653-16™	35975-1*0			27750-1 27771-1
	99885-16	99956-16 99974-16 ^f	99820-16°	99097-1 ^j 99094-1 ^k	35621-16 [¦] 95653-16™	35975-1*0			27750 -1 27771 -1
	99885-16	99956-16 99974-16 ^f	99820-16°	99097-1 ^j 99094-1 ^k	35621-16 ¹ 95653-16 ^m	35975-1°°			27750-1 27771-1
	99885-16 961226-16 ^{ce}	99956-16 99974-16 ^f 99661-16 ^g	99820-16°	99097-1 ^j 99094-1 ^k	35621-16 [¦] 95653-16™	35975-1 ^{*0}			27750-1 27771-1
	96848-16 ^d 961356-16 ^{d,e}	99681-16 ⁱ 99663-16 ^h	99826-16°	99097-1 ^j	95810-16 ⁿ				27750-1 27771-1
	96848-16 ^d 961356-16 ^{d,e}	99681-16 ⁱ 99663-16 ^h	99826-16°	99097-1 ^j	95810-16 [°]				27750-7 27771-7

Requires 52970-1 (.500" I.D.) or 52971-1 (.531" I.D.) steel, or 52990-1 (.500" I.D.) or 52989-1 а (.531"I.D.) aluminum-bronze distributor drive gear, and 7/16-20 x 1-1/4" grade 8 cam gear bolt and hardened washer.

- b Ultra Pro Series roller lifters.
- Requires 99661-16 titanium retainers. C
- For 2.100" assembly height, requires 99663-16 titanium retainers. d
- Must machine cylinder heads. е
- Requires Crane Multi Fit valve locks. f
- Titanium, for **961226-16** valve springs, requires Crane Multi Fit valve stem locks. Titanium, for **961356-16** valve springs, requires Crane Multi Fit valve stem locks. Must use **99097-1** valve stem locks, included with the retainers.
- g h
- i

Machined steel, heat treated.

- Machined steel, heat treated, Multi Fit.
- Heavy wall, heat treated, for use with pushrod guideplate cylinder heads. L
- m Pro Series one-piece.
- Pro Series one-piece, 3/8" diameter, special guideplates required. Performance steel billet gears and roller chain set. n
- 0
- 1.73 ratio, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. q
- Valve train stabilizer available, see page 343.
 1.73 ratio Wide Body, requires 7/16" rocker arm studs and pushrod guideplates. See notes on opposite page. Valve Train Stabilizer available, see page 343. r

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Mechanical Lifter Camsh	afts										
Replacement for factory 168553 Camshaft. This camshaft features oversize lobes to reduce wear. Part number 905-0003 pushrods required, as stock pushrods will be too long.	BluePrinted 553-0S	1000- 4500	340-0002		190 190	242 242	110	(15) 25 25 (15)	.018 .020	.357 .357	
Good idle, daily usage, also mild supercharged, 2600- 3200 cruise RPM, 9.0 to 10.75 compression ratio advised.	F-222/280-2-10	1800- 5200	340-0010		222 232	260 270	110	6 36 51 1		.420 .441	
Fair idle, good mid to upper RPM torque and HP, moder- ate performance usage, road course, hillclimb, 10.5 mini- mum compression ratio advised.	MG-T-3	2400- 5800	340-0012		234 234	294 294	110	12 42 52 2		.443 .443	

MGA-MGB 4 cyl. 57-80

1598-1798cc

Mechanical Lifter Camsho	afts								
Replacement for factory 88G303 camshaft (1964-80 "2 groove").	BluePrinted 88G303	1000- 4500	342-0002	199 215	248 263	107.5	(7.5) 26.5 35.5 (0.5)	.012 .376 .014 .376	
Good idle, daily usage, autocross, also mild supercharged, 2600-3200 cruise RPM, 9.0 to 10.75 compression ratio advised.	F-222/280-2-10	1800- 5200	342-0010 •	222 232	260 270	110	6 36 51 1	.014 .399 .016 .419	
Fair idle, good mid to upper RPM torque and HP, moder- ate performance usage, road course, hillclimb, 10.5 mini- mum compression ratio advised.	F-232/294-8	2400- 5800	342-0012	232 232	270 270	108	13 39 49 3	.016 .419 .018 .419	
Competition only, good upper RPM HP, road course, 12.0 minimum compression ratio advised.	F-260/338-6	4000- 7500	342-0107 3	260 260	312 312	106	28 52 60 20	.028 .482 .030 .482	

MG Midget—Mini—Sprite 4 cyl. 57–84

BMCA 848-1275cc

Mechanical Lifter Camshafts								
Good idle, daily usage, autocross, also mild turbocharged, F-222/280-2-10 2600-3200 cruise RPM, 9.0 to 10.5 compression ratio advised.	1800- 5200	344-0010 3	222 232	260 270	110	636 511	.012 .353 .014 .370	
Fair idle, good mid to upper RPM torque and HP, moderate F-232/294-2-10 performance usage, autocross, hillclimb, 10.0 minimum compression ratio advised.	2200- 5600	344-0012 •••	232 242	270 280	110	11 41 56 6	.012 .370 .014 .388	
Competition only, good upper RPM HP, road course, 12.0 F-256/3526-2S-02 minimum compression ratio advised.	4500- 8000	344-0102 3	256 266	290 300	102	26 50 55 31	.020 .444 .020 .449	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

CRANE VALV	/E TRAIN CO	OMPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — Gold Race
					905-0003				
					905-0005				
					905-0003				
					905-0003				

99884-8	99967-8	905-0004	
99884-8	99967-8	905-0004	
99884-8	99967-8	905-0004	
99884-8	99967-8	905-0004	

Mitsubishi 4G63/4G63-T 4 cyl. Eclipse-Talon-Gallant 1989-1999

COMPLETE CAM SPECIFICATIONS

Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Valve Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Roller Follower	r Camshafts										
Good idle, daily usage, performance upgrade for stock engine, aftermarket intake/exhaust and ECM advised, new valve springs recommended.	MIT-248-2SR-10	800- 6500	435-0010*		208 200	248 240	110	(1.5) 29.5 34.5 (14.5)	.000 .000	.404 .384	
Good idle, performance usage, street, drag race, OK with nitrous, aftermarket intake/exhaust and ECM advised, requires upgraded valve springs and retainers, valve guides must be shortened.	MIT-256-2SR-10	1200- 6800	435-0012°		216 208	256 248	110	4.5 31.5 40.5 (12.5)		.424 .404	
Fair idle, performance usage, for use with aftermarket turbo systems, intercooler advised, aftermarket intake/ low restriction exhaust and ECM required, requires upgraded valve springs and retainers, valve guides must be shortened.	MIT-264-2SR-10	1500- 7500	435-0014* (5)		224 216	264 256	110	10.5 33.5 46.5 (10 <i>5</i>)	.000 .000	.443 .424	
	Stock (for comparison purposes only)				193 193	240 240	106.5			.335 .335	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

The 4G63 camshafts are suitable for both GEN 1 and GEN 2 engines. Chrysler Neon 2.0L camshafts will not function properly in the 420A engines, as the cam lobe layout and cam sensor locations are different.

CRANE VALV	/E TRAIN CC	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING BELT AND SPROCKET ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — Gold Race

Mitsubishi 4G63BT EVO 8 4 cyl. 2003-2005

						COMPLETE CAM SPECIFICATIONS						
	Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266 FOLLOWERS	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Exh.		Open/Close @ .050" Valve Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
	Hydraulic Roller Followe	r Camshafts										
	Good idle, daily usage, performance upgrade for stock engine, aftermarket intake/exhaust and ECM advised, new valve springs and retainers recommended.	MIT-248-2SR-10	800- 6500	440-0010°		208 200	248 240	110	(7.5) 35.5 28.5 (8.5)	.000 .000		
	Good idle, performance usage, street, drag race, OK with nitrous, aftermarket intake/exhaust and ECM advised, requires upgraded valve springs and retainers, valve guides must be shortened.	MIT-256-2SR-10	1200- 6800	440-0012* •		216 208	256 248	110	(3.5) 39.5 32.5 (4.5)		.424 .404	
	Fair idle, performance usage, for use with aftermarket turbo systems, intercooler advised, aftermarket intake/ low restriction exhaust and ECM required, requires upgraded valve springs and retainers, valve guides must be shortened.	MIT-264-2SR-10	1500- 7500	440-0014 [*]		224 216	264 256	110	(0.5) 43.5 36.5 (0.5)	.000 .000	.444 .424	
		HKS 264 (for comparison purposes only)				200 200	264 264				.425 .402	
_		HKS 272 (for comparison purposes only)				208 208	272 272				.425 .402	
		HKS 280 (for comparison purposes only)				216 216	280 280				.425 .402	

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

CRANE VALV	CRANE VALVE TRAIN COMPONENTS												
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297				
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING BELT AND SPROCKET ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — Gold Race				

Oldsmobile V8 1967–1984 260-307 (5.0L) – 350 (5.7L) – 400-403-425-455 cu.in.

This popular Oldsmobile V8 engine family actually began in 1964, as a 330 cu.in. version. There are no "small block" or "big block" Olds V8's in this series, as the same basic engine architecture is used from the 260 to the 455 versions. Two different deck heights were used, depending upon displacement.

There were a number of changes from 1964 to 1967 that can complicate obtaining the correct camshaft and lifters, due to differing lifter bank angles and lifter diameters. The chart below will explain these by year and displacement. The 45 and 39 degree lifter bank angle camshafts will physically interchange, but the improper application will cause incorrect valve timing from bank to bank. To be certain that you have the proper camshaft in your block, check the cam timing on each bank of the engine. A cranking compression test will also be an indication, especially if one side varies consistently from the other. Our 79-prefix designates the 45 degree bank angle camshafts (available on special order), while the 80-prefix is for the more common 39-degree bank angle applications. All of these engines have inline lifter bores and are equipped with 1.6:1 ratio non-adjustable rocker arms.

1966-1967 400 cu.in. and 425 cu.in. Toronado engines had .921" diameter lifters, while the others had .842" diameter hydraulic lifters. The .921" lifters can be difficult to obtain, and many folks will sleeve their lifter bores so that the .842" items can be used.

We offer complete lines of hydraulic, retrofit hydraulic roller, mechanical, and roller lifter camshafts and valve train components for these engines. The carburized steel retrofit hydraulic roller and street roller camshafts are equipped with a cast iron distributor drive gear and rear journal. These are noted by an IG suffix (Iron Gear), allowing the use of a standard type distributor gear for long term reliability.

There were also 260D and 350D cu.in. Diesel versions offered from 1978 to 1985, featuring more robust block and head castings. These engines had 39 degree bank angle camshafts and .842" flat faced lifters, with the exception of a few very early blocks intended for racing that were bored for .921" lifters.

From 1985 to 1990, this engine family continued with a 307 cu.in. powerplant, equipped with a 39 degree bank angle hydraulic roller camshaft and .921" diameter hydraulic roller lifters. Our 80-prefix camshafts can be used in these engines if a thrust spacer is fabricated, and the appropriate lifters are used.

The production cylinder heads can be machined for screw-in rocker arm studs and pushrod guideplates, permitting adjustable stud mounted rocker arms to be installed. Heat treated pushrods will be required for guideplate compatibility. This will provide more accurate lifter preload adjustment for hydraulic lifter applications, and are necessary to achieve lash adjustment for mechanical and roller lifter equipped engines. A number of aftermarket cylinder heads have been offered over the years, in iron and aluminum versions, with most of them having provisions for adjustable rockers already incorporated.

In the late 70's and early 80's, General Motors interchanged engines throughout the product offerings. Pontiacs could have Oldsmobile engines, Buicks with Chevy engines, etc. Make sure of exactly what engine you have before proceeding with your service or modifications.

Year	Cu. In.	Model	Lifter Diameter	Cam Bank Angle	Order Cam w/Part# Beginning	Hydraulic Cam Lifters	Mechanical Cam Lifters	Hydraulic Lifter Cam Pushrods		
64	330	ALL	.842	45°	79-	99284-16*	99250-16	95647-16		
65	330	ALL	.842	45°	79-	99284-16*	99250-16	95647-16		
65	400	ALL	.842	45°	79-	99284-16*	99250-16			
65	425	ALL	.842	45°	79-	99284-16*	99250-16			
66	330	ALL	.842	45°	79-	99284-16*	99250-16	95647-16		
66	400	ALL	.921	39°	80-					
66	425	ALL Except Tornado	.842	45°	79-	99284-16*	99250-16			
66	425	Tornado Only	.921	39°	80-					
67	330	ALL	.842	45°	79-	99284-16*	99250-16	95647-16		
67	400	ALL	.921	39°	80-			95647-16		
67	425	ALL Except Tornado	.842	39°	80-	99284-16*	99250-16			
67	425	Tornado Only	.921	39°	80-			95647-16		
68–69	400	ALL	.842	39°	80-	99284-16*	99250-16			
68-80	350	ALL	.842	39°	80-	99284-16*	99250-16	95647-16		
68–76	455	ALL	.842	39°	80-	99284-16*	99250-16			
75-82	260	ALL	.842	39°	80-	99284-16*	99250-16	95647-16		
77–79	403	ALL	.842	39°	80-	99284-16*	99250-16	95647-16		
80-84	307	ALL	.842	39°	80-	99284-16*	99250-16	95647-16		
*Optional Hi Intensity hydraullic lifters (99384-16 *) are available, see page 272 for details										

Much confusion has arisen from ordering the wrong cam, lifters and pushrods for the 64–84 Olds engines. The following table should be used to avoid error when placing your order.

Oldsmobile DRCE V8

The DRCE (Drag Racing Corporate Engine) offered by Olds consisted of a block and cylinder heads based on big block Chevrolet dimensioning. The DRCE, DRCE2, DRCE3, and DRCE4 engines were never vehicle installed, nor were they offered as an engine assembly. Directed towards Pro Stock racing, many improvements were made over the Chevy, with these components offered as basic building blocks for the particular engine builder. Different lifter bore angles and camshaft journal diameters were used, so if you obtain one of these engines, be certain of exactly what dimensioned version you have when requiring parts.

Crane offers custom ground camshafts and other components for the DRCE series of engines. Please contact us directly for your specific requirements.

Pontiac V8 1955–1981 265 (4.3L) – 287 301 (4.9L) – 316-326-347-350-370-389-400 (6.6L) – 421-428-455 cu.in.

The fabled Pontiac V8 family is also based on a common dimensioned foundation. There are no "small block" or "big block" versions. The exceptions that might be noted are the 1977-81 265 and 301 cu.in. lightweight engines, that require the use of Chevrolet lifters due to relocated oil galleries, and also have a different deck height (the cylinder heads and many other internal parts were also unique).

These engines are designated by our 28-prefix. The blocks have inline lifter bores with .842" diameter lifters. The standard rocker arm ratio is 1.5:1, with the exception of the 1959-63 Super Duty engines (cylinder head casting numbers 540306, 544127, and 9771980) that were equipped with 1.65:1 ratio rockers.

We offer complete lines of hydraulic, retrofit hydraulic roller, mechanical, and roller lifter camshafts and components for these engines. The carburized steel retrofit hydraulic roller and street roller camshafts are equipped with a cast iron distributor drive gear and rear journal. These are noted by an IG suffix (Iron Gear), allowing the use of a standard type distributor gear for long term reliability.

The same camshafts are applicable to nearly all of these engines. One unique exception occurred in the 1973-74 455 Super Duty, which had an undersize distributor drive gear on the camshaft, and an oversize gear on the distributor. A standard configuration camshaft can be installed in these engines, as long as a standard gear is also installed on the distributor. We did produce some of the small gear camshafts during that era, and they were designated by an "SD" suffix after the grind number.

There was also a totally unique 1969 "Race Only" Ram Air V engine with tunnel port heads that incorporated a different valve layout, requiring a special camshaft. If you are fortunate to have one of these rare engines, we can custom manufacture a tool steel billet roller camshaft for it. There are also aftermarket cylinder blocks being offered today, which have options of different diameter cam bearing journals. We can also produce special steel billet roller camshafts for these applications.

Although the Pontiac V8 engines had stud mounted stamped steel rocker arms with pivot balls, there were a number of variations. There were a few exceptions for special versions, but the basics are as follows: The 1955 engines had straight 3/8" studs, with a crimped locking nut used for adjustment. The 1956-60 engines had bottleneck 3/8" studs, with a 5/16" threaded top section. The nuts were torqued against the step, and were non-adjustable. The 1961-81 engines had bottleneck 7/16" studs, with a 3/8" threaded top section, and were again non-adjustable. There were Super Duty heads equipped with straight 7/16' studs, having an adjustable configuration. The bottleneck versions can be made adjustable with the appropriate sized positive locking adjusting nuts, providing the most accurate adjustment for hydraulic camshafts, and are a necessity for mechanical lifter camshafts. Today's aftermarket aluminum cylinder heads have straight studs intended for an adjustable rocker configuration. We offer 1.5:1 and 1.65:1 ratio rocker arms for most popular combinations.

In the late 70's and early 80's, General Motors interchanged engines throughout the product offerings. Pontiacs could have Oldsmobile engines, Buicks with Chevy engines, etc. Make sure of exactly what engine you have before proceeding with your service or modifications.

					СОМ	PLETE C	AM SPE	ECIFICATIO	ONS	
	Camshaft Series/	RPM Power		See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.
lydraulic Lifter Camshaf										
Brute low end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 compres- sion ratio advised.	H-192/2667-2S-10	800- 4200	800501*	99284-16 ^ь	192 204	248 260	110	(9) 21 37 (13)		.427 .456
אטון ומנט מעיוזכע.			•							
Good low end torque, smooth idle, daily usage, off road, towing, economy, also mild turbocharged, 2200-2600	H-260-2	1200- 4800	803901* 803902*ª	99284-16 ^b	204 216	260 272	112	(5) 29 45 (9)	.000 .000	
cruise RPM, 8.0 to 9.5 compression ratio advised.			•							
Good low and mid range torque, good idle, daily usage,	H-272-2	1600-	804541*	99284-16 ^b	216	272	112	1 35	.000	.484
off road, towing, mild marine, performance and fuel effi- ciency, 2600-3000 cruise RPM, 8.75 to 10.5 compression	••	5400	804542 ^{*a}		228	284		51 (3)	.000	
ratio advised.			•							
Good mid range torque and HP, fair idle, moderate per-	H-284-2	2200-	804551 [*]	99284-16 ^b	222	284	110	6 36		
formance usage, marine perf, bracket racing, auto trans w/2500+ converter, 3200-3600 cruise RPM, 9.5 to 11.0		5800	804552 [*] ª	99384-16*°	230	292		50 0	.000	.496
compression ratio advised.			€							
Good mid range HP, fair idle, moderate performance usage, bracket racing, auto trans w/3000+ converter,	H-292-2	2800-	804461*	99284-16 ^b 99384-16 [*]	230 234	292 296	110	10 40 52 2		.496
3600-4000 cruise RPM, 10.0 to 11.5 compression ratio		6400	A	99384-10 ·	Z34	290		52 2	.000	.504
advised.			€							
Replacement for factory W-31 camshaft (advancing this camshaft 5 degrees will produce the equivalent specs of	402194	2600- 6000	800101	99284-16 ^b 99384-16*	232 232	300 300	113.5	3 49 49 3	.000 .000	.474
the 397328 W-30 camshaft).		0000	•	77204-10	252	200		49 5	.000	.4/4
			•	·····						
Good mid and upper RPM torque and HP, fair idle, perfor- mance usage, best in 425+ cu.in., bracket racing, auto	H-234/325-2-10	2800- 6400	800601*	99284-16 ^b 99384-16 ^{*c}	234 244	304 314	110	12 42 57 7		
trans w/3500+ converter, 10.5 to 12.0 compression ratio advised.			•		-	-				
		2000	•	00004 1 <i>c</i> h	220	204	110	14 44	000	536
Good mid and upper RPM torque and HP, rough idle, per- formance usage, best in 455+ cu.in., bracket racing, auto	H-238/3347-2-10	3000- 6600	800661*	99284-16 ^b 99384-16* ^c	238 248	294 304	110	14 44 59 9	.000 .000	
trans w/3500+ converter, 10.5 to 12.0 compression ratio advised.			•							
Good mid and upper RPM torque and HP, rough idle, per-	H-244/3439-2S-10	3200-	800741*	99284-16 ^b	244	300	110	17 47	.000	.550
formance usage, best in 455+ cu.in. with aluminum heads, bracket racing, auto trans w/3500+ converter,		6800		99384-16*	256	312		63 13		.560
11.0 to 12.5 compression ratio advised.			•							
Good upper RPM and HP, rough idle, performance usage,	H-248/3500-2S-12	3400-	800681*	99284-16 ^b	248	304	112	17 51	.000	.560
best in 455+ cu.in. with aluminum heads, bracket rac- ing, auto trans w/3800+ converter, 11.5 minimum com-		6800		99384-16*c	256	312		65 11	.000	
pression ratio advised.			•							

Much confusion has arisen from ordering the wrong cam, lifters and pushrods fro the 64-84 Olds engines. See the chart on page 250 for IMPORTANT INFORMATION.

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- **NOTE:** Refer to the chart on page 250 to determine which bank angle engine you have.
- NOTE: Camshafts for the 45° bank angle engines (79-prefix) are available on special order.

IMPORTANT: Check your hydraulic lifter preload, with your original pushrods, to first determine if different pushrods may be required. Refer to page 353 for the fast and easy way to check hydraulic lifter preload. If your hydraulic lifter preload is excessive, this can be easily remedied by using Crane's Rocker Arm Bridge Shim Kit (99179-1). Refer to page 304 for details. **NOTE:** 1985-1990 307 cu.in. engines are 39° bank angle and are equipped with hydraulic roller camshafts and lifters. Lifter diameter is .921". Conventional hydraulic, mechanical, or roller camshafts and lifters can be installed in these engines if a thrust spacer is fabricated and the appropriate kit components are used.

Since 1975 General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	N ROCKERS Gold Race
36308-1 ^d	96803-16ª	99946-16		99097-1ª	g	80975-1 ^{*h}	80800-16 ⁱ	80744-16 ^{*k}	80757-1
36308-1 ^d	96803-16ª	99946-16		99097-1 ^d	g	80975-1 ^{*h}	80800-16 ⁱ	80744-16 ^{*k}	80757-1
36308-1 ^d	96803-16 ^d	99946-16		99097-1ª	g	80975-1* ^h	80800-16 ⁱ	80744-16 ^{*k}	80757-1
36308-1 ^d	96803-16 ^d	99946-16		99097-1 ^f	g	80975-1 ^{*h}	80800-16 ⁱ	80744-16 ^{*k}	80757-1
36308-1 ^d	96803-16ª	99946-16		99097-1 ^f	g	80975-1* ^h	80800-16 ⁱ	80744-16" ^k	80757-1
36308-1 ^d	96803-16ª	99946-16		99097-1 ^f	g	80975-1 ^{*h}	80800-16 ⁱ	80744-16 ^{*k}	80757-1
11310-1	99838-16	99944-16	99820-16°	99097-1 ^f	g	80975-1* ^h	80800-16 ⁱ	80744-16 ^{*k}	80757 -1
11310-1	99838-16	99944-16	99820-16°	99097-1 ^f	g	80975-1 ^{*h}	80800-16 ⁱ	80744-16 ^{*k}	80757 -1
11310-1	99838-16	99944-16	99820-16°	99097-1 ^f	g	80975-1* ^h	80800-16 ⁱ	80744-16 ^{*k}	80757 -1
11310-1	99838-16	99944-16	99820-16°	99097-1 ^f	g	80975-1 ^{*h}	80800-16 ⁱ	80744-16* ^k	80757 -1

Cam and lifter kit, includes installation lubricants and Rocker Arm Pedestal Shim Kit. а

- b Refer to chart on page 250 for correct application, may require appropriate Crane pushrods, see IMPORTANT NOTE on opposite page. Optional Hi Intensity hydraulic lifters, see page 272 for details. Refer to chart on page 250 for correct
- C applications, may require appropriate Crane pushrods. Standard diameter valve springs, no machining required.
- d
- Must machine cylinder heads. Machined steel, heat treated. e
- f
- Refer to chart on page 250 for correct application. g

h Performance steel billet gears and roller chain set.
 i 1.6 ratio, stamped steel, with individual fulcrums and bridge straps, fits 67-79 engines.
 k Energizer, 1.65 ratio, 3/8" stud, must machine cylinder heads and install **99156-16** rocker arm studs

and aftermarket pushrod guideplates. Special heat treated pushrods are required for use with pushrod guideplates.

1.6 ratio, 7/16" stud, must machine cylinder heads and install 99157-16 rocker arm studs and Т aftermarket pushrod guideplates. Special heat treated pushrods are required for use with pushrod guideplates.

260-307 (5.0L)-350 (5.7L)-400-403-425-455 cu.in. - 39° bank angle engines

					СОМ	PLETE C	AM SPE	CIFI	CATI	ONS	
	Camshaft Series/	rpm Power	Camshaft PART NUMBER/	See pg. 274	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	@.0	/Close 050″ n Lift	Lash Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/	'Exh	Exh.	Exh.
Hydraulic Roller Camsha											
Excellent low end torque, good idle, daily usage, towing, performance and fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio advised.	HR-214/325-2S-12 IG	1400- 5600	809611**	28532-16 ^c	214 222	276 284	112		34 (6)		.520 .542
			€								
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+. converter, 3000-3600 cruise RPM, 9.5 to 10.75 commercian with a divided	HR-222/339-25-12 IG	1800- 6000	809621**	28532-16'	222 230	284 292	112		38 (2)		.542 .563
10.75 compression ratio advised.			€								
Good mid range torque and HP, fair idle, performance usage, best in 400+ cu.in., mild bracket racing, auto trans w/3000+ converter, good w/plate nitrous system,	HR-230/352-2S-14 IG	2200- 6400	809631 [*] ª	28532-16'	230 242	292 304	114	6 60	44 2		.563 .595
3600-4200 cruise RPM, 10.0 to 11.5 compression ratio advised.			€								
Good mid range and upper RPM torque and HP, rough idle, performance usage, bracket racing, best in 455+ cu.in., auto trans w/3500+ converter, good w/manifold	HR-242/372-25-14 IG	3000- 6800	809641 ^{*a}	28532-16'	242 254	304 316	114	12 66	50 8		.595 .595
nitrous system, 4200-5000 cruise RPM, good with alumi- num heads, 10.5 to 12.0 compression ratio advised.			€								
Mechanical Lifter Camsh	afts										
Good low and mid range torgue and HP, fair idle, moder-		2800-	801181*	99250-16 ^d	238	300	110	14	44	.022	.512
ate performance usage, bracket racing, auto trans w/2000+ converter, 3400-3800 cruise RPM, 10.0 to 11.5	1 250,5200 2 10	6600		<i>}</i>	248	310	110	58	9		.533
compression ratio advised.			•								
Good mid range torque and HP, rough idle, moderate	F-248/3334-2-8	3600-	801231*	99250-16 ^d	248	310	108	21			.533
performance usage, bracket racing, best in 400+ cu.in., auto trans w/2500+ converter, 3800-4200 cruise RPM,		7400	•		258	320		62	16	.022	.555
11.0 to 12.0 compression ratio advised.			€								
Aechanical Roller Camsh											
Good mid range torque and HP, rough idle, performance usage, good low and mid range torgue and HP, bracket	R-252/420-2-8	3200- 7400	808801 ^{*b}	28570-16°	252 262	284 294	108	22 63	50 19		.672 .672
racing, auto trans w/race converter, 11.0 to 12.5 com- pression ratio advised.		7 100	•		202	271		05	12	.020	.072
			•								170
Good mid to upper RPM torque and HP, rough idle, per- formance usage, bracket racing, auto trans w/race con-	R-262/420-2-10	3600- 7600	808811 ^{*b}	28570-16°	262 272	294 304	110		57 22		.672 .672
verter, good w/plate nitrous system, 11.5 minimum compression ratio advised.			•								
Good upper RPM torque and HP, competition only, good	R-272/420-2-10	4200-	₹ 808821 ^{*b}	28570-16°	272	304	110	30	62	.020	.672
mid to upper RPM torque and HP, bracket racing, auto trans w/race converter, good w/manifold nitrous system.		8200			282	314			27		.672
12.5 minimum compression ratio advised.			•								
Competition only, good upper RPM HP, Super Stock, stick	R-282/450-252-8	5000-	808351 ^{*b}	28570-16°	282	322	108	36			.720
shift or auto w/trans brake, 12.5 minimum compression ratio advised.		8800			292	332		77	35	.026	.681
			€								

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

- IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.
- **NOTE:** Refer to the chart on page 250 to determine which bank angle engine you have. **NOTE:** Camshafts for the 45° bank angle engines (79-prefix) are
- available on special order.
- NOTE: The proper Crane pushrods should be used with Crane lifters NOTE: 1985-1990 307 cu.in. engines are 39° bank angle and are to provide the most accurate valve adjustment. Refer to the chart on page 250 for the correct cam, lifter and pushrod applications.
- NOTE: For hydraulic roller, mechanical lifter, and roller lifter camshaft applications, it is highly recommended that the cylinder heads be machined for 99157-16 7/16" screw-in studs and pushrod guideplates, to provide a means of effect-ing valve adjustment. Custom length heat treated pushrods will then be required.
- equipped with hydraulic roller camshafts and tappets. Tappet diameter is .921". Conventional hydraulic, hydraulic roller, mechanical, or roller camshafts and lifters can be installed in these engines if a thrust spacer is fabricated and the appropriate kit components are used. Bushing the lifter bores to .842" diameter would also be required.

Since 1975 General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

CRANE VALV									
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 2
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	N ROCKERS Gold Race
	99838-16	99953-16 99969-16º	99820-16 ^f	99097-1 ⁱ 99094-1 ^j	¢	80975-1 ^{*k}		80744-16 ^{*m}	80757-1
	99893-16	99953-16 99969-16 ^g	99820-16 ^f	99097-1 ⁱ 99094-1 ^j	C	80975-1 ^{*k}		80744-16 ^{*m}	80757-1
	99893-16	99953-16 99969-16ª	99820-16 ^f	99097-1 ⁱ 99094-1 ^j	¢	80975-1* ^k		80744-16 ^{*m}	80757-1
	99893-16	99953-16 99969-16º	99820-16 ^f	99097-1 ⁱ 99094-1 ^j	¢	80975-1* ^k		80744-16 ^{*m}	80757-1
11310-1	99838-16	99944-16	99820-16 ^f	99097-1 ⁱ		80975-1 ^{*k}			80757-1
11310-1	99838-16	99944-16	99820-16 ^f	99097-1 ⁱ		80975-1 ^{*k}			80757-1
	99885-16 [†]	99678-16 ^h	99820-16 ^f	99097-1 ⁱ		80975-1 ^{*k}			80757-1
	99885-16 ^f	99678-16 ^h	99820-16 ^f	99097-1 ⁱ		80975-1" ^k			80757-1
	99885-16 ^f	99678-16 ^h	99820-16 ^f	99097-1 ⁱ		80975-1 ^{*k}			80757-1
	99885-16 ^f	99678-16 ^h	99820-16 ^f	99097-1 ⁱ		80975-1 ^{*k}			80757-1

Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor а drive gear not required.

b Requires 80990-1 aluminum-bronze distributor drive gear.

Vertical locking bar hydraulic roller lifters, no machining required. Special length pushrods are c required.

Refer to chart on page 250 for correct application, requires appropriate Crane pushrods, see IMPORd TANT NOTE on opposite page.

Ultra Pro Series roller lifters. е

f

Must machine cylinder heads. Requires Crane Multi Fit valve locks. g

h Must use 99097-1 valve stem locks, included with the retainers.

Machined steel, heat treated.

Machined steel, heat treated, Multi Fit.

k Performance steel billet gears and roller chain set.

Energizer, 1.65 ratio, 3/8" stud, must machine cylinder heads and install 99156-16 rocker arm studs m and aftermarket pushrod guideplates. Special heat treated pushrods are required for use with pushrod guideplates.

 n.1.6 ratio, 7/16" study, must machine cylinder heads and install 99157-16 rocker arm studs and aftermarket pushrod guideplates. Special heat treated pushrods are required for use with pushrod guideplates.

265 (4.3L)-287-301 (4.9L)-316-326-347-350-370-389-400 (6.6L)-421-428-455 cu.in.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 273	Degrees Duration @ .050″ Int/Exh.	Advertised Degrees Duration Int/Fxh.	Degrees Lobe Separation	Open/Close @.050" Cam Lift Int/Exh	Lash Hot Int. Exh.	Gross Lift Int. Exh.	
Hydraulic Lifter Camshaf		INIGE	Emissions couc		IIIt/ EAII.	IIIQ EXII:	Scharadou		LAII.	LAII.	
Brute low-end torque, smooth idle, daily usage, fuel economy, 1600-2200 cruise RPM, 7.75 to 8.75 compression ratio advised.	H-192/2667-25-12	800- 4200	280511°	99282-16 [.]	192 204	248 260	112	(11) 23 39 (15)	.000 .000	.400 .427	
Good low end torque, smooth idle, daily usage, towing, economy, also mild turbocharged, 2200-2600 cruise RPM, 8.0 to 9.5 compression ratio advised.	H-260-2	1200- 4800	283901* 283902*ª	99282-16 [.]	204 216	260 272	112	(5) 29 49 (9)	.000 .000		
Replacement for factory Ram Air or H.O. 400 cu.in. "S" camshaft.	BluePrinted 9779068	1600- 5000	968781	99282-16 [.]	212 225		115.5	(7) 39 50.5 (5.5)	.000 .000	.408 .407	
Strong mid range torque, good idle, daily usage, off road, highway towing, fuel efficiency plus performance, 2600- 3000 cruise RPM, 8.75 to 10.0 compression ratio advised.	Energizer 272 H10	1800- 5200	10507* 105072* ^b	99282-16 [,]	216 216	272 272	110	3 33 43 (7)	.000 .000		
Good low and mid range torque, good idle, daily usage, towing, performance and fuel efficiency, 2600-3000 cruise RPM, 8.75 to 10.5 compression ratio advised.	H-272-2	1800- 5400	283941* 283942*ª 3	99282-16'	216 228	272 284	112	1 35 51 (3)	.000 .000	.454 .480	
Good low and mid range torque and HP, good idle, daily usage, towing, performance and fuel efficiency, 2400- 3200 cruise RPM, 8.75 to 10.5 compression ratio advised.	Z-268-2	1800- 5600	283511* 283512*ª 3	99282-16 [.]	218 224	268 274	112	2 36 49 (5)	.000 .000		
Good mid range torque and HP, excellent for 455 SD, fair idle, moderate performance usage, mild bracket racing, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	H-278-2	2000- 5600	283801° 283802°a 3	99282-16° 99382-16*ª	222 234	278 290	114	2 40 56 (2)	.000 .000	.467 .494	
Good mid range torque and HP, fair idle, moderate per- formance usage, mild bracket racing, auto trans w/2500+ converter, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised. Good w/plate nitrous system.	H-288-2	2400- 6000	283951° 283952°a 3	99282-16° 99382-16*ª	226 234	288 296	114	4 42 56 (2)	.000 .000		
Good mid range HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ convert- er, 3400-3800 cruise RPM, 9.5 to 11.0 compression ratio advised.	Energizer 284 H12	2800- 6200	10508° 105082° ^b	99282-16° 99382-16 ^{*d}	228 228	284 284	112	7 41 51 (3)	.000 .000	.480 .480	
Replacement for factory Ram Air IV "T" camshaft.	BluePrinted 9794041	2600- 6000	969681 (99282-16° 99382-16*ª	230 240		113.5	2 48 54 6		.469 .469	
Good mid to upper RPM torque and HP, fair idle, moder- ate performance usage, mild bracket racing, auto trans w/2500+ converter, 3400-4000 cruise RPM, 9.5 to 11.0 compression ratio advised. Good w/plate nitrous system.	Z-280-2	2600- 6400	283521° 283522°a 3	99282-16° 99382-16 ^{*d}	230 240	280 290	112	8 42 57 3	.000 .000		
Performance usage, good mid range torque and HP, bracket racing, auto trans with 3000+ converter, good with aftermarket cylinder heads, 9.5 to 11.5 compression ratio advised.	H-234/325-10	3000- 6400	280441*	99282-16° 99382-16*ª	234 234	304 304	110	12 42 52 2	.000 .000		

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.

NOTE: In order to effect valve adjustment when using mechanical lifter and roller lifter camshafts, and to provide the most accurate adjustment on hydraulic lifter camshafts, a set of positive locking nuts, such as **99768-16**, must be obtained for the rocker arm studs.

NOTE: Specify if casting number 540306, 544127, or 9771980 heads with 1.65 ratio rocker arms are being used, as different valve springs will be required. **NOTE:** Be sure to maintain at least .040" clearance between the underside of the rocker arm and valve spring retainer when the valve is closed.

Since 1975 General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg.
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	N ROCKEF Go Ra
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1 ^{*k}	28800-16 ¹	28747-16* ⁿ	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1 ^{*k}	28800-16 ¹	28747-16 ^{*n}	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1 ^{*k}	28800-16 ¹	28747-16 [*]	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1 ^{*k}	28800-16 ¹	28747-16 ^{*n}	28750 28758
28308-1º	99840-16° 99838-16 ^f	99944-16	99820-16 ^g	99097-1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1 ^{*k}	28800-16 ¹	28747-16* ⁿ	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1 ^{*k}	28800-16 ¹	28747-16 ^{*n}	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1 ^{*k}	28800-16 ¹	28747-16* ⁿ	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ⁱ	28975-1 ^{*k}	28800-16 ¹	28747-16 [*] "	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1 ^{*k}	28800-16 ¹	28747-16 [*] "	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ⁱ 28624-16 ⁱ	28975-1 ^{*k}	28800-16 ¹	28747-16 [*] "	28750 28758
28308-1°	99840-16° 99838-16 ^f	99944-16	99820-16 ⁹	99097 -1 ^h	95654-16 ⁱ 28624-16 ^j	28975-1* ^k	28800-16 ¹	28747-16* ⁿ	28750 28758
11310-1 ^f	99838-16 ^f	99944-16	99820-16 ⁹	99097-1 ^h	28624-16 ^j	28975-1* ^k	28800-16 ⁱ	28747-16* ⁿ	28750 28758

Section Continued 🛰

- а
- b
- Cam and Lifter Kit, includes assembly lubricants and rocker arm adjusting nuts (not for use in 265 and 301 (u.in. engines). Cam and Lifter Kit, includes assembly lubricants (not for use in 265 and 301 cu.in. engines). 265 and 301 cu.in. engines require **99277-16** lifters. Optional Hi Intensity hydraulic lifters, see page 272 for details (265 and 301 cu.in. engines require **99377-16** lifters). Contains standard diameter valve springs, no machining required. Dual valve springs, no machining required. Must machine cylinder heads. d
- e f
- g

- h
- Machined steel, heat treated. Pro Series one-piece, for non-guideplate cylinder heads. Heavy wall, heat treated, for use with pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. 1.5 ratio, for 67-79 engines with 7/16" bottleneck studs and 3/8" nuts. Energizer 1.65 ratio, for straight 7/16" rocker arm studs. 1.5 ratio, for 7/16" bottleneck studs and 3/8" nuts. 1.65 ratio, for straight 7/16" rocker arm studs.
- Т
- n
- 0
- р

257

265 (4.3L)-287-301 (4.9L)-316-326-347-350-370-389-400 (6.6L)-421-428-455 cu.in.

					СОМ	PLETE C	AM SPE	CIFI	CATI	ONS	
	Camshaft Series/	rpm Power	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	.@.C Cam	50″ Lift	Lash Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/	Exh	Exh.	Exh.
Hydraulic Lifter Camshaf											170
Good mid to upper RPM torque and HP, 455+ with alu- minum heads, fair idle, performance usage, bracket rac- ing, auto trans w/3000+ converter, 3800-4200 cruise RPM, 10.0 to 11.5 compression ratio advised.	Н-296-2	2800- 6600	284281*	99282-16 ^b 99382-16*c	234 242	296 304	112	10 58	44 4	.000 .000	.473 .488
	11 244/2207 2 0	2400	•	00000 4 ch	244	214	100	10	45	000	500
Good upper RPM torque and HP, rough idle, bracket rac- ing, auto trans w/3500+ converter, 10.5 to 12.0 com- pression ratio advised.	H-244/3387-2-8	3400- 6800	280451*	99282-16 ^b 99382-16* ^c	244 254	314 324	108	19 60	45 14	.000 .000	
			€								
Good upper RPM HP, rough idle, performance usage, bracket racing, auto trans w/3500+ converter, 10.5 to 12.0 compression ratio advised. Good w/manifold nitrous	H-308-2	3400- 7000	284571*	99282-16 ^b 99382-16 ^{*c}	246 254	308 316	114	14 66	52 8	.000 .000	
system.			€								
Moderate competition only, good upper RPM HP, bracket racing, auto trans w/4000+ converter, 12.0 minimum compression ratio advised.	H-260/360-2S-8	3800- 7200	280601*	99282-16 ^b 99382-16 ^{*c}	260 268	330 338	108	24 64	56 24	.000 .000	.540 .558
			•								
lydraulic Roller Camsha	fts — Retrofit										
xcellent low end torque, good idle, daily usage, towing, erformance and fuel efficiency, 2600-3000 cruise RPM, 1.75 to 10.5 compression ratio advised. Also mild turbo-	HR-214/325-25-12 IG	1400- 5600	289611 ^{*a}	28532-16 ^d	214 222	276 284	112	0 48	34 (6)	.000 .000	.488 .509
charged.			•••								
Good low end and mid range torque and HP, fair idle, moderate performance usage, mild bracket racing, auto trans w/2500+ converter, 3000-3400 cruise RPM, 9.5 to 10.75 compression ratio advised.	HR-222/339-25-12 IG	1800- 6000	289621*ª	28532-16 ^d	222 230	284 292	112	4 52	38 (2)	.000 .000	.509 .528
Good mid range torque and HP, fair idle, performance	HR-226/345-251-12 IG	2000-	289661**	28532-16 ^d	226	288	112	6	40	.000	.518
usage, mild bracket racing, auto trans w/2800+ convert- er, 3200-3600 cruise RPM, best in 389+ cu.in., 10.0 to 11.0 compression ratio advised.		6200	•		234	296		54	0	.000	.539
Good mid range torque and HP, fair idle, performance	HR-230/352-251-14 IG	2200-	289631*ª	28532-16 ^d	230	292	114	6	44	.000	.528
usage, mild bracket racing, auto trans w/3000+ convert- er, 3600-4200 cruise RPM, best in 400+ cu,in., 10.0 to 11.5 compression ratio advised.		6400	•		238	300		58	0	.000	
Good mid range and upper RPM torque and HP, fair idle,	HR-238/365-251-14 IG	2600-	289651*ª	28532-16 ^d	238	300	114	10	48	.000	.548
performance usage, bracket racing, auto trans w/3200+ converter, 4000-4600 cruise RPM, best in 455+ cu.in., 10.0 to 11.5 compression ratio advised.		6600	•		246	308		62	4	.000	.558
Good mid range and upper RPM torque and HP, rough	HR-242/372-2-14 IG	3000-	289641*a	28532-16 ^d	242	304	114	12	50	.000	.558
idle, performance usage, bracket racing, auto trans w/3500+ converter, 4200-5000 cruise RPM, best in 455+ cu.in., 10.5 to 12.0 compression ratio advised.		6800	•		252	314		65	7	.000	.558

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page 313 for details.

NOTE: To provide the most accurate adjustment on hydraulic lifter and hydraulic roller camshafts, a set of positive locking nuts, such as **99768-16**, must be obtained for the rocker arm studs.

NOTE: Specify if casting number 540306, 544127, or 9771980 heads with 1.65 ratio rocker arms are being used, as different valve springs will be required. **NOTE:** Be sure to maintain at least .040" clearance between the underside of the rocker arm and valve spring retainer when the valve is closed.

Since 1975 General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	Se
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	ALUMINUN Energizer	A ROC
11310-1º	99838-16°	99944-16	99820-16ª	99097-1 ^h	95654-16 [;] 28624-16 ^k	28975-1 ^{*m}	28800-16"	28747-16 ^{°p}	287 287
11310-1º	99838-16°	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 ^j 28624-16 ^k	28975-1* ^m	28800-16"	28747-16 ^{*p}	287 287
11310-1º	99838-16°	99944-16	99820-16 ⁹	99097-1 ^h	95654-16 [;] 28624-16 ^k	28975-1* ^m	28800-16"	28747-16 ^{°p}	287 287
	99893-16°	99953-16	99820-16 ⁹	99097-1 ^h	95654-16 ^j 28624-16 ^k	28975-1 ^{*m}	28800-16"	28747-16 ^{*p}	28) 28)
	99893-16°	99953-16 99973-16 ^f	99820-16 ⁹	99097-1 ^h 99094-1 ⁱ	I	28975-1* ^m		28747-16" ^p	28 28
	99893-16°	99953-16	99820-16 ⁹	99097-1 ^h	I	28975-1* ^m		20747 10	287
		99973-16 ^f		99094-1 ⁱ				28747-16 ^{*p}	28
	99893-16°	99953-16 99973-16 ^f	99820-16 ⁹	99097-1 ^h 99094-1 ⁱ	I	28975-1 ^{*m}		28747-16 ^{*p}	28) 28)
	99893-16°	99953-16 99973-16 ^f	99820-16 ⁹	99097-1 ^h 99094-1 ⁱ	I	28975-1* ^m		28747-16 ^{*p}	28 28
	99893-16°	99953-16 99973-16 ^f	99820-16 ⁹	99097-1 ^h 99094-1 ⁱ	I	28975-1* ^m		28747-16" ^p	28 28
	99893-16°	99953-16	99820-16 ⁹	99097-1 ^h	I	28975-1* ^m			28

a Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor

b

- C
- Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor
 h

 drive gear not required. Not for use in 265 and 301 engines.
 i

 265 and 301 cu.in. engines require 99277-16 lifters.
 j

 Optional Hi Intensity hydraulic lifters, see page 272 for details (265 and 301 cu.in. engines require
 k

 99377-16 lifters).
 I

 Vertical locking bar hydraulic roller lifters, no machining required. Not for use in 265 and 301 engines.
 m

 Special length pushrods are required.
 n

 Contains dual valve springs, no machining required.
 p

 Requires Crane Multi Fit valve locks.
 q

 Must machine cylinder heads.
 r

 d

f

Must machine cylinder heads. g

h Machined steel, heat treated.

- Machined steel, heat treated. Machined steel, heat treated, Multi Fit. Pro Series one-piece, for non-guideplate cylinder heads. Heavy wall, heat treated, for use with pushrod guideplate cylinder heads. Special length pushrods are required. Performance steel billet gears and roller chain set. 1.5 ratio, for 67-79 engines with 7/16" bottleneck studs and 3/8" nuts. Exerciser: 165 ratio feet training 74.10" motors are tude.

- Energizer, 1.65 ratio, for straight 7/16" rocker arm studs.
- 1.5 ratio, for 7/16" bottleneck studs and 3/8" nuts.
- 1.65 ratio, for straight 7/16" rocker arm studs.

265 (4.3L)-287-301 (4.9L)-316-326-347-350-370-389-400 (6.6L)-421-428-455 cu.in.

					СОМ	PLETE C	AM SPE	CIFICATI	ONS	
	Camshaft Series/	RPM POWER	Camshaft PART NUMBER/	See pg. 273	Degrees Duration @ .050"	Advertised Degrees Duration	Degrees Lobe	Open/Close @ .050" Cam Lift	Hot Int.	Gross Lift Int.
Application	Grind Number	RANGE	Emissions Code	LIFTERS	Int/Exh.	Int/Exh.	Separation	Int/Exh	Exh.	Exh.
Aechanical Lifter Camsh										
Replacement for factory 389-421 Super Duty McKellar 10. 10	BluePrinted 541596	2600- 6400	280901	99255-16 [,]	236 247	268 284	113.5	2 54 54.5 12.5		.416 .420
			•							
Sood low end and mid range torque and HP, rough idle, noderate performance usage, limited oval track, bracket acing, auto trans w/2500+ converter, 10.5 to 12.0 com- pression ratio advised.	F-244/3454-2S-6	3000- 7000	280921*	99255-16 [.]	244 252	280 288	106	19 45 55 17		.518 .536
			•							
500d mid range torque and HP, fair idle, moderate per- ormance usage, mild bracket racing, auto trans w/2500+ converter, good w/plate nitrous, 10.0 to 11.5 compression ratio advised.	F-248/3334-2-12	3400- 7000	281241*	99255-16 [.]	248 258	290 300	112	17 51 66 12	.022 .022	.500 .520
Good mid range torque and HP, rough idle, performance	F-252/3574-2S1-6	2600	280981*	00255 1//	252	200	107	22 40	026	526
soor mice range torque and mi, rough tough tough performance isage, short oval track, bracket racing, auto trans w/3000+ converter, 11.5 to 12.5 compression ratio advised.	F-252/3574-251-6	3600- 7400	280981	99255-16 [,]	252 260	288 296	106	23 49 59 21	.026 .026	.536 .554
Good mid range and upper RPM torgue and HP, rough	F-260/3694-2S-8	4000-	281441*	99255-16 ⁴	260	296	108	25 55	.026	.554
dle, performance usage, bracket racing, auto trans w/3500+ converter, 12.0 minimum compression ratio dvised.		7600	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	268	304	100	65 23		.572
Aechanical Roller Camsł	nafts									
Excellent low end torque and HP, good idle, daily perfor- mance usage, mild bracket racing, 3000-3400 cruise RPM, 10.0 to 11.5 compression ratio advised.	SR-228/338-2S-12 IG	2200- 6200	288541 ^{*a}	28570-16 [₫]	228 236	278 286	112	741 551	.020 .020	.507 .525
Good low end and mid range torgue and HP, fair idle,	SR-236/350-2S-12 IG	2600-	288551 [*] ª	28570-16 ^d	236	286	112	11 45	.020	.525
noderate performance usage, mild bracket racing, auto rans w/2500+ converter, good w/plate nitrous, 3400- 800 cruise RPM, 10.0 to 11.5 compression ratio advised.		6600	•		244	294		59 5	.020	.543
ood mid to upper RPM torque and HP, fair idle, moder-	SR-244/362-2S-12 IG	3000-	288521*ª	28570-16 ^d	244	294	112	15 49	.020	.543
te performance usage, mild bracket racing, auto trans w/3000+ converter, good w/plate nitrous, 3800-4200 ruise RPM, best with 421+ cu.in., 10.5 to 12.0 compres- ion ratio advised.		7000	•		252	302		63 9	.020	.561
Good upper RPM torque and HP, rough idle, moderate performance usage, bracket racing, auto trans w/3500+	SR-252/374-2S-12 IG	3400-	288531 ^{*a}	28570-16 ^d	252	302	112	19 53	.020	.561
performance usage, pracket racing, auto trans w/s300+ converter, good w/plate nitrous, 4000-4400 cruise RPM, pest with 455+ cu.in. with aluminum heads, 11.0 mini- num compression ratio advised.		7200	•		256	306		65 11	.020	.561
Competition only, good mid to upper RPM torque and HP, bracket racing, auto trans w/race converter, good w/	R-268/420-25-10	4200- 7800	288811 ^{*b}	28570-16 ^d	268 276	300 308	110	28 60 72 24	.020 .020	.630 .630

RPM range shown is for average usage. These cam profiles will RPM higher, depending upon application.

IMPORTANT: Adjustable Vacuum Advance Kit available. See page

313 for details.

- **NOTE:** In order to effect valve adjustment when using mechanical lifter and roller lifter camshafts, a set of positive locking nuts, such as **99768-16**, must be obtained for the rocker arm studs.
- **NOTE:** Specify if casting number 540306, 544127, or 9771980 heads with 1.65 ratio rocker arms are being used.
- **NOTE:** Be sure to maintain at least .040" clearance between the underside of the rocker arm and valve spring retainer when the valve is closed.

Since 1975 General Motors divisions have exchanged engines throughout different models. Be certain of exactly which engine you have before ordering.

CAMSHAFTS

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 29
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUN Energizer	I ROCKERS - Gold Race
11310-1	99838-16	99944-16	99820-16 ^f	99097-1 ⁹	95654-16 ⁱ 28624-16 ^j 95663-16 ^k	28975-1 ^{*1}			28750-16 28758-16
11310-1	99838-16	99944-16	99820-16 ^f	99097-1 ⁹	95654-16 ⁱ 28624-16 ^j 95663-16 ^k	28975-1 ^{*1}			28750-16 28758-16
11310-1	99838-16	99944-16	99820-16 ^f	99097-1 ⁹	95654-16 ⁱ 28624-16 ^j 95663-16 ^k	28975-1 ^{*1}			28750-16 28758-16
11310-1	99838-16	99944-16	99820-16 ^f	99097-1 ⁹	95654-16 ⁱ 28624-16 ^j 95663-16 ^k	28975-1 ^{*1}			28750-16 28758-16
11310-1	99838-16	99944-16	99820-16 ^f	99097-1 ⁹	95654-16 ⁱ 28624-16 ⁱ 95663-16 ^k	28975-1 ^{*1}			28750-16 28758-16
	96870-16	99973-16°	99820-16 ^f	99094-1 ^h	28624-16 ^j 95663-16 ^k	28975-1° ¹			28750-16 28758-16
	96870-16	99973-16°	99820-16 ^f	99094-1 ^h	28624-16 ^j 95663-16 ^k	28975-1 ^{*1}			28750-16 28758-16
	96870-16	99973-16°	99820-16 ^f	99094-1 ^h	28624-16 ^j 95663-16 ^k	28975-1 ^{*1}			28750-10 28758-16
	96870-16	99973-16°	99820-16 ^f	99094-1 ^h	28624-16 ^j 95663-16 ^k	28975-1 ^{*1}			28750-10 28758-16
	99896-16 ^d	99974-16°	99820-16 ^f	99094-1 ^h	28624-16 ^j 95663-16 ^k	28975-1 ^{*1}			28750-1 28758-1

- a Camshaft incorporates an integral cast iron distributor drive gear, aluminum-bronze distributor drive gear not required. Not for use in 265 and 301 engines.
 b Requires 28990-1 aluminum-bronze distributor drive gear. Not for use in 265 and 301 engines.
 c Due to block casting variations, you must check that the lifter relief band is not exposed at the bottom of the lifter bore when the lifter is on the base circle of the camshaft.
 d Ultra Pro Series roller lifters.
 e Requires Crane Multi Fit valve locks.
 f Must machine cylinder heads.

- Machined steel, heat treated.
- g h

- Machined steel, heat treated. Machined steel, heat treated, Mult Fit. Pro Series one-piece, for non-guideplate cylinder heads. Heavy wall, heat treated, for use with pushrod guideplate cylinder heads. Pro Series one piece for use with or without pushrod guideplate cylinder heads. Performance steel billet gears and roller chain set. 1.5 ratio, for 7/16" bottleneck studs and 3/8" nuts. 1.65 ratio for 57/16" tottle. k
- Е
- n
- 1.65 ratio, for straight 7/16" studs. 0

Toyota 20R-22R-22RE 4 cyl. 74-89

					СОМ	PLETE C	AM SPE	CIFICATI	ONS		
Application	Camshaft Series/ Grind Number	rpm Power Range	Camshaft PART NUMBER/ Emissions Code	See pg. 266	Degrees Duration @ .050" Int/Exh.	Advertised Degrees Duration Int/Exh.	Degrees Lobe Separation	Open/Close @ .050" Valve Lift Int/Exh	Hot Int.	Gross Lift Int. Exh.	
Mechanical Follower Cam	nshafts										
Good idle, daily usage, performance upgrade for stock engine, aftermarket intake/exhaust advised, new valve springs recommended, 8.75 to 10.5 compression ratio advised.	T20-262-2-10	1400- 4800	704-0010°	a	214 224	262 272	110	2 32 47 (3)	.008 . .010 .	.416 .430	
Good idle, performance usage, off road, good with mild aftermarket turbo systems, intercooler advised, aftermar- ket intake/low restriction exhaust and ECM required, 9.5 to 10.75 compression ratio advised.	T20-272-2-10	1800- 5200	704-0012°	a	224 234	272 282	110	737 522		430 444	
Fair idle, good mid to upper RPM torque and HP, moder- ate performance usage, autocross, road course, 9.5 to 11.5 compression ratio advised.	T20-282-2-10	2200- 5600	704-0014°	a	234 244	282 292	110	12 42 57 7		444 458	
Fair idle, moderate performance usage, prepared auto- cross, bracket racing, aftermarket intake/low restriction exhaust and upgraded valve springs and retainers rec- ommended, 10.5 to 12.0 compression ratio advised.	T20-292-2-10	2600- 6000	704-0016°	a	244 254	292 302	110	17 47 62 12		458 472	
Moderate competition only, good upper RPM HP, light weight closed course, bracket racing, fully prepared engine needed, 11.0 to 12.5 compression ratio advised.	T20-302-10	3000- 6400	704-0100°	a	254 254	302 302	110	22 52 62 12		472 472	

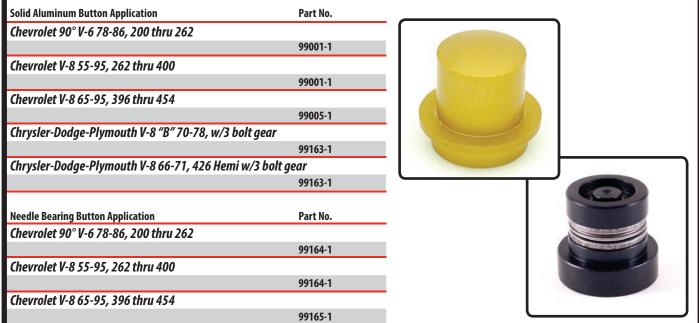
*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

CRANE VALV	E TRAIN CO	MPONENTS							
See pg. 338	See pg. 317	See pg. 330	See pg. 343	See pg. 340	See pg. 286	See pg. 308	See pg. 292	See pg. 295	See pg. 297
VALVE SPRING AND RETAINER KITS	VALVE SPRINGS	RETAINERS	VALVE STEM SEALS	VALVE STEM LOCKS	PUSHRODS	TIMING CHAIN AND GEAR ASSEMBLY	STEEL ROCKER ARMS	— ALUMINUM Energizer	ROCKERS — Gold Race

Cam and Valve Train Buyer's Guide Table of Contents

Cam and Valve Train Buyers Guide	264–364
Camshaft Components	266–267
Cam Button Spacers	200-207
Camshaft Bolt and Locking Plate Kit	266
Cam Followers ("Slipper Followers")	266
Cam Degreeing Bushings	267
Cam Degreeing "Tune-A-Cam" Kit	267
Distributor-Magneto Drive Gears	268–271
Copper Alloy (Aluminum/Bronze)	268–269
Coated Steel Distributor Gears for Chevrolet	200-209
Coated Steel Distributor Gears for Fords	271
Fuel System Accessories	271
Fuel Pump Pushrods	271
Lifters	272–284
Lifter Comparisons	272
Hydraulic and Mechanical Applications	273
Hydraulic Roller Applications	274–275
Mechanical Roller Lifters	276–277
Choose the Right Mechanical Roller Lifters	277–278
Mechanical Roller Applications	279–284
Lubricants	285
Pushrods	286–289
Chromemoly Steel Pushrods	286–288
Pro-Series, One Piece Pushrods	289
Pushrod Accessories	290
Pushrod Guideplates	291
Pushrod Guideplate Conversion Kits	291
Rocker Arms & Accessories	292–307
Rocker Arms, Steel & Ductile Iron	292–293
Crane Aluminum Rocker Arms	294
Energizer Rocker Arms	295
Aluminum Roller Rockers, Gold Race Extruded - Stud Mount	297–299
Rocker Arm Adjusting Nuts, Screws	302–303
Rocker Arm Shim Kits	304
Rocker Arm Needle Bearing Roller Fulcrum Conversion Kit	304
Rocker Arm Guideplate Conversion Kits	305
Rocker Arm Stud Conversion Kits	306
Rocker Arm Studs	307
Timing Chains and Components	308–309
Performance Steel Billet, CNC Machined, Roller Timing Chain Sets	308
Pro-Series Steel Billet, CNC Machined, Roller Timing Chain Sets	309
Tools	310–312
Cam Degreeing "Tune-A-Cam" Kit	310
Checking Springs	310
Cylinder Pressurization Kit	310
Degree Wheel	310
Piston Stop	310
Oil Pump Primer	311
Organizer Tray for Valve Train	311
Valve Spring Compressors	311
Valve Spring Height Micrometer	312
Valve Spring Seat Machining Tool Bodies Valve Spring Seat Machining Tool Arbors	312
valve spring seat Machining 1001 Arvors	312

Cam and Valve Train Buyer's Guide Table of Contents


Vacuum Kits and Accessories313Vacuum Timing Limiter Plate313Vacuum Timing Limiter Plate313Vacuum Reserve System313Vacuum Reserve System314Vacuus Reserve System314Valve Spring State and How to Use It315Bort Valve Spring State and How to Use It316Single Valve Spring State and How to Use It317Inner Valve Spring S317Inner Valve Spring S317Inner Valve Spring State and How to Spring S317Uma Valve Spring State and How to Spring S319What is Valve Spring Gut Bind 2319What is Valve Spring Retainers328-339Steel Valve Spring Retainers328Steel Valve Spring Retainers328Valve Spring Retainers328Valve Spring Retainers328Valve Spring Retainers328Valve Spring Retainer Ennesions - Steel330Valve Spring Retainer Ennesions - Steel332-334Valve Spring Retainer Ennesions - Steel333-337Valve Spring Retainer Ennesions - Steel333-331Valve Spring Retainer Ennesions - Steel333-333Valve Spring Retainer Ennesions - Steel333-331Valve Spring Retainer Ennesions - Steel333-331Valve Spring Retainer Ennesions - Steel340-341Valve Spring Retainer Ennesions - Steel340-34																																																																																															
Vacuum Timing Limiter Pate313Vacuum Riseree System313Vacuum Riseree System314Valve Springs314Valve Spring Rate and Hov Use It315Hov to Select a Valve Spring Rate and Hov Use It315Inver Valve Spring Rate and Hov Use It317Inner Valve Spring Spring317Inner Valve Spring Spring Spring318Jusi Valve Spring Sp	Vacuum Kits and Accessories	313																																																																																													
Vacuum Reserve System313Valve Spring314-327About Valve Spring314Valve Spring Rate and How to Use It315Single Valve Spring316Single Valve Spring317Dur Valve Spring Sing317Dur Valve Spring Sing318-319Triple Valve Spring Gol Bind ?319Valve Spring Retainers328-339Steel Valve Spring Retainers328-339Steel Valve Spring Retainers328Trinon Valve Spring Retainers328Trinon Valve Spring Retainers328Valve Spring Retainers328Valve Spring Retainers328Valve Spring Retainer Charts329Valve Spring Retainer Charts329Valve Spring Retainer Charts330Valve Spring Retainer Princeson-Steel333-331Valve Spring Retainer Princeson-Steel333-337Valve Spring Retainer Princeson-Steel334-339Valve Spring Retainer Princeson-Steel334-339Valve Spring Retainer Princeson-Steel334-339Valve Spring Retainer Princeson-Steel340-341Valve Spring Retainer Princeson-Steel340-341Valve Spring Retainer Princeson-Steel340-341Valve Spring Retainer Princeson-Steel342-343Valve Spring Retainer Princeson-Steel342 <t< td=""><td></td><td></td></t<>																																																																																															
Valve Springs314-327About Valve Spring Bate and Hou Use It315How to Select a Valve Spring316Single Valve Springs317Inner Valve Springs317Dual Valve Springs318What is Valve Springs319What is Valve Spring Bate and Hou Spec328-339What is Valve Spring Betainers328-339Steel Valve Spring Retainers328Natve Spring Retainers328Walve Spring Retainers328Walve Spring Retainers328Walve Spring Retainers328Walve Spring Retainers328Walve Spring Retainer Charts329Valve Spring Retainer Charts330Walve Spring Retainer Charts330Valve Spring Retainer Charts333-331Valve Spring Retainer Kits333-331Valve Spring Retainer Kits334-334Valve Spring Retainer Kits340-341Mutti Fit Valve Sten Locks (7)*340-341Mutti Fit Valve Sten Locks (10)*341March Sten Locks (7)*342-343Valve Spring Retainer Kits343Valve Spring Retainer Kits343Valve Spring Laber Kits344Mutti Fit Valve Sten Locks (7)*340-341Mutti Fit Valve Sten Locks (7)*342-343Valve Spring Laber Kits343Valve Spring Laber Kits343Valve Spring Laber Kits343Valve Spring Laber Kits344Mutti Fit Valve Sten Locks (7)*340-341Mutti Fit Valve Sten Locks (7)* <td></td> <td></td>																																																																																															
About Value Spring Rate and How Use It314Value Spring Rate and How Use It315How to Select a Value Spring316Single Value Springs317Dual Value Spring Springs318-319What is Value Spring Spring319What is Value Spring Gold Bind 2319What is Value Spring Gold Bind 2320-327Value Spring Retainers328-339Steel Value Spring Retainers328How to Use the Value Spring Retainers328How to Use the Value Spring Retainer Sciences328Value Spring Retainer Simesions - Steel330Value Spring Retainer Valuesions - Titanium331Value Spring Retainer Valuesions - Titanium331Value Spring Retainer Valuesions - Titanium331Value Spring Retainer Valuesions - Titanium331-334Value Spring Retainer Kits333-337Value Spring Retainer Kits333-337Value Spring Retainer Kits3340-341Multi-Hit Value Steen Locks 10°340Multi-Hit Value Steen Locks 10°340Value Steel Locks 10°341Machined Steel Locks 10°342Value Stein Sold Ideal342Value		313																																																																																													
Valve Spring Rate and How to Use It315How to Select a Valve Spring317Inner Valve Springs317Inner Valve Springs317Uou Valve Spring Springs319Tiple Valve Spring Springs319Valve Spring Spec Chart320-327Valve Spring Spec Chart320-327Valve Spring Retainers328Stee Valve Spring Retainers328Valve Spring Retainers328How to Use the Valve Spring Retainers328How to Use the Valve Spring Retainer Charts329Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel331Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Retipe It Chart332-334Valve Spring Retainer Retipe Tile Step Step Step Step Step Step Step Ste		314–327																																																																																													
How to Select a Valve Spring316Single Valve Springs317Inner Valve Spring318Inner Valve Spring319What is Valve Spring Coll Bind ?319Watve Spring Coll Bind ?320-327Valve Spring Retainers328-339Steel Valve Spring Retainers328Traineu Valve Spring Retainers328Traineu Valve Spring Retainer Charts329Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Retainer Dimensions - Steel333-337Valve Spring Retainer Retainer Charts332-333Valve Spring Retainer Retainer Dimensions - Steel333-337Valve Spring Retainer Dimensions - Steel334-339Valve Spring and Retainer Kits338-339Valve Spring and Retainer Kits336-339Valve Stem Locks (7')340-341Machined Steel Locks 7'340-341Matti-Fit Valve Stem Locks (7')340-341Matti-Fit Valve Stem Locks 7'340-341Matti-Fit Valve Stem Locks 7'342Valve Sens, Jacker Locks 7'342Valve Sens Jo Locks 7'342Valve Sens Jo Locks 7'343Valve Sens Jo Locks 7'343Valve Sens Jo Locks 7'344Machined Stabilizers (Kud G		314																																																																																													
Single Valve Springs317Inner Valve Springs318-319Triple Valve Springs319Triple Valve Spring Spec Chart320-327Valve Spring Spec Chart322-339Steel Valve Spring Retainers328Steel Valve Spring Retainers328Titanium Valve Spring Retainers328Valve Spring Retainers328Valve Spring Retainers328Valve Spring Retainer Charts329Valve Spring Retainer Charts329Valve Spring Retainer Charts329Valve Spring Retainer Charts330Valve Spring Retainer (Tots Reternee333-337Valve Spring Retainer (Tots Reternee333-333Valve Spring Retainer (Tots Reternee333-333Valve Spring Retainer (Tots Reternee333-339Valve Stem Locks (Split Keys)340-341Mutti-Fit Valve Stem Locks 7340-341Mutti-Fit Valve Stem Locks 7340-341Mutti-Fit Valve Stem Locks 7340-341Valve Stem Locks 7340-341Mutti-Fit Valve Stem Locks 7340-341Mutti-Fit Valve Stem Locks 7340-341Mutti-Fit Valve Stem Locks 7340-341Mutti-Fit Valve Stem Locks 7340-341Machined Steel Locks 7340-341Machined Steel Locks 7340-341Mather East Locks 10°341Valve Stem Locks 7340-341Mather East Locks 10°341Valve Stem Locks 7340-341Mather East Locks 10°342Valve Stem Locks 10°342 <tr< td=""><td></td><td>315</td></tr<>		315																																																																																													
Inner Value Springs317Dual Value Springs318-319Triple Value Spring Gol Bind ?319What is Value Spring Gol Bind ?319Walue Spring Gol Bind ?320-327Value Spring Retainers328-339Steel Value Spring Retainers328Titanium Value Spring Retainers328Walue Spring Retainers328Walue Spring Retainer Charts329Value Spring Retainer Dimensions - Steel330Value Spring Retainer Dimensions - Steel330Value Spring Retainer Bieght Chart322-334Value Spring Retainer Kits338-339Value Spring Retainer Kits338-339Value Spring Retainer Kits340Multi-Fit Value Stem Locks (Split Keys)340-341Machined Steel Locks 10°341Machined Steel Locks 10°342Value Stem Locks 10°342Value Stem Locks 10°342Value Stem Locks 10°342Value Stem Locks 10°343Promotional Items344Maue Steel Locks 10° Conventional342Value Stem Locks 10°343Promotional Items344How to Identify Your Crane Cam344How to Identify Nour Crane Cam344How to Identify Nour Crane Cam346Camshaft Recommendation Form347 </td <td></td> <td>316</td>		316																																																																																													
Dual Value Springs318-319Triple Value Spring Gui Bind ?319What is Value Spring Gui Bind ?320-327Value Spring Spec Chart320-327Value Spring Retainers328Steel Value Spring Retainers328Titanium Value Spring Retainers328Value Spring Retainer Steel Value Spring Retainer Othersions - Steel330Value Spring Retainer Dimensions - Steel330Value Spring Retainer Dimensions - Steel330Value Spring Retainer Dimensions - Steel333Value Spring Retainer Dimensions - Steel333-337Value Spring Retainer Corss Reference333-337Value Spring Retainer Corss Reference338-339Value Spring not Cost (Split Keys)340-341Machined Steel Locks 7"340-341Machined Steel Locks 10" Conventional341Value Stem Locks 10" Conventional341Value Stem Locks 10" Conventional342Value Spring Locators and Cups342Value Spring Locators and Cups343Value Stem Locks 10" Conventional343Value Train Accessories343Value Stem Locks 10" Conventional343Value Stem Locks 10" Conventional346Carshoft Recommendation Form346Carshoft Recommendation Form346Carshoft Recommendation Form346Carshoft Recolution Social353Jaling Advie Spring Questions356-357Commonly Asked Value Train Questions356-357Commonly Asked Value Train353-355 <t< td=""><td></td><td></td></t<>																																																																																															
Triple Valve Springs319What se Spring Goll Bind ?319Walve Spring Retainers328–339Steel Valve Spring Retainers328Titanium Valve Spring Retainers328How to Use the Valve Spring Retainer Charts329Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Height Chart331Valve Spring Retainer Binersions - Steel330Valve Spring Retainer Dimensions - Steel331Valve Spring Retainer Height Chart332-334Valve Spring Retainer Kits338-337Valve Spring Retainer Kits338-337Valve Stern Locks (Split Keys)340-341Machined Steel Locks 7'340-341Mathied Steel Locks 7'340-341Mathied Steel Locks 7'342-343Valve Spring Carter Rist342Valve Spring Retainer Rist343Valve Sens Seal343Valve Sean342Valve Sean342Valve Sean344Valve Sean344Valve Sean344Valve Sean350																																																																																															
What is Valve Spring Gotil Bind ?319Valve Spring Retainers328-339Steel Valve Spring Retainers328Titanium Valve Spring Retainers328Titanium Valve Spring Retainer Others329Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel331Valve Spring Retainer Coss Reference332-334Valve Spring Retainer Rits338-339Valve Spring and Retainer Rits338-339Valve Stem Locks (Split Keys)340-341Mutti-Fit Valve Stem Locks 7"340-341Mutti-Fit Valve Stem Locks 7"340-341Mutti-Fit Valve Stem Locks 7"342-343Valve Spring Is Casenson342Valve Stem Locks 10"341Mutti-Fit Valve Stem Locks 7"342-343Valve Stem Locks 10"342Valve Stem Locks 10"342Valve Stem Locks 10"342Valve Stem Locks 10"342Valve Stem Locks 7342-343Valve Stem Locks 7342Valve Stem Locks 7342Valve Stem Locks 7342Valve Stem Locks 7342Valve Stem Locks 10"343Valve Stem Locks 7342Valve Stem Locks 7343Valve Stem Locks 7343Valve Stem Locks 7342Valve Stem Locks 7342Valve Stem Locks 7342 <t< td=""><td></td><td></td></t<>																																																																																															
Valve Spring SpecChart320–327Valve Spring Retainers328Steel Valve Spring Retainers328Titanium Valve Spring Retainers328How to Use the Valve Spring Retainer Charts329Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel331Valve Spring Retainer Dimensions - Steel335Valve Spring Retainer Dimensions - Steel336Valve Spring Retainer Dimensions - Steel336Valve Spring and Retainer Kits338Valve Spring and Retainer Kits338Valve Spring Leadors and Cops340Multi-Fit Valve Stem Locks T ^o 340Multi-Fit Valve Stem Locks T ^o 342Valve Spring Jocators and Cups342Valve Spring Jocators and Cups342Valve Stem Seals343Valve Train Accessories344How to Identify Your Crane Can346Cansthoff Recommendation Form347Regrind and Special Cam Service351-352Adjusting the Valve Frain353-355																																																																																															
Valve Spring Retainers328–339Steel Valve Spring Retainers328Titanium Valve Spring Retainer Charts329Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Dimensions - Titanium332-334Valve Spring to Retainer Dimensions - Titanium332-334Valve Spring to Retainer Reight Chart332-334Valve Spring to Retainer Kits338-339Valve Spring to Retainer Kits348-339Valve Spring to Retainer Kits340-341Machined Steel Locks (Split Keys)340-341Mutti-Fit Valve Stem Locks 10°340Mutti-Fit Valve Stem Locks 10°340Valve Steel Locks 10° Conventional341Valve Steel Locks 10° Conventional342Valve Stem Scals342Valve Stem Scals343Valve Stem Scals343Valve Stem Scals343Valve Stem Scals343Promotional Items344How to Identify Your Crane Cam346Carstom Ground Cams340Adves Stem Special Cam Service351-352Adjusting the Valve Frain353-355Commonly Asked Valve Spring Questions356-357Commonly Asked Valve Pring Questions358-359Degreeing the Cam366-362Cam Timing Explained363																																																																																															
Steel Valve Spring Retainers328Titanium Valve Spring Retainers328How to Use the Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Steel331Valve Spring Retainer Dimensions - Steel332 - 334Valve Spring Retainer Dimensions - Steel332 - 334Valve Spring Retainer Cross Reference335 - 337Valve Spring and Retainer Kits338 - 339Valve Spring and Retainer Kits340 - 341Machined Steel Locks 7"340 - 341Mutti-Fit Valve Stem Locks 10"341Mutti-Fit Valve Stem Locks 10"341Mutti-Fit Valve Stem Locks 10"341Valve Seen Locks 10"341Valve Stem Locks 10"341Mutti-Fit Valve Stem Locks 10"342Valve Stem Locks 10"342Valve Stem Locks 10"342Valve Stem Locks 10"342Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Valve Stem Seals344How to Identify Your Crane Cam344How to Identify Your Crane Cam347Regrind and Special Cam Service348 - 349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351 - 352Adjusting the Valve Train353 - 355Commonly Asked Valve Spring Questions358 - 359Degreeing the Cam366 - 362Cam Timing Explained363 <td></td> <td></td>																																																																																															
Titanium Valve Spring Retainers328How to Use the Valve Spring Retainer Charts329Valve Spring Retainer Imensions - Steel330Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Height Chart332-334Valve Spring Retainer Kits338-339Valve Spring and Retainer Kits338-339Valve Spring and Retainer Kits340-341Machined Steel Locks 7°340-341Machined Steel Locks 7°340-341Multi-Fit Valve Stem Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°342Valve Spring Locators and Cups342Valve Spring Locators and Cups342Valve Stems Locks 10°343Promotional Items343Valve Stem Locks 10°343Valve Stems Class 10°343Valve Stems Class 10°342Valve Stems Class 10°342Valve Stems Class 10°343Valve Stems Class 10°344How to Identify Your Crane Cam345Custom Ground Cams346Class 10°350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Train353-355Commonly Asked Valve Train Questions358-359Degreeing the Cam<																																																																																															
How to Use the Valve Spring Retainer Charts329Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Height Chart332-334Valve Spring to Retainer Torss Reference335-337Valve Spring and Retainer Kits338-339Valve Stem Locks (Split Keys)340-341Machined Steel Locks 7°340-341Machined Steel Locks 7°340-341Mutt-Fit Valve Stem Locks 10°341Machined Steel Locks 10°341Machined Steel Locks 10°342Valve Spring Locators and Cups342Valve Spring Locators and Cups342Valve Spring Locators and Cups342Valve Spring Locators and Cups343Promotional Items344How to Identify Your Crane Cam346Carstom Ground Cams347Regrind and Special Cam Service351-352Adjusting the Valve Train353-355Commonly Asked Valve Train Questions356-357Commonly Asked Valve Train Questions356-357 <tr <tr="">Degreeing the Cam360-362<td></td><td></td></tr> <tr><td>Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Height Chart331Valve Spring Retainer Reight Chart332-334Valve Spring and Retainer Kits338-339Valve Spring and Retainer Kits338-339Valve Stem Locks (Split Keys)340-341Machined Steel Locks 7°340Machined Steel Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Valve Spring Locators and Cups342-343Valve Sear Locks 10° Conventional341Valve Sear Locks 10° Conventional342Valve Sear Locks 10° Conventional343Valve Sear Locks 10° Conventional342Valve Sear Locks 10° Conventional343Valve Ish Caps342Valve Sear Locks 10° Conventional343Valve Sear Locks 10° Conventional343Valve Ish Caps342Valve Sear Locks 10° Conventional343Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)344How to Identify Your Crane Cam347Regrind and Special Cam Service348-349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Train Questions356-357Commonly Asked Valve Spring Questions356-357Commonly Asked Valve Spring Questions356-357Degreeing the Cam360-362<!--</td--><td></td><td></td></td></tr> <tr><td>Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Height Chart332-334Valve Spring no Retainer Koss Reference335-337Valve Spring and Retainer Kits338-339Valve Stem Locks (Split Keys)340-341Machined Steel Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°342Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°342Valve Spring Jocators and Cups342Valve Spring Jocators and Cups342Valve Spring Jocators and Cups343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Spring Questions358-357Commonly Asked Valve Spring Questions358-357Degreeing the Cam360-362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Valve Spring Retainer Height Chart332–334Valve Spring to Retainer Cross Reference335–337Valve Spring and Retainer Kits338–339Valve Spring and Retainer Kits348–339Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals, Valve Train Stabilizers (Stud Girdles)343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)344How to Identify Your Crane Cam344Low to Identify Your Crane Cam347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Valve Spring to Retainer Cross Reference335–337Valve Spring and Retainer Kits338–339Valve Stern Locks (Split Keys)340–341Machined Steel Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals, Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam344Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–355Commonly Asked Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Valve Spring and Retainer Kits338–339Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals342Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Promotional Items344How to Identify Your Crane Cam344How to Identify Your Crane Cam346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363–355</td><td></td><td></td></tr> <tr><td>Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Sals, Valve Train Accessories342–343Valve Stem Seals342Valve Stem Seals342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 7°340-341Multi-Fit Valve Stem Locks 7°340-341Machined Steel Locks 10° Conventional341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342-343Valve Seals, Valve Train Accessories342Valve Seals342Valve Stem Seals342Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Train353-355Commonly Asked Valve Spring Questions356-357Commonly Asked Valve Train Questions350Degreeing the Cam360-362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Multi-Fit Valve Stem Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Stem Scals342Valve Stem Scals342Valve Stem Scals343Valve Stem Scals343Valve Stem Scals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions356–357Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Steel Locks 10° Conventional342Valve Seals, Valve Train Accessories342Valve Stem Seals342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Lash Caps342Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Valve Seals, Valve Train Accessories342–343Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Can Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Canshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions360–362Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td>How to Identify Your Crane Cam</td><td>345</td></tr> <tr><td>Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td>Custom Ground Cams</td><td>346</td></tr> <tr><td>Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td>Camshaft Recommendation Form</td><td>347</td></tr> <tr><td>Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td>Regrind and Special Cam Service</td><td>348–349</td></tr> <tr><td>Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td>Other Engine Applications</td><td>350</td></tr> <tr><td>Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td>351-352</td></tr> <tr><td>Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Degreeing the Cam360–362Cam Timing Explained363</td><td></td><td></td></tr> <tr><td>Cam Timing Explained 363</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></tr> <tr><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td></tr>			Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Height Chart331Valve Spring Retainer Reight Chart332-334Valve Spring and Retainer Kits338-339Valve Spring and Retainer Kits338-339Valve Stem Locks (Split Keys)340-341Machined Steel Locks 7°340Machined Steel Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Valve Spring Locators and Cups342-343Valve Sear Locks 10° Conventional341Valve Sear Locks 10° Conventional342Valve Sear Locks 10° Conventional343Valve Sear Locks 10° Conventional342Valve Sear Locks 10° Conventional343Valve Ish Caps342Valve Sear Locks 10° Conventional343Valve Sear Locks 10° Conventional343Valve Ish Caps342Valve Sear Locks 10° Conventional343Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)344How to Identify Your Crane Cam347Regrind and Special Cam Service348-349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Train Questions356-357Commonly Asked Valve Spring Questions356-357Commonly Asked Valve Spring Questions356-357Degreeing the Cam360-362 </td <td></td> <td></td>			Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Height Chart332-334Valve Spring no Retainer Koss Reference335-337Valve Spring and Retainer Kits338-339Valve Stem Locks (Split Keys)340-341Machined Steel Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°342Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°342Valve Spring Jocators and Cups342Valve Spring Jocators and Cups342Valve Spring Jocators and Cups343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Spring Questions358-357Commonly Asked Valve Spring Questions358-357Degreeing the Cam360-362Cam Timing Explained363			Valve Spring Retainer Height Chart332–334Valve Spring to Retainer Cross Reference335–337Valve Spring and Retainer Kits338–339Valve Spring and Retainer Kits348–339Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals, Valve Train Stabilizers (Stud Girdles)343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)344How to Identify Your Crane Cam344Low to Identify Your Crane Cam347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Valve Spring to Retainer Cross Reference335–337Valve Spring and Retainer Kits338–339Valve Stern Locks (Split Keys)340–341Machined Steel Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals, Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam344Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–355Commonly Asked Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Valve Spring and Retainer Kits338–339Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals342Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Promotional Items344How to Identify Your Crane Cam344How to Identify Your Crane Cam346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363–355			Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Sals, Valve Train Accessories342–343Valve Stem Seals342Valve Stem Seals342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 7°340-341Multi-Fit Valve Stem Locks 7°340-341Machined Steel Locks 10° Conventional341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342-343Valve Seals, Valve Train Accessories342Valve Seals342Valve Stem Seals342Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Train353-355Commonly Asked Valve Spring Questions356-357Commonly Asked Valve Train Questions350Degreeing the Cam360-362Cam Timing Explained363			Multi-Fit Valve Stem Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Stem Scals342Valve Stem Scals342Valve Stem Scals343Valve Stem Scals343Valve Stem Scals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions356–357Degreeing the Cam360–362Cam Timing Explained363			Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Steel Locks 10° Conventional342Valve Seals, Valve Train Accessories342Valve Stem Seals342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Lash Caps342Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Valve Seals, Valve Train Accessories342–343Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Can Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Canshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions360–362Degreeing the Cam360–362Cam Timing Explained363			Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	How to Identify Your Crane Cam	345	Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	Custom Ground Cams	346	Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	Camshaft Recommendation Form	347	Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	Regrind and Special Cam Service	348–349	Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	Other Engine Applications	350	Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363		351-352	Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363			Degreeing the Cam360–362Cam Timing Explained363			Cam Timing Explained 363	· · · · · · · · · · · · · · · · · · ·										
Valve Spring Retainer Dimensions - Steel330Valve Spring Retainer Height Chart331Valve Spring Retainer Reight Chart332-334Valve Spring and Retainer Kits338-339Valve Spring and Retainer Kits338-339Valve Stem Locks (Split Keys)340-341Machined Steel Locks 7°340Machined Steel Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Valve Spring Locators and Cups342-343Valve Sear Locks 10° Conventional341Valve Sear Locks 10° Conventional342Valve Sear Locks 10° Conventional343Valve Sear Locks 10° Conventional342Valve Sear Locks 10° Conventional343Valve Ish Caps342Valve Sear Locks 10° Conventional343Valve Sear Locks 10° Conventional343Valve Ish Caps342Valve Sear Locks 10° Conventional343Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)344How to Identify Your Crane Cam347Regrind and Special Cam Service348-349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Train Questions356-357Commonly Asked Valve Spring Questions356-357Commonly Asked Valve Spring Questions356-357Degreeing the Cam360-362 </td <td></td> <td></td>																																																																																															
Valve Spring Retainer Dimensions - Titanium331Valve Spring Retainer Height Chart332-334Valve Spring no Retainer Koss Reference335-337Valve Spring and Retainer Kits338-339Valve Stem Locks (Split Keys)340-341Machined Steel Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°342Valve Stem Locks 10°341Mutti-Fit Valve Stem Locks 10°342Valve Spring Jocators and Cups342Valve Spring Jocators and Cups342Valve Spring Jocators and Cups343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Spring Questions358-357Commonly Asked Valve Spring Questions358-357Degreeing the Cam360-362Cam Timing Explained363																																																																																															
Valve Spring Retainer Height Chart332–334Valve Spring to Retainer Cross Reference335–337Valve Spring and Retainer Kits338–339Valve Spring and Retainer Kits348–339Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Multi-Fit Valve Stem Locks 10°341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals, Valve Train Stabilizers (Stud Girdles)343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)344How to Identify Your Crane Cam344Low to Identify Your Crane Cam347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Valve Spring to Retainer Cross Reference335–337Valve Spring and Retainer Kits338–339Valve Stern Locks (Split Keys)340–341Machined Steel Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals, Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam344Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–355Commonly Asked Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Valve Spring and Retainer Kits338–339Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 7°340-341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Seals342Valve Stem Seals343Valve Stem Seals343Valve Stem Seals343Promotional Items344How to Identify Your Crane Cam344How to Identify Your Crane Cam346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363–355																																																																																															
Valve Stem Locks (Split Keys)340–341Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Sals, Valve Train Accessories342–343Valve Stem Seals342Valve Stem Seals342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train Questions356–357Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Machined Steel Locks 7°340Multi-Fit Valve Stem Locks 7°340-341Multi-Fit Valve Stem Locks 7°340-341Machined Steel Locks 10° Conventional341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342-343Valve Seals, Valve Train Accessories342Valve Seals342Valve Stem Seals342Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351-352Adjusting the Valve Train353-355Commonly Asked Valve Spring Questions356-357Commonly Asked Valve Train Questions350Degreeing the Cam360-362Cam Timing Explained363																																																																																															
Multi-Fit Valve Stem Locks 7°340–341Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Seals, Valve Train Accessories342Valve Stem Scals342Valve Stem Scals342Valve Stem Scals343Valve Stem Scals343Valve Stem Scals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions356–357Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Multi-Fit Valve Stem Locks 10°341Machined Steel Locks 10° Conventional341Valve Steel Locks 10° Conventional342Valve Seals, Valve Train Accessories342Valve Stem Seals342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Machined Steel Locks 10° Conventional341Valve Seals, Valve Train Accessories342–343Valve Lash Caps342Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Valve Seals, Valve Train Accessories342–343Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Valve Lash Caps342Valve Spring Locators and Cups342Valve Stem Seals343Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Can Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Valve Spring Locators and Cups342Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Valve Stem Seals343Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Canshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Valve Train Stabilizers (Stud Girdles)343Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions360–362Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Promotional Items344How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
How to Identify Your Crane Cam345Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Custom Ground Cams346Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Camshaft Recommendation Form347Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	How to Identify Your Crane Cam	345																																																																																													
Regrind and Special Cam Service348–349Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	Custom Ground Cams	346																																																																																													
Other Engine Applications350Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	Camshaft Recommendation Form	347																																																																																													
Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	Regrind and Special Cam Service	348–349																																																																																													
Flat Tappet Camshaft Break In Procedure351–352Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363	Other Engine Applications	350																																																																																													
Adjusting the Valve Train353–355Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363		351-352																																																																																													
Commonly Asked Valve Spring Questions356–357Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Commonly Asked Valve Train Questions358–359Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Degreeing the Cam360–362Cam Timing Explained363																																																																																															
Cam Timing Explained 363	· · · · · · · · · · · · · · · · · · ·																																																																																														

Camshaft Components

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

Cam Button Spacers

Engines without a cam thrust plate must use a cam button spacer when using a roller lifter camshaft to limit lateral movement. Our unique needle bearing buttons reduce friction and deliver extra "free" horsepower. Crane solid aluminum spacers are priced for the budget minded racer. Machining of the cam sprocket may be required for proper installation.

Camshaft Bolt and Locking Plate Kit

A must to prevent costly valve train damage. Simply install on cam gear, torque bolts properly, bend locking tabs over to secure bolts from loosening.

 Application
 Part No.

 Chevrolet 90° V-6 70-86, 200 thru 262 (except factory hydraulic roller engines)
 99168-1

 Chevrolet V-8 57-87, 262 thru 400 (except factory hydraulic roller engines)
 99168-1

 Chevrolet V-8 58-65, 348-409-427 (Z-11)
 99168-1

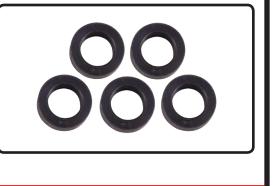
 Chevrolet V-8 65-95, 396-402-427-454-502
 99168-1

Cam Followers

Crane cam followers are designed and engineered for maximum performance and reliability. They are metallurgically engineered to be compatible with the cam lobe composition of Crane camshafts. *We highly recommend the use of Crane Cams Assembly Lube and Crane Cams Super Lube Break-In Concentrate (see "Lubricants") when installing these followers*.

99168-1

Application	Part No.
Ford SOHC I-4 1974-87, 2300 c.c. (also 1983-87 2000 c.c.)	
	19800-8


Camshaft Components

Cam Degreeing Bushings

Adjusting camshaft phasing with these bushings is one of the ways to vary the camshaft timing. These bushings are either color coded or number stamped with the degree of offset for easy identification. Included in each package are bushings in 0-2-4-6-8 degree increments. Machining of the cam sprocket may be required for proper installation.

Application	Part No.
Chevrolet 90° V-6 78-86, 200 thru 262	
	11991-1*
Chevrolet V-8 55-95, 262 thru 400	
	11991-1*
Chevrolet V-8 65-95, 396 thru 454	
	11991-1*
Chrysler-Dodge-Plymouth V-8 "B" 58-78, 350 thru 440	
	11991-1*
Chrysler-Dodge-Plymouth V-8 66-71, 426 Hemi	
	11991-1*

Cam Degreeing "Tune-A-Cam" Kit

Everything you need to quickly, easily and accurately degree-in your camshaft for maximum performance. Complete kit contains: precision dial indicator, with custom design base to mount to cylinder head, piston stop, pointer, checking springs, degree wheel and instructions—all in a hard molded plastic carrying case.

Description	Part No.
Tune-A-Cam Kit (Complete Kit)	
	99030-1

Copper Alloy (Aluminum/Bronze)

These drive gears are made from high silicon copper alloy ("aluminum-bronze") and precision machined. They are required when using an 8620 steel billet cam.

Certain special Crane roller camshafts are manufactured using an Iron Gear pressed onto the steel billet cam. These special cams **DO NOT REQUIRE** an aluminum bronze distributor drive gear. Refer to the specific camshaft application section of catalog. (Iron Gear cams' part numbers have an "IG" suffix at the end of their grind numbers)

Note: The "Shaft Diameter" dimension referred to is the portion of the distributor shaft, or intermediate shaft, that the gear registers on. It may be necessary to remove the original gear to measure the shaft diameter correctly.

Application	Part No.
Chevrolet I-4 62-71, 153	
For .491″ shaft diameter	20990-1
Chevrolet I-6 62-84, 194 thru 250 & 292	
For .491″ shaft diameter	20990-1
Chevrolet 90° V-6 78-86, 200 thru 262	
For .491" shaft diameter. Also fits Crane and Accel 34000, 35000, and 41000 series	11990-1
For .500" shaft diameter. Fits Crane, Accel and MSD with standard configuration gear	11979-1
Chevrolet 90° V-6 85-91, 262 (4.3 litre)	
For .427" shaft diameter GM HEI distributors with remote coil	11988-1
Chevrolet V-8 55-87, 262 thru 400	
For .491" shaft diameter. Also fits Crane and Accel 34000, 35000, and 41000 series	11990-1
For .500" shaft diameter. Fits Crane, Accel and MSD with standard configuration gear	11979-1
For .500" shaft diameter, with 5/16" hex drive	11973-1
Chevrolet V-8 85-99, 305-350	
For .427" shaft diameter GM HEI distributors with remote coil	11988-1
Chevrolet V-8 58-65, 348-409-427 (Z-11)	
For .491" shaft diameter	11990-1
Chevrolet V-8 65-90, 396 thru 502	
For .491" shaft diameter. Also fits Crane and Accel 34000, 35000, and 41000 series	11990-1
For .500" shaft diameter. Fits Crane, Accel and MSD with standard configuration gear	11979-1
For .500" shaft diameter, with 5/16" hex drive	11973-1
Chevrolet V-8 91-00, 454-502	
For .427" shaft diameter GM HEI distributors with remote coil	11988-1

Copper Alloy (Aluminum/Bronze) (continued)

Application	Part No.
Chrysler V-8 56-58, 354-392 and Donovan 417	
For .484" shaft diameter	69990-1
Chrysler-Dodge-Plymouth V-8 64-00, "LA" 273-360 and Magnum 5.2-5.9 litre	
For .484″ shaft diameter	69990-1
Chrysler-Dodge-Plymouth V-8 58-78, "B" 350 thru 440	
For .484″ shaft diameter	66990-1
Chrysler-Dodge-Plymouth V-8 66-71, 426 Hemi and Keith Black 426, JP-1, BA 426, Rodeck TFX-92	
For .484" shaft diameter	66990-1
Ford V-8 62-95, 221 thru 302 and Boss 302	
For .467" shaft diameter	36990-1
For .500″ shaft diameter	36989-1
For .531″ shaft diameter	44990-1
Ford V-8 82-95, 302 H.O. (5.0 litre)	
For .467″ shaft diameter	36990-1
For .500″ shaft diameter	36989-1
For .531″ shaft diameter	44990-1
Ford V-8 69-00, 351W and 351 SVO	
For .467" shaft diameter	36990-1
For .500″ shaft diameter	36989-1
For .531″ shaft diameter	44990-1
Ford V-8 70-82, Boss 351-351C-351M-400	
For .500" shaft diameter	52990-1
For .531" shaft diameter	52989-1
Ford V-8 58-76, "FE" 332 thru 428	
For .467" shaft diameter	34990-1
For .500" shaft diameter	52990-1
For .531″ shaft diameter	52989-1
Ford V-8 68-97, 370-429-460 (7.5 litre)	
For .500" shaft diameter	52990-1
For .531″ shaft diameter	52989-1
Oldsmobile V-8 64-84, 260 thru 455	
For .491" shaft diameter	80990-1
Pontiac I-4 77-89, 151 and 2.5 litre S.D.	
For .491″ shaft diameter, 77-78 distributor	20990-1
For .491" shaft diameter, 79-89 oil pump	20990-1
Pontiac V-8 55-81, 265 thru 455	
For .489" shaft diameter	28990-1

Coated Steel Distributor Gears

Crane Cams now offers precision machined, specially coated and processed steel distributor gears for popular engines using either cast flat faced lifter or steel roller camshafts. Since roller lifter cams are made from either induction hardened steel or carburized steel, neither of these materials are compatible with the normal stock distributor gears. In the past, "bronze" distributor gears were used. For street applications these gears can wear at a high rate and may have to be replaced on a regular basis.

By using modern heat treating and manufacturing processes, Crane Cams has developed a series of steel distributor gears that are compatible with standard cast cams and induction hardened and carburized steel roller cams. Crane Cams now makes it possible to use a steel distributor gear that provides OEM-style life-span, eliminating the need to frequently replace bronze alloy gears. These Crane steel gears are available for most popular engines for both stock and aftermarket distributors.

The use of these gears on camshafts that have been previously run with other types or materials of gears, or the unnecessary use of high volume/high pressure oil pumps, can be severely detrimental to the life of the camshaft gear.

Note: The "Shaft Diameter" dimension referred to is the portion of the distributor shaft, or intermediate shaft, that the gear registers on. It may be necessary to remove the original gear to measure the shaft diameter correctly.

Application	Part No.
Chevrolet 90° V-6 78-86, 200 – 262	
For .491" shaft diameter. Also fits Crane and Accel 34000, 35000, and 41000 series	11951-1
For .500" shaft diameter with standard configuration gear	11950-1
Chevrolet V-8 55-87, 262–400	
For .491" shaft diameter. Also fits Crane and Accel 34000, 35000, and 41000 series	11951-1
For .500" shaft diameter with standard configuration gear	11950-1
Chevrolet V-8 65-90, 396–502	
For .491" shaft diameter. Also fits Crane and Accel 34000, 35000, and 41000 series	11951-1
For .500" shaft diameter with standard configuration gear	11950-1
Chrysler V-8 56-58, 354–392 and Donovan 417	
For .484" shaft diameter	69970-1
Chrysler-Dodge-Plymouth V-8 64-00, "LA" 273–360 and Magnum 5.2-5.9 litre	
For .484" shaft diameter	69970-1
Chrysler-Dodge-Plymouth V-8 58-78, "B" 350–440	
For .484" shaft diameter	66970-1
Chrysler-Dodge-Plymouth V-8 66–71, 426 Hemi and Keith Black 426, JP-1, BA 426, Rodeck TFX-92	
For .484" shaft diameter	66970-1
	Section Continued →

Coated Steel Distributor Gears (continued)

Application	Part No.
Ford V-8 62-95, 221 thru 302 and Boss 302	
For .467″ shaft diameter	36970-1
For .500" shaft diameter	36971-1
For .531" shaft diameter	44970-1
Ford V-8 82-95, 302 H.O. (5.0 litre)	
For .467″ shaft diameter	36970-1
For .500" shaft diameter	36971-1
For .531" shaft diameter	44970-1
Ford V-8 69-00, 351W and 351 SVO	
For .467″ shaft diameter	36970-1
For .500" shaft diameter	36971-1
For .531" shaft diameter	44970-1
Ford V-8 70-82, Boss 351-351C-351M-400	
For .500″ shaft diameter	52970-1
For .531" shaft diameter	52971-1
Ford V-8 58-76, 332 thru 428	
For .467″ shaft diameter	34970-1
For .500" shaft diameter	52970-1
For .531" shaft diameter	52971-1
Ford V-8 68-97, 370-429-460 (7.5 litre)	
For .500″ shaft diameter	52970-1
For .531″ shaft diameter	52971-1

Fuel System Accessories

Fuel Pump Pushrods

Crane's heat treated tubular steel fuel pump pushrods for Chevrolet "small-block" and "big-block" V-8 engines are centerless ground for concentricity. They are also much lighter than solid steel O.E. type pushrods, while maintaining the strength and stiffness required for reliability in severe usage applications.

Part number **11986-1** is for hydraulic and mechanical *"cast" type camshafts*. Both ends of this pushrod are steel tipped for best wear characteristics for quality stock engine rebuilds!

Part number **11985-1** is specifically for use with **8620** and **9310** steel billet roller and slot hardfaced steel camshafts. One end of the pushrod has a bronze tip to compatibly bear against the fuel pump eccentric on the camshaft, eliminating the wear problems that occur when using a standard fuel pump pushrod (especially in endurance type applications).

Application	Part No.	
Chevrolet V-8 55-95, 262 thru 400		
For cast camshafts	11986-1	
Chevrolet V-8 55-95, 262 thru 400		
For 8620 steel camshafts	11985-1	
Chevrolet V-8 58-65, 348 thru 409		
For cast camshafts	11986-1	
Chevrolet V-8 58-65, 348 thru 409		
For 8620 steel camshafts	11985-1	
Chevrolet V-8 65-90, 396 thru 454		
For cast camshafts	11986-1	
Chevrolet V-8 65-90, 396 thru 454		l
For 8620 steel camshafts	11985-1	

Lifters - Hydraulic and Mechanical

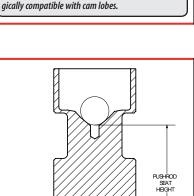
"Anti-Pump Up" Performance Hydraulic Lifters

Hydraulic lifters compensate for changes occurring within the valve train. Crane Cams' precision made "Anti-Pump Up" lifters allow the engine to reach its maximum RPM potential (with the correct cam and components). The "bleed rate" of this lifter is maintained by micro tolerances that prevent pump-up and limiting of full RPM potential. After proper preload has been set, hydraulic lifters seldom need maintenance. Maximum RPM Potential: 6,500 to 7,000 RPM.

Hi Intensity Hydraulic Lifters

Crane Hi Intensity lifters produce a "variable duration effect." At lower RPM this can reduce running duration by 6° to 10° and decrease valve lift by .020" to .030". Hi Intensity lifters work best with a cam that requires more compression ratio than the engine actually has. Hi Intensity lifters restore vacuum, cylinder pressure and bottom end performance. As RPM increases, these lifters act more like a normal hydraulic lifter. At 2500 to 3000 RPM they will transmit the full duration and lift of the cam.

Use only if the engine's compression ratio is below the minimum recommended on the application page for the cam you have chosen. Hi Intensity lifters can cause "low speed detonation" if compression is too high. Slightly more noisy than standard lifters (NOT as noisy as a mechanical cam) and can trigger knock sensors. Maximum RPM Potential: 6,500 to 7,000 RPM.

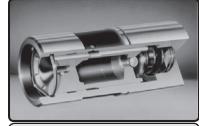


Mechanical "solid" lifters should be used in applications when hydraulic cams would surpass their maximum RPM potential. Mechanical lifters have no hydraulic mechanism to pump-up. Theoretically, with the correct cam and engine components, a mechanical lifter cam has an RPM potential of 8000 to 8500 RPM

Mechanical lifters are noisier than hydraulics. The engine must have an adjustable valve train system. Valve lash must be set, periodically checked, and maintained. (Can NOT be used on a hydraulic design cam.)

Pushrod Seat Heights

The pushrod seat heights listed are measured from the bottom face of the lifter to the bottom of the pushrod seat. The hydraulic lifters are measured without any preload.



Crane Hi Intensity lifters produce maximum performance with minimal noise. They offer increased vacuum, toraue and overall power with near stock valve train noise.

Crane mechanical lifters are precision machined from finest quality alloyed materials to be metallur-

Crane Cams performance hydraulic lifters offer precise oil metering and control. Our exclusive internal valving prevents hydraulic lifter "pump-up" with performance camshaft profiles, even at high RPM.

Lifters - Hydraulic and Mechanical

Application	Lifter Body Dia.	"Anti-Pump-Up" Hydraulic Lifters Part Number	Pushrod Seat Height	Hi Intensity Hydraulic Lifters Part Number	Pushrod Seat Height	Mechanical Lifters Part Number	Pushrod Seat Height
American Motors - AMC Jeep 64-05 I-6, 199 thru 258							
American Motors - AMC Jeep 66-91 V-8, 290 thru 401	.904"	99278-12	1.580"			99260-12	1.485"
Buick 62-86 V-6, 196 thru 252	.904"	99278-16	1.580"	99378-16 [*]	1.515"	99260-16	1.485"
	.842"	99284-12	1.755"	99384-12 [*]	1.655"	99250-12	1.560"
Buick 64-80 V-8, 300 thru 350	.842"	99284-16	1.755"	99384-16 [*]	1.655"	99250-16	1.560"
Buick 67-76 V-8, 400 thru 455	.842"	99284-16	1.755"	99384-16 [*]	1.655"	99250-16	1.560"
Cadillac 68-81 V-8, 368 thru 500							
Chevrolet 62-71 l-4, 153	.842"	99284-16	1.755"	99384-16 [*]	1.655"	99250-16	1.560"
Chevrolet 62-84 l-6, 194 thru 250 & 292	.842"	99277-8	1.690"			99250-8	1.560"
	.842"	99277-12	1.690"			99250-12	1.560"
Chevrolet 80-94 60D V-6, 173(2.8L)-189(3.1L)	.842"	99286-12	1.745"			99250-12	1.560"
Chevrolet 78-86 90D V-6, 200 thru 262	.842"	99277-12	1.690"			99250-12	1.560"
Chevrolet 55-95 V-8, 262 thru 400					4 (20"		
Chevrolet 58-65 V-8, 348-409-427(Z-11)	.842"	99277-16	1.690"	99377-16 ^ь	1.620"	99250-16	1.560"
Chevrolet 65-90 V-8, 396 thru 454 & 502	.842"	99277-16	1.690"	99377-16 ^b	1.620"	99250-16	1.560"
	.842"	99277-16	1.690"	99377-16 ⁶	1.620"	99250-16	1.560"
Chrysler-Dodge-Plymouth 64-87 "LA" V-8, 273 thru 360	.904"	99278-16	1.580"	99378-16 ^b	1.515"	99260-16	1.485"
Chrysler-Dodge-Plymouth 58-67 "B" V-8, 350 thru 440	.904"					99259-16	1.300"
Chrysler-Dodge-Plymouth 68-78 "B" V-8, 383 thru 440							
Chrysler-Dodge-Plymouth 64-71 V-8, 426 Hemi	.904"	99278-16	1.580"	99378-16 [*]	1.515"	99259-16	1.300"
	.904"	99278-16	1.580"	99378-16 [*]	1.515"	99259-16	1.300"
Ford-Mercury 60-83 I-6, 144 thru 250	.874"	99281-12	1.575"				
Ford-Mercury 65-96	.874"	99280-12	1.710"			99257-12	1.635"
Ford-Mercury 62-95 V-8, 221 thru 302 & 351W				00200 1/*	1 (25)		
Ford-Mercury 69-82 V-8, Boss 302, Boss 351, 351C, 351M-400	.874"	99280-16	1.710"	99380-16 [*]	1.635"	99257-16	1.635"
Ford-Mercury 58-76 "FE" V-8, 332 thru 428	.874"	99280-16	1.710"	99380-16 [*]	1.635"	99257-16	1.635"
	.874"	99281-16	1.575"	99381-16 [*]	1.500"	99256-16ª	0.150"
Ford-Mercury 68-97 V-8, 370 thru 460	.874"	99280-16	1.710"	99380-16 [*]	1.635"	99257-16	1.635"
Oldsmobile 64-84 V-8, 260 thru 455							
Pontiac 77-89 I-4, 151(2.5L)	.842"	99284-16	1.755"	99384-16 [*]	1.655"	99250-16	1.560"
	.842"	99284-8	1.755"			99250-8	1.560"
Pontiac 55-81 V-8, 287 thru 455 (except 77-81 265 & 301)	.842"	99282-16	1.760"	99382-16 [*]	1.680"	99255-16	1.570"
Pontiac 77-81 V-8, 265 & 301							
Rover 68-00 V-8, 215(3.5L)-240(3.9L)-4.2L	.842"	99277-16	1.690"	99377-16 [*]	1.620"	99250-16	1.560"
	.842"	99284-16	1.755"	99384-16 [*]	1.655"	99250-16	1.560"

a Shell typeb 50 state legal C.A.R.B. E.O. D-225-27

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

ΙE

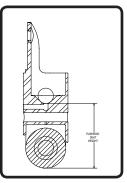
Lifters - Hydraulic Roller

Hydraulic Roller

Crane hydraulic roller lifters are offered in two basic designs: Those for use with standard factory alignment bars (on engines originally equipped with hydraulic roller lifters); and vertical locking bar drop-in lifters (designed to retrofit engines not factory equipped with hydraulic roller lifters).

The Chevrolet standard alignment bar lifters are available in a normal dimensioned version, intended for use with standard lobe lift and standard base circle diameter cams. When lobe lifts increase, and base circle diameters decrease, our exclusive long body design lifters must be used to prevent the lifters from dropping out of the factory alignment bars when on the base circle of the camshaft. This would allow the lifters to rotate, causing severe engine damage. As these lifters are for engines originally equipped with hydraulic roller lifters, special length pushrods are not usually required.

Our retrofit vertical locking bar lifters are available for non-hydraulic roller equipped engines.. They can also be used in many applications to replace factory hydraulic roller lifters and alignment mechanisms. No machining is normally required for the drop-in installation of these lifters, however with differences in block castings and camshaft base circle diameters, care must be taken to insure that neither the locking bar, or its attaching rivets, contact the block casting throughout their normal cycles. If there is any interference, the block can usually be ground to provide the necessary clearance. This should be checked prior to final engine assembly. When used in retrofit applications, special length pushrods are required.


The retrofit vertical locking bar lifters are machined from 8620 steel billet, heat treated, and assembled at our own facilities. Precision fit plunger assemblies are used to provide proper bleed-down rates, permitting high RPM use in properly set-up engines. The additional inherent strength of the 8620 material also maintains greater stability in the lifter body, permitting more consistent operation in very high spring pressure and high RPM applications, by keeping the plunger to body clearance consistent throughout the operation range. Retrofit lifters also utilize our latest Monel pin and retaining flange assembly to attach the guidebar, providing superior long term durability.

Each lifter has its pushrod seat height listed. This is the measurement from the bottom of the pushrod seat, to the bottom face of the lifter. For hydraulic lifters, this is the measurement with no (zero) lifter preload. You can check or compare your lifters to these dimensions by placing a 5/16" diameter ball in the pushrod seat, and measuring from the bottom of the lifter to the top of the ball. Then subtract the 5/16" diameter of the ball, obtaining the seat height.

	Lifter	Follower	Pushrod	0.E.	Crane
Application	Body Dia.	Wheel Dia.	Seat Height	Replacement Part No.	Classic Part No.
American Motors/Jeep V-8 66-91, 290-304-343-360 (5.9L)-390-401 cu.in.					
Vertical locking bar design. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.904"	.700"	2.320"		86532-16ª
Chevrolet V-8 55-87, 262-283-302-305-307-327-350-400 cu.in.					
Vertical locking bar design to retrofit pre-hydraulic roller blocks. No machining required for installation. NOTE: Requires special length pushrods 11628-16	.842"	.700"	2.320"		11532-16ª
Vertical locking bar design to retrofit pre-hydraulic roller blocks. For .904" diameter lifter bores (machining required). NOTE: Requires special length pushrods 11628-16	.904"	.700"	2.320"		11562-16ª
Chevrolet V-8 87-99, 305 and 350 cu.in. and LS1 5.7L					
0.E. replacement for 87-99 blocks originally equipped with hydraulic roller cam and lifters. For use with standard GM alignment bars.	.842"	.700"	2.340"	10530-16ª	
Long body design for 87-99 blocks originally equipped with hydraulic roller cam and lifters. A necessity when camshafts have greater than stock lobe lift or reduced base circle diameter. For use with standard GM alignment bars.	.842"	.700"	2.320"		10535-16ª
Chevrolet V-8 2000-up, 5.7L LS1/LS6 & Vortec 4800, 5300, 6000					
0.E. replacement for 2000-up blocks originally equipped with hydraulic roller cam and lifters. For use with standard GM alignment bars.	.842"	.700"	2.340"	144530-16ª	
Long body design for 2000-up blocks originally equipped with hydraulic roller cam & lifters. A necessity when camshafts have greater than stock lobe lift or reduced base circle diameter. For use with standard GM alignment bars.	.842"	.700"	2.320"		144536-16ª
Vertical locking bar, long travel design. No machining required for installation.	.842"	.700"	2.320"		144532-16ª
Vertical locking bar, long travel design for Warhawk blocks. No machining required for installation.	.842"	.700"	2.320"		144533-16ª
Chevrolet V-8 58-65, 348-409-427 (Z-11) cu.in.					
Vertical locking bar design. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.842"	.700"	2.320"		11532-16ª

Lifters - Hydraulic Roller

Hydraulic Roller

Application	Lifter Body Dia.	Follower Wheel Dia.		O.E. Replacement Part No.	Crane Classic Part No.
Chevrolet V-8 65-95, 396-402-427-454-502 cu.in.					
Vertical locking bar design to retrofit pre-hydraulic roller blocks. No machining required for installation. NOTE: Requires special length pushrods 13628-16 for standard deck block, or 13629-16 for +.400" tall deck block.	.842"	·700"	2.320"		13532-16ª
Vertical locking bar design to retrofit pre-hydraulic roller blocks. For .904" diameter lifter bores (machining required). NOTE: Requires special length pushrods 13628-16 for standard deck block, or 13629-16 for +.400" tall deck block.	.904"	.700"	2.320"		13562-16ª
Chevrolet V-8 96-00, 454-502 cu.in. Gen VI					
Long body design for 96-00 blocks originally equipped with hydraulic roller cam and lifters. A necessity when camshafts have greater than stock lobe lift or reduced base circle diameter. For use with standard GM alignment bars.	.842"	.700"	2.320"		26535-16ª
Chevrolet V-8 01-08, 8.1 Litre (8100)					
Long body design. A necessity when camshafts have greater than stock lobe lift or reduced base circle diameter. For use with standard GM alignment bars.	.842"	.700"	2.320"		26535-16ª
Chrysler V-8 51-58, 301-331-354-392 cu.in.					
Vertical locking bar design. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.904"	.700"	2.320"		68532-16ª
Chrysler-Dodge-Plymouth V-8 64-87, "LA" 273-318-340-360 cu.in.					
Vertical locking bar design. Machining not normally required for installation. However, some 340-360 blocks may require modification for guidebar clearance, while early 273 and some aftermarket cylinder heads may require modification for pushrod clearance. NOTE: Requires special length pushrods. See engine application pages for information.	.904"	.700"	2.320"		69532-16ª
Chrysler-Dodge-Plymouth V-8 86-91, "LA" 5.2-5.9L & 92-02 Magnum 5.2-5.9L					
0.E. replacement for 86-02 blocks originally equipped with hydraulic roller cam and lifters. For use with standard Chrysler alignment bars.	.904"	.700"	2.355"	70530-16ª	
Chrysler-Dodge-Plymouth V-8 58-78, "B" 350-361-383-400-426-440 cu.in.					
Vertical locking bar design. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.904"	.700"	2.320"		68532-16ª
Chrysler-Dodge-Plymouth V-8 64-71, Hemi 426 cu.in.					
Vertical locking bar design. No machining required for lifter installation. However, due to the increased pushrod seat height of the Crane retrofit hydraulic roller lifters, the cylinder heads, and possibly the cylinder block, will have to be modified for pushrod clearance. NOTE: Requires special length pushrods. See engine application pages for information.	.904"	.700"	2.320"		68532-16ª
Ford V-8 62-87, 221 thru 302, Boss 302, and 69-93, 351 Windsor					
Vertical locking bar design to retrofit pre-hydraulic roller blocks. No machining required for installation. Requires cylinder head removal for installation on 221 through 302 and 302 H.O. applications. NOTE: Requires special length pushrods. See engine application pages for information.	.874"	.700"	2.320"		36532-16ª
Ford V-8 85-00, 302, 302 H.O., 5.0L, and 94-97, 351 Windsor					
O.E. replacement for blocks originally equipped with hydraulic roller cam and lifters. For use with standard Ford alignment bars.	.874"	.700"	2.320"	36530-16ª	
Ford V-8 70-82, Boss 351-351C-351M-400 cu. in.					
Vertical locking bar design. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.874"	.700"	2.320"		36532-16ª
Ford V-8 63-76, 352 thru 428 cu. in.					
Vertical locking bar design. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.874"	.700"	2.320"		35532-16ª
Ford V-8 68-97, 370-429-460 cu. in. (except Boss 429 Hemi)					
Vertical locking bar design. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.874"	.700"	2.320"		35532-16ª
Ford V-8 69-70, Boss 429 Hemi					
Vertical locking bar design. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.874"	.700"	2.320"		30532-16ª
Oldsmobile V-8 64-84, 260-307 (5.0L)-330-350 (5.7L)-400-403-425-455 cu.in.					
Vertical locking bar design for .842" diameter lifter bores. No machining required for installation. NOTE: Requires special length pushrods. See engine application pages for information.	.842"	.700"	2.320"		28532-16ª
Pontiac V-8 55-81, 287-316-326-347-350-370-389-400 (6.6L)-421-428-455 cu.in.					
Vertical locking bar design. No machining required for installation. Not for use in 265 (4.3L) or 301 (4.9L) engines. NOTE: Requires special length pushrods. See engine application pages for information.	.842"	.700"	2.320"		28532-16ª

a To order spares, you may order any of these lifters in pairs by removing the -16 from the set part number and replacing it with a -2. For example, a **11532-16** set will become a **11532-2** when ordering one pair.

Mechanical Roller Lifters

Crane roller lifters are the standard by which all others are judged. From our first horizontal locking bar version, with patented roller shield body, to our latest Ultra Pro Series design, Crane has brought innovation and proven reliability to this critical component. For maximum reliability, pressure-fed oil is routed to the roller wheel and bearings on engines with this oiling system design. This is another Crane pioneered feature.

Another Crane innovation is our use of Bearing Focused Oiling. As many racing engines do not have pressurized oil to the lifter bores, a method is needed to supply oil to the bearing assemblies. This utilizes two passages in the lifter body adjacent to the roller wheel, conducting the oil that is pressed out from between the roller and the camshaft lobe to the roller bearings. There are no small passages that can clog, and no engine oil pressure is sacrificed to provide this lubrication and cooling to the needle bearings. Bearing, roller, and axle life is therefore extended by the benefits of a continuous oil flow over these components.

Due to the proliferation of factory and aftermarket cylinder blocks (which may have relocated camshaft locations, relocated oil galleries, changed lifter boss heights, lifter bores of varied diameters and center-to-center distances, etc.), the manufacture and

selection of the proper roller lifter has also become more exacting. This listing includes most popular applications available at the time of publication, but new items are being continuously released. We also offer custom roller lifters to suit specialized block-camshaft-cylinder head combinations. Contact Crane's Performance Consultants if you have any unique requirements.

Our Crane Classic design roller lifters are suitable for virtually all performance applications. Both the horizontal and vertical locking bar versions are used throughout motorsports today. Our Ultra Pro-Series lifters feature maximized lifter bore contact surfaces for less wear, weight removed from non-critical areas, increased body stiffness, and premium materials chosen wherever necessary.

Upgrades to the Ultra Pro-Series lifters include carburized 8620 steel bodies, upgraded materials and metal processing for the roller wheels, needle bearings, and axles. A new guidebar attachment system incorporates a retaining button in conjunction with an aerospace quality Monel pin to provide superior clamping forces and resistance to wear. Extreme Spintron and track testing has confirmed this configuration to be superior to anything else on the market today.

All machining, and assembly is performed at our own facilities, insuring absolute accuracy and total quality control. The spring-loaded horizontal locking bar lifters have the unique feature of permitting cam changes without intake manifold removal (providing a rev-kit is not used). Loosening the rocker arms and removing the pushrods allows the springs to pick the lifters up away from the camshaft. The cam can then be removed and replaced in minimal time. This convenience is especially helpful during dyno and on-track testing sessions.

We do not advise the use of oil restrictors with our roller lifters. Crane roller lifters are designed for use with normal oiling systems. The needle bearings within are dependent on oil flow to provide lubrication and transfer of the heat generated by today's high valve spring pressures and increased rocker arm ratios. Particularly hard on these components are prolonged periods of idling when oil flow is at a minimum but spring pressures are still high.

Whenever possible, standard pushrod seat height is maintained from the bottom of the wheel so that normal length pushrods are used. In consideration of special geometry applications, the seat may be higher, or lower, than standard for best fitment. These instances are noted in the application description where required. The pushrod socket radius is usually stock, and any deviations are also noted in the application description.

Block machining is not normally required for the installation of these lifters (other than the lifter bore diameter options), however with differences in block castings and camshaft base circle diameters, care must be taken to ensure that the lifter, locking bar, and locking bar attaching rivets (where applicable), do not encounter any bind, or unwanted contact, throughout their normal cycles. If there is any interference, the block can usually be ground to provide the necessary clearance. This should be checked prior to final engine assembly.

Mechanical Roller Lifters (continued)

We do not advise the use of offset pushrod seat roller lifters, when the pushrod angle imparts rotational forces upon the lifter. Offset roller lifters are acceptable for use when the pushrods are angled to the front or rear of the engine (parallel to the camshaft). If the pushrods lean toward the left or right of the lifter bores (as viewed from the front or rear of the engine), this will put severe loads on the lifter guidebar and it's attaching mechanism, which can lead to decreased reliability and possible failure. When building a serious racing engine, it's advisable to avoid using offset lifters whenever possible. Offset lifters can also be responsible for accelerated wear to the lifter bores, lifter bodies, roller wheel/bearings/axles, and cam lobes. Plan ahead when choosing and preparing your cylinder block and heads, so you can use centered lifters for best reliability.

Choose The Right Crane Roller Lifters for Your Application

Crane Classic Design or Ultra-Pro™ Roller Lifters?

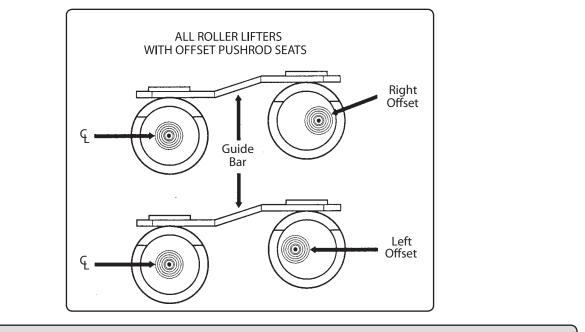
With Crane Cams **Ultra-Pro**[™] series of roller lifters, you might be wondering just which series of lifters is right for your application. Listed below are some guidelines for making the correct choice and getting "the best performance for your dollar".

Crane Classic Design Crane roller lifters were developed when camshaft lobes were not nearly as violent as today. They are ideal for street-rollers, many bracket-race type applications and other racing uses where cam profiles aren't as aggressive. Made of carburized (heat treated) 8620 alloy steel, these rollers are capable of handling up to 240 lbs., of valve spring seat pressure in bracket race applications and up to 220 lbs., of seat pressure in endurance applications – providing the cam lobe profile is not extremely violent. Open pressures exceeding 600 lbs., are not recommended for these lifters. Crane Classic Design lifters feature high quality wheels and axles that "look alike" lifters do not have. You'll find that the materials, machining tolerances and overall quality of Crane Classic Design roller lifters far exceeds lifters being sold for a lower price. These roller lifters feature all the quality and durability you expect from a Crane Cams product yet they are very economically priced.

Crane **Ultra-Pro[™]** roller lifters are the ultimate in state-of-the-art, drop-in design premium quality roller lifters! Empirical design and development techniques have been used to eliminate any distortion effects of residual stresses resulting from the heat treat process. **Ultra-Pro[™]** roller lifters feature maximized strength; especially in the axle support struts. This insures geometrically perfect tracking of the roller wheel. Additionally, super-premium wheels, axles and bearings made from the finest grades of alloy steels are used to conquer even the most violent cam lobe profiles currently designed or anticipated for the next several years! These lifters represent the best combination of lightweight, ultimate strength and reliability. They should be used in all drag race applications with spring seat pressures in excess of 300 lbs., and open pressures over 900 lbs. In addition, they should be used in any short-track circle or endurance racing application where valve spring seat pressures exceed 250 lbs., and open pressures exceed 700 lbs. Use Crane Cams **Ultra-Pro[™] series** lifters when absolute durability is necessary.

With Crane Cams **Ultra-Pro™** roller lifters, engine builders can now be sure that they're using the absolute finest available, professional quality roller lifters for high-stress race

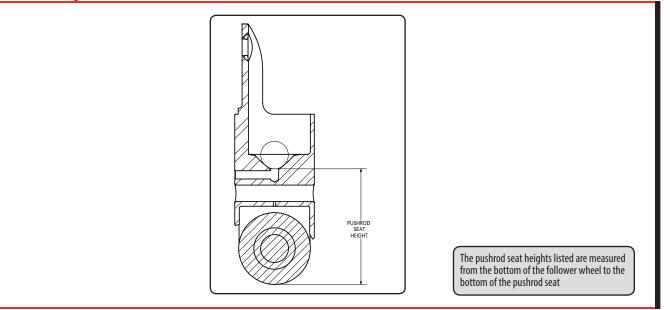
engine applications. Count on Crane Cams to give you a full selection of performance products with the best performance for the buck and peace of mind for you.



Choose The Right Crane Roller Lifters for Your Application (continued)

These drawings represent the basic styles of Crane mechanical roller lifters for Chevy 262-400 V-8 type engines and their various heights. Example **A** is the horizontal locking bar (spring-loaded) Crane Classic design. The vertical locking bar version **B** is the Crane Classic design vertical locking bar design. **C** represents the Ultra-Pro Series design, as required for various lifter bore diameters and heights. Refer to the specific Buyer's Guide listing for the proper engine application of each variation.

How to Identify Roller Lifter Offsets



When ordering spare lifters with offset pushrod seat locations you MUST specify left or right offset. For example, a pair of lifters for set number **13571-16** would be either **13571L-2** (left) or **13571R-2** (right). See drawing to identify lifter offsets.

Pushrod Seat Heights

Application	Crane DOES NOT recommend the use of oil restrictors.	Lifter Body Dia.	Follower Wheel Dia.	Pushrod Seat Height	Crane Classic Part No.	Ultra Pro Series Part No.
American Motors	s V-8 66-91, 290-304-343-360 (5.9L)-390-401 cu.in.					
Vertical locking bar wi	th .200" short pushrod seat location	.904"	.815"	1.325"		66550-16
Arias/Fontana/N	1BR V-8, 8.3L					
Vertical locking bar		.904"	.815"	1.325"		95542-16
Vertical locking bar wi	th .120" tall pushrod seat location	.904"	.815"	1.455"		95543-16
Vertical locking bar wi	ill accommodate pushrod oiling	.904"	.815"	1.325"		95550-16
Brad Anderson 4	26, Rodeck TFX-92, Keith Black Aluminum 426 V-8, JP-1					
Vertical locking bar		.904"	.815"	1.325"		66542-16
Vertical locking bar wi	th .120" tall pushrod seat location	.904"	.815"	1.455"		66543-16
Vertical locking bar fo	r spread lifter bore blocks	.904"	.815"	1.325"		95542-16
Vertical locking bar fo	r spread lifter bore blocks, with .120" tall pushrod seat location	.904"	.815"	1.455"		95543-16
Vertical locking bar for s	pread lifter bore cylinder blocks, will accommodate pushrod oiling	.904"	.815"	1.325"		95550-16
Vertical locking bar for 1.0	000" diameter lifter bores, with standard to .200" spread lifter bore spacing	.998"	.920"	1.320"		66547-16
	r 1.000" diameter lifter bores, with standard to .200" spread lifter bore spacing, d seat location, will accommodate pushrod oiling.	.998"	.920"	1.515"		66555-16
Vertical locking bar fo with .200" tall pushroe	r 1.062" diameter lifter bores, with standard to .200" spread lifter bore spacing, d seat location.	1.060"	.920"	1.520"		66549-16
Chevrolet 90° V-0	5 78-86, 200-229-262 (4.3L) cu. in.					
Vertical locking bar for H.	D. aluminum cylinder block or iron blocks with V-8 type lifter bore oiling	.842"	.750"	1.575"	11519-2	

Application Crane DOES NOT recommend the use of oil restrictors.	Lifter Body Dia.	Follower Wheel Dia.	Pushrod Seat Height	Crane Classic Part No.	Ultra Pro Series Part No.
Chevrolet V-8 55-00, 262-400 cu. in., GM Bow Tie, Donovan, Rodeck (except LS1 and SB2)					
Horizontal locking bar	.842"	.750"	1.575"	11515-16	
Vertical locking bar for standard or tall lifter bore Bow Tie, hydraulic roller, or aftermarket cylinder blocks	.842"	.750"	1.575"	11519-16	11570-16
Vertical locking bar for blocks with 55mm, or greater, oversize journal camshafts	.842"	.750"	1.575"		11576-16
Vertical locking bar with .180" offset left and right intake pushrod seats, for standard or tall lifter bore Bow Tie, hydraulic roller, or aftermarket cylinder blocks	.842"	.750"	1.575"		11571-16
Vertical locking bar with .180" offset left and right intake pushrod seats, for blocks with 55mm, or greater, oversize journal camshafts	.842"	.750"	1.575"		11577-16
Vertical locking bar for .875" diameter lifter bores, in standard or tall lifter bore Bow Tie, hydraulic roller, or aftermarket cylinder blocks	.874"	.750"	1.575"		11572-16
Vertical locking bar for .875" diameter lifter bores, for standard or tall lifter bore Bow Tie, hydraulic roller, or aftermarket cylinder blocks, with .180" offset left and right intake pushrod seats	.874"	.750"	1.575"		11573-16
Vertical locking bar for .904" diameter lifter bores, for standard or tall lifter bore Bow Tie, hydraulic roller, or aftermarket cylinder blocks	.904"	.815"	1.595"		11574-16
Vertical locking bar for .904" diameter lifter bores, for blocks with 55mm, or greater, oversize journal camshafts	.904"	.815"	1.595"		11578-16
Vertical locking bar for .904" diameter lifter bores, with .210" offset left and right intake pushrod seats, for standard or tall lifter bore Bow Tie, hydraulic roller, or aftermarket cylinder blocks	.904"	.815"	1.595"		11575-16
Vertical locking bar for .904" diameter lifter bores, with .210" offset left and right intake pushrod seats for blocks with 55mm, or greater, oversize journal camshafts	.904"	.815"	1.595"		11579-16
Chevrolet V-8 88-00, 305-350 cu. in., LS1 5.7L (except SB2)					
Long body design for use with standard GM alignment bars, in engines originally equipped with hydraulic roller lifters	.842"	.700"	2.310"	10510-16	

Section Continued 🛏

Application Crane DOES NOT recommend the use of oil restrictors.	Lifter Body Dia.	Follower Wheel Dia.	Pushrod Seat Height	Crane Classic Part No.	Ultra Pro Series Part No.
Chevrolet V-8 2000-up, 5.7L LS1/LS2, LS3/L92, LS6 & Vortec 4800, 5300, 6000					
Long body design for use with standard GM alignment bars, in engines originally equipped with hydraulic roller lifters	.842"	.700"	2.310"	144511-16	
Vertical locking bar, long body design, for increased lift and reduced base circle camshafts	.842"	.750"	1.575"		144570-16
Vertical locking bar, long body design, for Warhawk blocks, for increased lift and reduced base circle camshafts.	.842"	.750"	1.575"		144572-16
Chevrolet V-8 58-65, 348-409-427 (Z-11) cu.in.					
Vertical locking bar	.842"	.750"	1.575"	15519-16	
Chevrolet V-8 65-00, 396-402-427-454-502 cu.in. (including Gen V and Gen VI),	Donovan, Ro	deck 481			
Horizontal locking bar—must use 3/8" diameter pushrods	.842"	.750"	1.575"	13515-16	
Vertical locking bar for standard or tall lifter bore cylinder blocks	.842"	.750"	1.575"	13519-16	13570-16
Vertical locking bar for blocks with 55mm, or greater, oversize journal camshafts	.842"	.750"	1.575"		13576-16
Vertical locking bar with .180" offset left and right intake pushrod seats, for standard or tall lifter bore cylinder blocks	.842"	.750"	1.575"		13571-16
Vertical locking bar with .180" offset left and right intake pushrod seats, for blocks with 55mm, or greater, oversize journal camshafts	.842"	.750"	1.575"		13577-16
Vertical locking bar for .875" diameter lifter bores, for standard or tall lifter bore cylinder blocks	.874"	.750"	1.575"		13572-16
Vertical locking bar for .875" diameter lifter bores, for standard or tall lifter bore cylinder blocks, with .180' offset left and right intake pushrod seats	.874"	.750"	1.575"		13573-16
Vertical locking bar for .904" diameter lifter bores, for standard or tall lifter bore cylinder blocks	.904"	.815"	1.595"		13574-16
Vertical locking bar for .904" diameter lifter bores, for blocks with 55mm, or greater, oversize journal camshafts	.904"	.815"	1.595"		13578-16
Vertical locking bar for .904" diameter lifter bores, with .210" offset left and right intake pushrod seats, for standard or tall lifter bore cylinder blocks	.904"	.815"	1.595"		13575-16
Vertical locking bar for .904" diameter lifter bores, with .210" offset left and right intake pushrod seats, for blocks with 55mm, or greater, oversize journal camshafts	.904"	.815"	1.595"		13579-16
Chevrolet V-8 96-00, 454 (7.4L)-502 (8.2L) cu.in. Gen VI					
Long body design for use with standard GM alignment bars in engines originally equipped with hydraulic roller lifters	.842"	.700"	2.310"	16510-16	

Cams[®]

Application	Crane DOES NOT recommend the use of oil restrictors.	Lifter Body Dia.	Follower Wheel Dia.	Pushrod Seat Height	Crane Classic Part No.	Ultra Pro Series Part No.
Chrysler V-8 51-58,	301-331-354-392 cu.in.					
Vertical locking bar		.904"	.750'	1.460"	66515-16	
Vertical locking bar		.904"	.815"	1.325"		66542-16
Vertical locking bar with .	120" tall pushrod seat location	.904"	.815'	1.455"		66543-16
Chrysler-Dodge-Ply	mouth V-8 64-91, "LA" 273-318-340-360 cu.in. (Not Magnum	n) (No lifter b	ore oiling m	odifications	required)	
Vertical locking bar		.904"	.750"	1.460"	69515-16	
Vertical locking bar		.904"	.815"	1.325"		69542-16
Vertical locking bar will a	ccommodate pushrod oiling	.904"	.815"	1.325"		69550-16
Vertical locking bar for tal	l lifter bore cylinder blocks, with .400" tall pushrod seat location	.904"	.815"	1.725"		69554-16
Chrysler-Dodge-Ply (R-blocks having 59	mouth V-8, "LA" R-block 318-360 cu.in. w/ 48° lifter bank and ° lifter bank angles are not intended for use w/ roller camsha	gle ifts)	·			
Vertical locking bar will a	ccommodate pushrod oiling	.904"	.815"	1.325"		69552-16
Chrysler-Dodge-Ply	mouth V-8 58-78, "B" 350-361-383-400-426-440 cu.in. (No li	ifter bore oil	ing modifica	tions require	ed)	
Vertical locking bar		.904"	.750"	1.460"	66515-16	
Vertical locking bar		.904"	.815"	1.325"		66542-16
Vertical locking bar with .	120" tall pushrod seat location	.904"	.815"	1.455"		66543-16
Vertical locking bar will a	ccommodate pushrod oiling	.904"	.815"	1.325"		66550-16
Vertical locking bar for tal	l lifter bore cylinder blocks, with .400" tall pushrod seat location	.904"	.815"	1.725"		66554-16
Chrysler-Dodge-Ply	mouth V-8 64-71, Hemi 426 cu.in. (also see Keith Black roller	lifter listing	s) (No lifter b	oore oiling m	odifications	required)
Vertical locking bar		.904"	.750"	1.460"	66515-16	
Vertical locking bar		.904"	.815"	1.325"		66542-16
Vertical locking bar with .	120" tall pushrod seat location	.904"	.815"	1.455"		66543-16
Vertical locking bar will a	ccommodate pushrod oiling	.904"	.815"	1.325"		66550-16
Vertical locking bar for tal	l lifter bore cylinder blocks with .400" tall pushrod seat location	.904"	.815"	1.725"		66554-16
	000" diameter lifter bores, with standard to .200" spread lifter bore spacing, with ation, will accommodate pushrod oiling	.998"	.920"	1.515"		66555-16
Donovan V-8, 417 c	u.in.					
Vertical locking bar		.904"	.750"	1.460"	66515-16	
Vertical locking bar		.904"	.815"	1.325"		66542-16
Vertical locking bar with .	120" tall pushrod seat location	.904"	.815"	1.455"		66543-16
	000″ diameter lifter bores, with standard to .200″ spread lifter bore spacing, with ation, will accommodate pushrod oiling	.998"	.920"	1.515"		66555-16

Application Crane DOES NOT recommend the	use of oil restrictors.	Lifter Body Dia.	Follower Wheel Dia.	Pushrod Seat Height	Crane Classic Part No.	Ultra Pro Series Part No.
Ford V-8 62-00, 221-255 (4.2L)-260-289-302-5	5.0L, 5.0L H.O., Boss 302, 351W ci	u.in.				
Vertical locking bar		.874"	.750"	1.720"	44518-16	
Vertical locking bar		.874"	.750"	1.720"		44570-16
Vertical locking bar with .180" offset right intake pushrod seat	ts	.874"	.750"	1.720"		44571-16
Vertical locking bar for .904" diameter lifter bores		.904"	.815"	1.720"		44574-16
Vertical locking bar for .904" diameter lifter bores, with .210"	offset right intake pushrod seats	.904"	.815"	1.720"		44575-16
Ford V-8 70-82, Boss 351-351C- 351M-400 cu.i	n.					
Vertical locking bar		.874"	.750"	1.720"	44518-16	
Vertical locking bar		.874"	.750"	1.720"		44570-16
Vertical locking bar with .180" offset right intake pushrod sea	ts	.874"	.750"	1.720"		44571-16
Vertical locking bar for .904" diameter lifter bores		.904"	.815"	1.720"		44574-16
Vertical locking bar for .904" diameter lifter bores, with .210"	offset right intake pushrod seats	.904"	.815"	1.720"		44575-16
Ford V-8, SVO 302 and SVO 351						
Vertical locking bar		.874"	.750"	1.720"	44518-16	
Vertical locking bar		.874"	.750"	1.720"		44570-16
Vertical locking bar with .180" offset right intake pushrod seat	ts	.874"	.750"	1.720"		44571-16
Vertical locking bar for .904" diameter lifter bores		.904"	.815"	1.720"		44574-16
Vertical locking bar for .904" diameter lifter bores, with .210"	offset right intake pushrod seats	.904"	.815"	1.720"		44575-16
Ford V-8 63-76, 352-360-390-406-410-427-42	'8 cu.in.					
Vertical locking bar		.874"	.750"	1.720"	30518-16	
Vertical locking bar		.874"	.750"	1.720"		35570-16
Vertical locking bar with .180" offset left and right intake push	nrod seats	.874"	.750"	1.720"		35571-16
Vertical locking bar for .904" diameter lifter bores		.904"	.815"	1.720"		35574-16
Vertical locking bar for .904" diameter lifter bores, with .210"	offset left and right intake pushrod seats	.904"	.815"	1.720"		35575-16
Ford V-8 68-97, 370-429-460 cu.in. (except 42)	9 Boss Hemi)					
Vertical locking bar		.874"	.750"	1.720"	30518-16	
Vertical locking bar		.874"	.750"	1.720"		35570-16
Vertical locking bar with .180" offset left and right intake push	nrod seats	.874"	.750"	1.720"		35571-16
Vertical locking bar with .180" offset right intake pushrod seat	ts, for Ford Racing C460 cylinder heads	.874"	.750"	1.720"		35571R-16
Vertical locking bar for .904" diameter lifter bores		.904"	.815"	1.720"		35574-16
Vertical locking bar for .904" diameter lifter bores, with .210"	offset left and right intake pushrod seats	.904"	.815"	1.720"		35575-16
Vertical locking bar for .904" diameter lifter bores, with .210" offse C460 cylinder heads	t right intake pushrod seats, for Ford Racing	.904"	.815"	1.720"		35575R-16
Ford V-8 69-70, 429 Boss Hemi						
Vertical locking bar		.874"	.750"	1.720"		30570-16
Vertical locking bar for .904" diameter lifter bores		.904"	.815"	1.720"		30574-16

Cams[®]

Application	Crane DOES NOT recommend the use of oil restrictors.	Lifter Body Dia.	Follower Wheel Dia.	Pushrod Seat Height	Crane Classic Part No.	Ultra Pro Series Part No.
Johnson/Rodeck	r V-8, 481X					
Vertical locking bar fo	r .904" diameter lifter bores with pushrod oiling	.904"	.815"	1.385"		140550-16
Oldsmobile V-8	54-84, 260-307 (5.0L) -330-350 (5.7L) -400-403-425-455 cu.in.					
Vertical locking bar fo	r .842" diameter lifter bores	.842"	.750"	1.705"		28570-16
Pontiac V-8 55-8	31, 287-316-326-347-350-370-389-400 (6.6L)-421-428-455 cu.ii	n.				
Vertical locking bar		.842"	.750"	1.705"		28570-16
Rodeck V-8, 481	cu.in. (except 481X)					
Vertical locking bar		.842"	.750"	1.575"		13570-16
Vertical locking bar w	ith .180" offset left and right intake pushrod seats	.842"	.750"	1.575"		13571-16
Vertical locking bar fo	r .904" diameter lifter bores, for standard or tall lifter bore cylinder blocks	.904"	.815"	1.595"		13574-16
Vertical locking bar for standard or tall lifter	r .904" diameter lifter bores, with .210" offset left and right intake pushrod seats, for bore cylinder blocks	.904"	.815"	1.595"		13575-16

Replacement Locking Bar Kits for Horizontal Bar Roller Lifters (All Kits Include Two Locking Bars and Four Hold Down Springs) Application Part No.

Chevrolet V-8 262-400	
For Part Number: 11515-16	99557-1
Chevrolet V-8 396-502	
For Part Number: 13515-16	99559-1

Lubricants

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

Assembly Lube (Paste)

Crane Super Moly Lube is a moly-disulfide base lubricant, for use on cam lobes, lifters and distributor drive gears and should be used for all cam installations (except for roller lifter applications). Advised for cup-end pushrod installation where only splash lubricant is utilized.

Also used in many areas of transmission and driveline assembly, where high initial loading occurs, and galling should be minimized. Not recommended where normal oil flow may be impeded due to the high viscosity of this product.

Description	Part No.
Two 1-ounce packages	99002-1
1-pound container	99004-1

Engine Assembly Lube

Crane Engine Assembly Lube is specially formulated to provide extra lubrication protection to engine components during assembly, and to provide outstanding resistance to scuffing, wear and friction during critical break-in. This lubricant is recommended for use on several different engine components, such as: rocker arm fulcrum balls, needle bearings, roller tips or rocker shafts; timing chain sprockets and gears; roller lifters and roller camshafts; engine bearing surfaces; outer surface of hydraulic or mechanical lifter bodies (use Super Moly Lube [paste] on face of these lifters).

Part No.

99008-1

Break-In Engine Oil

4-ounce container

Description

Description

8-ounce container

Crane Cams now offers a specially formulated 10W-40 conventional engine oil to cope with the stresses created with flat faced follower camshafts. This is to ensure that the critical first hour of your camshaft's life will lead to long term reliability. A formula of advanced petroleum base, combined with an additive package used in Crane Cams Super Lube, using a proportioned zinc (ZDDP) component (such as contained in Crane Cams Super Lube), this oil is intended for use with all conventional fuel types, with no additional oil additives required. Once your flat faced lifter camshaft is properly broken in, you should continue to use a performance type ZDDP content oil for the remainder of the engine's life, to ensure longevity.

It's more important than ever to use the properly formulated oil for the initial break-in of your flat faced follower camshaft and lifters, either hydraulic or mechanical. Oils specified for today's hydraulic roller engines no longer contain the additives necessary to provide the optimum environment for sliding surfaces, especially for cam lobe and lifter interface of a flat face follower design. Fresh rebuilds also need load carrying protection in lifter bores, distributor gears and valve guides. Even in roller lifter equipped engines, this break-in oil is highly recommended and this oil's additive package is mandatory for flat faced follower designs. Crane Cams Break-In Engine Oil (**Part # 99300-1**) or Crane Cams Super Lube (**Part # 99003-1**) must be used when installing a new Flat Tappet Camshaft and Lifters.

Description	Part No.
1-quart container	99300-1 [*]
Case of 12 quarts	99300-12 [*]

Super Lube Break-In Concentrate For Cam & Lifter Installation

The original Crane Cams Super Lube Break-In Concentrate is an anti-wear additive formulated with a high concentration of special zinc dithiophosphate to provide sustained protection against cam lobe and flat-faced lifter scuffing and wear. This is especially important when using modern oils that have been compounded for use with roller-type camshafts. This oil supplement is to be added to the engine oil for the initial break-in period after the installation of a new camshaft and lifters.

Part No.

99003-1

Pushrods

The Strongest, Most Reliable Chromemoly Steel Pushrods Available!

Crane Cams offers precision manufactured high strength tubular steel pushrods for almost any engine. Popular length and diameter pushrods are listed here. The length is expressed as *Effective Length*. On pushrods having a ball on each end, this represents the overall length of the pushrod. For pushrods with a cup on one end, and a ball on the other, this is the measurement from the bottom of the cup to the tip of the ball.

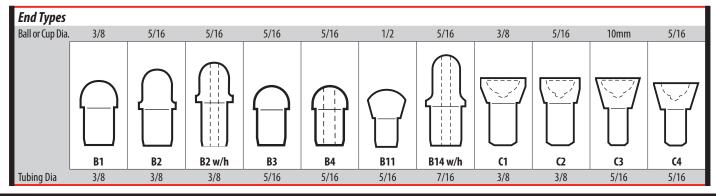
Crane's pushrods are manufactured from 4130 chromemoly steel tubing. The ball radius ends are formed from the tubing, and then hardened and centerless ground. Where indicated, Crane's pushrods are carbonitride hardened for use with (or without) pushrod guideplates.

Hardened pushrods must be used with steel pushrod guideplate equipped cylinder heads (page 291) to prevent premature wear and failure.

Also listed in this section, where applicable, are the **Crane Pro-Series One-Piece Pushrods**. These are cold-forged, die formed, heat treated and centerless ground pushrods for both small and big block Chevrolet V-8 engines and other engine applications where pushrods with 5/16" dia. ball ends are required. For additional information, see page 289.

		Effective			End Type	
Application	Length	Length	Tubing Dia.	Тор	Bottom	Part No.
American Motors V-8 (Includes AMC/Jeep)						
70-91, 304 thru 401 with hydraulic lifters, Pro Series One Piece, heat treated, heavy wall	Stock	7.850	5/16	B-4	B-4	95637-16
66-91, 290 thru 401 with mechanical lifters, Pro Series One Piece, heat treated, heavy wall	Stock	8.050	5/16	B-4	B-4	95641-16
66-91, 290 thru 401 with 66550-16 roller lifters, Pro Series One Piece, heat treated, heavy wall	+.200	8.250	5/16	B-4	B-4	95645-16
Cadillac V-8						
68-81, 368 thru 500 heat treated, heavy wall	Stock	10.200	5/16	B-4	B-4	102621-16
Chevrolet I-6						
62-84, 194-230-250 heat treated, heavy wall	Stock	9.718	5/16	B-4	B-4	20621-12
62-84, 194-230-250 with Crane aluminum rocker arms, heat treated, heavy wall	+.282	10.000	5/16	B-4	B-4	20622-12
Chevrolet V-6						
80-88, 60° 173 with cast iron in-line valve cylinder heads, heat treated, heavy wall	Stock	6.163	5/16	B-4	B-4	25621-12
78-86, 90° 200 thru 262 heat treated, heavy wall	Stock	7.765	5/16	B-4	B-4	11621-12
92-02, 90° 4.3L with Factory Hydraulic Roller Lifters, heat treated, heavy wall	Stock	7.178	5/16	B-4	B-4	10621-12
Chevrolet Small Block V-8						
55-87, 262 thru 400 with <i>Crane Hydraulic Roller Lifters</i> , heat treated, heavy wall	719	7.046	5/16	B-4	B-4	11628-16
55-87, 262 thru 400 heat treated	Stock	7.765	5/16	B-4	B-4	11621-16
55-87, 262 thru 400 heat treated, heavy wall	Stock	7.765	5/16	B-4	B-4	11630-16
55-87, 262 thru 400 heat treated	+.100	7.865	5/16	B-4	B-4	11622-16
55-87, 262 thru 400 heat treated, heavy wall	+.100	7.865	5/16	B-4	B-4	11632-16
55-87, 262 thru 400 heat treated	+.160	7.925	5/16	B-4	B-4	11624-16
55-87, 262 thru 400 heat treated, heavy wall	+.200	7.965	5/16	B-4	B-4	11633-16
55-87, 262 thru 400 heat treated, heavy wall	+.250	8.015	5/16	B-4	B-4	11635-16
88-99, 305-350 with Factory Hydraulic Roller Lifters , heat treated, heavy wall	Stock	7.178	5/16	B-4	B-4	10621-16
97-10, LS1-LS2-LS6 5.7L Pro Series One Piece, heat treated, heavy wall (.080)	Stock	7.400	5/16	B-4	B-4	144621-16
97-10, LS1-LS2-LS6 5.7L Pro Series One Piece, heat treated, heavy wall (.080) for Crane Adjustable Rocker Arm Conversion Kit	150	7.250	5/16	B-4	B-4	144622-16

Pushrods



Application	Length	Effective Length	Tubing Dia.	End Top	<u>Type</u> Bottom	Part No.
Chevrolet V-8						
58-65, 348-409-427 (Z-11) with Crane Hydraulic Roller Lifters, heat treated, heavy wall	0686 0692	8.100 Int. 8.450 Exh.	5/16 5/16	B-4 B-4	B-4 B-4	15630-16
58-65, 348-409-427 (Z-11) with Crane Hydraulic Roller Lifters, heat treated, heavy wall	0686 0692	8.100 Int. 8.450 Exh.	3/8 3/8 5/16	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	15640-16
58-65, 348-409-427 (Z-11), heat treated, heavy wall	Stock Stock	8.786 Int. 9.142 Exh.	5/16	B-4 B-4	B-4 B-4	15621-16
58-65, 348-409-427 (Z-11), heat treated, heavy wall	Stock Stock	8.786 Int. 9.142 Exh.	3/8 3/8	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	15634-16
Chevrolet Big Block V-8						
65-90, 396 thru 454 with Crane Hydraulic Roller Lifters , heat treated, heavy wall	719 719	7.531 lnt. 8.531 Exh.	3/8 3/8	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	13628-16
65-90, 396 thru 454 with Crane Hydraulic Roller Lifters, heat treated, heavy wall 65-90, 396 thru 454 with Crane Hydraulic Roller Lifters, Pro Series One Piece, heat treated, heavy wall	719 700 700	7.566 Int. 8.550 Exh.	3/8 3/8 3/8	B-2 w/h B-2 w/h B-2 w/h	B-2 w/h B-2 w/h B-2 w/h	13642-16
65-90, 396 thru 454 heat treated, heavy wall	Stock Stock	8.250 Int. 9.250 Exh.	3/8 3/8	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	13634-16
65-90, 396 thru 454 Pro Series One Piece, heat treated, heavy wall	Stock Stock	8.250 Int. 9.250 Exh.	3/8 3/8	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	13640-16
65-90, 396 thru 454 heat treated, heavy wall	Stock Stock	8.250 Int. 9.250 Exh.	7/16 7/16	B-14 B-14	B-14 B-14	13630-16
66-90, 366-427 Tall Deck (+.400") <i>w/Crane Hyd. Roller Lifters</i> , heat treated, heavy wall	719 719	7.936 Int. 8.906 Exh.	3/8 3/8	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	13629-16
66-90, 366-427 Tall Deck (+.400") <i>w/Crane Hyd. Roller Lifters</i> , Pro Series One Piece, heat treated, heavy wall	705 675	7.950 Int. 8.950 Exh.	3/8 3/8	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	13643-16
66-90, 366-427 Tall Deck (+.400") heat treated, heavy wall	Stock Stock	8.655 Int. 9.625 Exh.	3/8 3/8	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	13635-16
01-08, 8.1 Litre with hydraulic lifters and adjustable rockers, Pro Series One Piece, heat treated, heavy wall	Stock Stock	8.200 Int. 9.150 Exh.	3/8 3/8	B-2 w/h B-2 w/h	B-2 w/h B-2 w/h	26640-16
Chrysler-Dodge-Plymouth V-8						
64-91, 273 thru 360 "LA" with hydraulic lifters and adjustable rockers, heat treated, heavy wall	Stock	7.185	5/16	C-4	B-3	69621-16
64-91, 273 thru 360 "LA", <i>with Crane Hydraulic Roller Lifters</i> and adjustable rockers, heat treated, heavy wall	750	6.450	5/16	C-4	B-3	69628-16
64-91, 273 thru 360 "LA", with mechanical lifters and adjustable rockers, heat treated, heavy wall	Stock	7.325	5/16	C-4	B-3	69622-16
92-00, 318-360 "Magnum" with Factory Hydraulic Roller Lifters and Crane adjustable rockers with 36655-16 conversion kit, heat treated, heavy wall	Stock	6.812	5/16	B-4	B-4	36621-16
58-78, 350 thru 400 "B" Low Block with hydraulic lifters and adjustable rockers, heat treated, heavy wall	Stock	8.055	3/8	C-2	B-2	64640-16
58-78, 350 thru 400 "B" <i>Low Block with Crane Hydraulic Roller Lifters</i> and adjustable rockers, heat treated, heavy wall	750	7.290	3/8	C-2	B-2	64628-16
58-78, 350 thru 400 "B" Low Block with mechanical lifters and adjustable rockers, heat treated, heavy wall	Stock	8.425	3/8	C-2	B-1	64621-16
58-78, 413 thru 440"B" <i>High Block</i> with hydraulic lifters and adjustable rockers, heat treated, heavy wall	Stock	8.930	3/8	C-2	B-2	64641-16
58-78, 413 thru 440 "B" High Block with Crane Hydraulic Roller Lifters and adjustable rockers, heat treated, heavy wall	750	8.180	3/8	C-2	B-2	64629-16
58-78, 413 thru 440"B" <i>High Block</i> with mechanical lifters and adjustable rockers, heat treated, heavy wall	Stock	9.055	3/8	C-2	B-1	64622-16
64-71, 426 Hemi with hydraulic lifters, heat treated, heavy wall	Stock Stock	10.450 Int. 11.385 Exh.	3/8 3/8	C-2 C-2	B-1 B-1	66621-16
64-71, 426 Hemi with Crane Hydraulic Roller Lifters, heat treated, heavy wall	750 750	9.710 Int. 10.650 Exh.	3/8 3/8	C-2 C-2	B-2 B-2	66628-16
64-71, 426 Hemi with mechanical lifters heat treated, heavy wall	Stock Stock	10.650 Int. 11.585 Exh.	3/8 3/8	C-2 C-2	B-1 B-1	65689-16

Section Continued 🛏

Pushrods

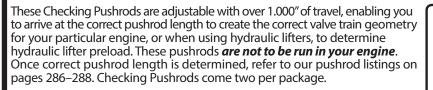
		Effective		Enc	l Type	
Application	Length	Length	Tubing Dia.	Тор	Bottom	Part No.
Ford I-6						
64-96, 240-300, heat treated, heavy wall	Stock	10.203	5/16	B-4	B-4	50621-12
Ford V-8						
63-68, 221 thru 302, heat treated, heavy wall	Stock	6.812	5/16	B-4	B-4	36621-16
69-95, 255 thru 302, heat treated, heavy wall	Stock	6.875	5/16	B-4	B-4	36622-16
68-87, 255 thru 302 with Crane Retrofit Hydraulic Roller Lifters and bottleneck studs or pedestal mount rocker arms, Pro Series One Piece, heat treated, heavy wall	332	6.500	5/16	B-4	B-4	95610-16
77-87, 255 thru 302 with Crane Retrofit Hydraulic Roller Lifters and adjustable rocker arms, Pro Series One Piece, heat treated, heavy wall	132	6.700	5/16	B-4	B-4	95614-16
86-96, 302 and 302 H.O. <i>with Factory Hydraulic Roller Lifters</i> , standard base circle cam- shaft, and pedestal mount rocker arms, heat treated, heavy wall	Stock	6.258	5/16	B-4	B-4	36631-16
86-96, 302 and 302 H.O. <i>with Factory Hydraulic Roller Lifters</i> and Crane aluminum rocker arms, heat treated, heavy wall	+.117	6.375	5/16	B-4	B-4	36625-16
85-94, 302 and 302 H.O. <i>with Factory Hydraulic Roller Lifters</i> and Crane Fireball cylinder heads, Pro Series One Piece, heat treated, heavy wall	095	6.200	5/16	B-4	B-4	95604-16
69-93, 351W, Pro Series One Piece, heat treated, heavy wall	Stock	8.200	5/16	B-4	B-4	95644-16
69-93, 351W with <i>Crane Retrofit Hydraulic Roller Lifters</i> and bottleneck studs or pedestal mount rocker arms, Pro Series One Piece, heat treated, heavy wall	366	7.800	5/16	B-4	B-4	95636-16
77-93, 351W with <i>Crane Retrofit Hydraulic Roller Lifters</i> and adjustable rocker arms, Pro Series One Piece, heat treated, heavy wall	191	8.000	5/16	B-4	B-4	95640-16
69-70, Boss 302, Pro Series One Piece, heat treated, heavy wall	Stock	7.650	5/16	B-4	B-4	95633-16
70-74, 351C, heat treated, heavy wall	Stock	8.406	5/16	B-4	B-4	52621-16
70-74, 351C with Crane Retrofit Hydraulic Roller Lifters and adjustable rocker arms, heat treated, Pro Series One Piece, heat treated, heavy wall	625	7.781	5/16	B-4	B-4	95636-16
71-72, Boss 351, Pro Series One Piece, heat treated, heavy wall	Stock	8.500	5/16	B-4	B-4	95650-16
71-82, 351M-400 w/ Crane Retrofit Hydraulic Roller Lifters & pedestal mount rocker arms, Pro Series One Piece, heat treated, heavy wall	800	8.700	5/16	B-4	B-4	95654-16
71-82, 351M-400 with <i>Crane Retrofit Hydraulic Roller Lifters</i> and adjustable rocker arms with 52655-16 conversion kit, Pro Series One Piece, heat treated, heavy wall	625	8.900	5/16	B-4	B-4	95658-16
58-76, 332 thru 428 FE with hydraulic and mechanical lifters and adjustable rockers, heat treated, heavy wall	Stock	9.065	3/8	C-1	B-1	34621-16
58-76, 332 thru 428 FE with shell mechanical lifters and adjustable rockers, heat treated, heavy wall	Stock	10.485	3/8	(-1	B-1	34622-16
58-76, 332 thru 428 with roller lifters, heat treated, heavy wall	109	8.960	3/8	(-1	B-2	34641-16
69-97, 370 thru 460, heat treated, heavy wall	Stock	8.563	5/16	B-4	B-2 B-4	35622-16
70, 429 Super CJ, and all 370 thru 460 with 5/16" pushrod guideplates, heat treated, heavy wall	Stock	8.656	5/16	B-4	B-4	35621-16
MG-MGA-MGB 4 Cylinder						
40-55, 1250-1466cc TC, TD, TF	Stock	8.360	5/16	C-3	B-11	905-0003
57-80, 1598-1798cc MGA, MGB	Stock	10.485	5/16	C-3	B-11	905-0004
Oldsmobile V-8						
64-84, 260-307-330-350-403 with hydraulic lifters , Pro Series One Piece, heat treated, heavy wall	Stock	8.350	5/16	B-4	B-4	95647-16
Pontiac V-8						
57-81, 265-287-316-347-350-389-400-428-455, heat treated, heavy wall	Stock	9.125	5/16	B-4	B-4	28624-16
62-67, 326-389-400-421 , Pro Series One Piece, heat treated, heavy wall	Stock	8.700	5/16	B-4	B-4	95654-16

Pushrods - One Piece

Pro Series, One-Piece, Cold-Forged Pushrods

Crane Cams Pro Series, one-piece pushrods are **cold-forged**, with a precisely formed end that is **actually stronger** than the tubing wall itself!

Pro Series pushrods are made from aircraft quality, .080" wall, 4130 chromemoly steel tubing. Finished overall length is accurate to within \pm .005" per pushrod. These are available in 5/16" and 3/8" diameter, each with 5/16" diameter ball ends, and .050" length increments (6.000" to 9.200" OAL in 5/16" diameter, and 7.050" to 11.000" OAL in 3/8" diameter), heat treated for use with or without pushrod guideplates. Each pushrod is laser etched with its overall length for quick identification.


Pro Series 5/16" Diameter One-Piece Pushrods

Overall Length	Part No.	Overall Length	Part No.	Overall Length	Part No.	Overall Length	Part No.
6.000″	95600-16	6.850″	95617-16	7.650″	95633-16	8.450″	95649-16
6.050″	95601-16	6.900″	95618-16	7.700″	95634-16	8.500"	95650-16
6.100″	95602-16	6.950″	95619-16	7.750″	95635-16	8.550"	95651-16
6.150″	95603-16	7.000″	95620-16	7.800″	95636-16	8.600"	95652-16
6.200″	95604-16	7.050″	95621-16	7.850″	95637-16	8.650"	95653-16
6.250″	95605-16	7.100″	95622-16	7.900″	95638-16	8.700″	95654-16
6.300″	95606-16	7.150″	95623-16	7.950″	95639-16	8.750″	95655-16
6.350″	95607-16	7.200″	95624-16	8.000"	95640-16	8.800″	95656-16
6.400″	95608-16	7.250″	95625-16	8.050″	95641-16	8.850″	95657-16
6.450″	95609-16	7.300″	95626-16	8.100″	95642-16	8.900"	95658-16
6.500″	95610-16	7.350″	95627-16	8.150″	95643-16	8.950″	95659-16
6.550″	95611-16	7.400″	95628-16	8.200″	95644-16	9.000″	95660-16
6.600″	95612-16	7.450″	95629-16	8.250″	95645-16	9.050"	95661-16
6.650″	95613-16	7.500″	95630-16	8.300″	95646-16	9.100″	95662-16
6.700″	95614-16	7.550″	95631-16	8.350″	95647-16	9.150″	95663-16
6.750″	95615-16	7.600″	95632-16	8.400"	95648-16	9.200″	95664-16
6.800″	95616-16						
Pro Series 3/8	" Diameter One-Piece	e Pushrods					
Overall Length	Part No.	Overall Length	Part No.	Overall Length	Part No.	Overall Length	Part No.
7.050″	95777-16	8.050″	95797-16	9.050"	95817-16	10.050″	95837-16
7.100″	95778-16	8.100″	95798-16	9.100″	95818-16	10.100″	95838-16
7.150″	95779-16	8.150″	95799-16	9.150″	95819-16	10.150″	95839-16
7.200″	95780-16	8.200″	95800-16	9.200″	95820-16	10.200″	95840-16
7.250″	95781-16	8.250″	95801-16	9.250″	95821-16	10.250″	95841-16
7.300″	95782-16	8.300"	95802-16	9.300"	95822-16	10.300"	95842-16
7.350″	95783-16	8.350″	95803-16	9.350″	95823-16	10.350″	95843-16
7.400″	95784-16	8.400"	95804-16	9.400"	95824-16	10.400″	95844-16
7.450″	95785-16	8.450″	95805-16	9.450″	95825-16	10.450″	95845-16
7.500″	95786-16	8.500″	95806-16	9.500″	95826-16	10.500″	95846-16
7.550″	95787-16	8.550″	95807-16	9.550″	95827-16	10.550″	95847-16
7.600″	95788-16	8.600″	95808-16	9.600″	95828-16	10.600″	95848-16
7.650″	95789-16	8.650″	95809-16	9.650″	95829-16	10.650″	95849-16
7.700″	95790-16	8.700″	95810-16	9.700″	95830-16	10.700″	95850-16
7.750″	95791-16	8.750″	95811-16	9.750″	95831-16	10.750″	95851-16
7.800″	95792-16	8.800″	95812-16	9.800″	95832-16	10.800″	95852-16
7.850″	95793-16	8.850″	95813-16	9.850″	95833-16	10.850″	95853-16
7.900″	95794-16	8.900″	95814-16	9.900″	95834-16	10.900″	95854-16
	93794-10	0.000					
7.950″	95795-16	8.950"	95815-16	9.950″	95835-16	10.950″	95855-16

Pushrods - Accessories

Adjustable Checking Pushrods

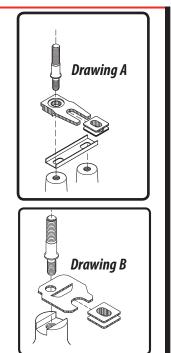
Application	Length	Diameter	Part No.
American Motors V-8 290 thru 401			
	7.500 to 8.700"	5/16″	99726-2
Buick V-8 400 thru 455			
	8.500 to 9.800"	5/16″	99727-2
Chevrolet V-8 262 thru 400			
	7.500 to 8.700"	5/16″	99726-2
Chevrolet V-8 396 thru 454			
	7.500 to 8.700"	5/16″	
	8.500 to 9.800"	5/16″	99730-2
Chrysler "LA" V-8 273 thru 360			
	6.125 to 7.500"	5/16″	99725-2
Chrysler "B" V-8 Low Block 350, 361, 383, 400			
	7.500 to 8.700"	5/16″	99726-2
Chrysler "B" V-8 High Block 413, 426, 440			
	8.500 to 9.800"	5/16″	99727-2
Ford V-8 221 thru 302			
	6.125 to 7.500"	5/16″	99725-2
Ford V-8 Boss 302			
	6.125 to 7.500"	5/16″	99725-2
Ford V-8 351M-400			
	8.500 to 9.800"	5/16″	99727-2
Ford V-8 Boss 351, 351C, 370-429-460			
	7.500 to 8.700"	5/16″	99726-2
Oldsmobile V-8 260 thru 350 and 403			
	7.500 to 8.700"	5/16″	99726-2
Oldsmobile V-8 400, 425, 455			
	8.500 to 9.800"	5/16″	99727-2
Pontiac V-8 326, 389, 400, 421			
	8.500 to 9.800"	5/16″	99727-2

Pushrod Accessories

Pushrod Guideplates

Crane's pushrod guideplates feature a significant increase in strength over stock designs. Their unique design provides a more rigid guide, reduces flexing, stabilizes the pushrod and reduces rocker arm "wander." All sets include 8 guideplates.

Heat treated and carburized pushrods *must be used* with these guideplates, or *premature pushrod wear and failure will occur*. Cylinder head machining and screw-in rocker arm studs may be required to install these guideplates. Refer to the engine application and rocker arm pages for additional information.



Application	Pushrod Diameter	Part No.
Chevrolet 90° V-6 78-86, 200 thru 262		
	5/16″	11650-1
Chevrolet V-8 55-95, 262 thru 400		
	5/16″	11650-1
Chevrolet V-8 97-10, LS1-LS2-LS6 5.7L Vortec 4800, 5300, 6000 (for use with Crane adjustable rocker arms)		
	5/16″	144650-1
	3/8″	144651-1
Chevrolet V-8 08-10, L92 cylinder heads (for use with Crane adjustable rocker arms)		
	5/16″	201650-1
	3/8″	201651-1
Chevrolet V-8 65-90, 396 thru 454 and 502		
	3/8″	13650-1
Ford V-8 62-92, 221 thru 302 and 351W		
	5/16″	36650-1
Ford V-8 69-82, 351C-351M-400		
	5/16"	52650-1

Rocker Arm Guideplate Conversion Kits

Converts Pedestal-Mount Dodge and Ford Cylinder Heads to Adjustable Rocker Arms Crane Cams' rocker arm stud/pushrod guideplate conversion kits enable you to convert latemodel Dodge and Ford V-8 engines with pedestal mount rocker arms to an adjustable-type valve train **without machine work or cylinder head removal**. Detailed description on page 305.

Description	Part No.
Dodge 92-02, Magnum V-8 318 (5.2L) and 360 (5.9L) engines with 5/16"-18 threaded stud bosses. Must use 11746-16 or 11759-16 aluminum rocker arms for 3/8" rocker arm studs and 5/16" dia. 36621-16 (heat treated) pushrods.	36655-16 (Drawing A)
Dodge 92-02, Magnum V-8 318 (5.2L) and 360 (5.9L) engines with 5/16"-18 threaded stud bosses. Must use 11747-16 or 11755-16 aluminum rocker arms for 7/16" rocker arm studs and 5/16" dia. 36621-16 (heat treated) pushrods.	36656-16 (Drawing A)
Dodge Aluminum Magnum and Crate Motor cylinder heads with 3/8"-16 threaded stud bosses. Must use 11746-16 or 11759-16 aluminum rocker arms for 3/8" rocker arm studs and 5/16" dia. 36621-16 (heat treated) pushrods.	70655-16 (Drawing A)
Ford V-8 77-00, 255-302, 302 H.O., 351W engines. Will accept 3/8" stud die-formed steel or Crane aluminum rocker arms and 5/16" diameter pushrods.	36655-16 (Drawing A)
Ford V-8 77-00, 255-302, 302 H.O., 351W engines. Will accept 7/16" stud Crane aluminum rocker arms and 5/16" diameter pushrods.	36656-16 (Drawing A)
Ford V-8 70-82, 351C, 351M, 400, and Ford V-8 72-97, 370-429-460 engines. Will accept 7/16" stud die-formed steel or Crane aluminum rocker arms and 5/16" dia. pushrods.	52655-16 (Drawing B)
Ford V-8 72-97, 370, 429, 460 Engines. Will accept 7/16" stud die-formed steel or Crane aluminum rocker arms and 3/8" diameter pushrods.	35655-16 (Drawing B)
Replacement guideplate insert for 5/16" diameter pushrods (included in kits)	52655GB-16
Replacement guideplate insert for 3/8" diameter pushrods (included in kits)	35655GB-16

Die-Formed Steel

Stock design with better material and heat treat. Many supplied with long slot or extra long slot to provide more travel for increased valve lift. Economically priced for budget engine rebuild.

Ductile Iron Shaft Mounted

Creates adjustable valve train for Chrysler "LA" and "B", and Ford "FE" series engines. Ductile iron is stronger than stock cast iron material. Allows valve lash or lifter preload to be accurately set. Can correct for valve stems that vary in length. Requires new pushrods with cup on one end to fit adjusting screw.

			-				
Application	Ratio	Stud Dia.	Part No.				
Chevrolet 90° V-6 78-87, 200 thru 262 Chevrolet V-8 55-87, 262 thru 400 (Not for use with valve springs over 1.520″ 0.D.)	Die-Formed St	eel, Non Self-Alig	nina				
Stock ratio, factory performance replacement with long slot	1.50	3/8″	11800-16				
Stock ratio, with extra long slot	1.50	3/8″	11801-16				
Increased ratio, with extra long slot (50 state legal, C.A.R.B. E.O. D-225-50)	1.60	3/8″	11802-16*				
Eight each of 1.50 and 1.60 ratio, with extra long slot, includes Kool Nuts (50 state legal, C.A.R.B. E.O. D-225-50)	1.50/1.60	3/8″	11803-16*				
Chevrolet V-8 65-90, 396 thru 454 & 502 (Not for use with valve springs over 1.560" O.D.)	Die-Formed St	eel					
Stock ratio, performance replacement, long slot for up to .560" valve lift	1.70	7/16″	13800-16ª				
Stock ratio, with extra long slot	1.70	7/16″	13801-16ª				
Chrysler-Dodge-Plymouth V-8 64-91, "LA" 273-318-340-360	Ductile Iron Co	onstruction					
Stock ratio, adjustable shaft mount design for standard cylinder heads, (will NOT fit Trans-Am, W-2 or W-5 heads), must use special pushrods. See page 287 for details. New shafts available separately (69618-2).	1.50	Shaft	69770-16				
Increased ratio, adjustable shaft mount design for standard cylinder heads (will NOT fit Trans-Am, W-2 or W-5 heads), must use special pushrods. See page 287 for details. New shafts available separately (69618-2).	1.60	Shaft	69771-16 [*]				
Chrysler-Dodge-Plymouth V-8 58-78,	Ductile Iron Co	onstruction					
Stock ratio, adjustable shaft mount design for standard cylinder heads, (will NOT fit Stage IV or Stage V heads), must use special pushrods. See page 287 for details. When ordering spares, specify Left Adjuster Offset (64770L-1) or Right Adjuster Offset (64770R-1) New shafts available separately (64618-2).	1.50	Shaft	64770-16				
Increased ratio, adjustable shaft mount design for standard cylinder heads, (Will NOT fit Stage IV or Stage V heads), must use special pushrods. See page 287 for details. When ordering spares, specify Left Adjuster Offset (64771L-1) or Right Adjuster Offset (64771R-1) New shafts available separately (64618-2).	1.60	Shaft	64771-16°				
Ford V-8 62-00, 221-260-289-302 and 351W	Cast Construct	ion					
Stock ratio, non-rail type with standard stud diameter	1.60	3/8″	36800-16				
Stock ratio, rail type (self aligning), with standard stud diameter, supplied with both 5/16"-24 and 3/8"-24 nuts.	1.60	3/8″	36801-16				
TECH TIP: Ford cylinder heads with pedestal mount type rocker arms can be easily converted to use adjustable style rocker arms by using a Crane Stud Conversion Kit with Guideplates. See page 305 for details.							
Ford V-8 69-82, Boss 302, Boss 351, 351C-351M-400	Die-Formed St	eel, Pedestal Mou	Int				
Stock ratio, for 70-82 cylinder heads, non-adjustable, secured with 5/16" bolt. For hydraulic lifter and hydraulic roller cam applications only.	1.71	5/16″ Bolt	52800-16				
TECH TIP: Ford cylinder heads with pedestal mount type rocker arms can be easily converted to use adjustable style rocker arms by using a Crane Stud Rocker Arm Stud Conversion Kit. See page 305 for details.							
Ford V-8 63-76, "FE" 352-360-390-406-410-427-428	Ductile Iron Co	onstruction					
Adjustable shaft mount design, stock ratio, must use special pushrods. See page 288 for details. New shafts available separately (34618-2).	1.76	Shaft	34772-16				
Ford V-8 68-97, 370-429-460	Die-Formed St	eel, Pedestal Mou	int				
Stock ratio, for 72-97 cylinder heads, non-adjustable, secured with 5/16" bolt. For hydraulic lifter and hydraulic roller cam applications only.	1.71	5/16" Bolt	52800-16 ^b				
TECH TIP: Ford cylinder heads with pedestal mount type rocker arms can be easily converted to use adjustable style rocker arm Conversion Kit. See page 305 for details.	ms by using a Cra	ne Stud Rocker Arn	n Stud				

Rocker Arms, Steel & Ductile Iron

_ Application	Ratio	Stud Dia.	Part No.
Oldsmobile V-8 67-84, 260-307-350-400-403-425-455	Die-Formed St	teel	
Stock ratio, rocker arms supplied with individual fulcrums, bridge straps, and secured with bolt.		Bridge	80800-16
Pontiac V-8 67-81, 265-287-301-316-326-347-350-370-389-400-421-428-455	Die-Formed St	teel	
Stock ratio, for use with bottleneck studs with 7/16" bottom and 3/8" top, includes spacer washers and 3/8" nuts. 1.50			28800-16

Nitro-Carb Steel Rockers

For Race Use where Rules Require Stock Type Rockers Crane Cams Nitro-Carb [™] rockers offer 3 to 5 times greater resistance to wear, fatigue and fracture in high-stress areas. Available exclusively from Crane Cams, Nitro-Carb rockers eliminate pushrod cup and fulcrum failures with wear resistance and surface hardness properties that are similar to ceramics.	
Nitro-Carb rockers deliver the most accurate ratios of any similar steel rockers. Nitro-Carb rockers are precision die-formed from heat treated steel. Most feature a long-slot design, and come complete with oil-groove pivot balls and adjusting nuts at no extra charge.	
Crane Cams Nitro-Carb rockers are perfect for high valve spring pressure. Testing in-lab and on-track, (using Crane 99846-16 , XHTCS Tool Steel, stock diameter, 1.255" o.d. valve springs, 115 lb. seat, 350 lbs. open pressure) showed Crane Nitro-Carb rockers to be failure-free after enduring millions of running cycles.	
Nitro-Carb rockers should be used anywhere rules require "stock type steel rockers". This includes NHRA Stock and IHRA Pure Stock Class drag racing applications plus oval track categories where stock-type rockers are required. • <i>Small & Big-Block Chevy Applications</i>	ockers
Application	Part No.
Chevrolet 90° V-6 78-87, 200 thru 262	rait NO.
1.5 ratio, extra long slot, 3/8" stud	11801C-1 ^{c,d}
1.6 ratio, extra long slot, 3/8" stud	11802C-1 *c.d
Chevrolet V-8 55-87, 262 thru 400	1100201
1.5 ratio, extra long slot, 3/8" stud	11801 C -16 °
1.6 ratio, extra long slot, 3/8" stud (50 state legal, C.A.R.B. E.O. D-225-50)	11802C-16 *
Chevrolet V-8 88-99, 305 thru 350	
1.5 ratio, self aligning, 3/8" stud	10800C-16 °
Chevrolet V-8 65-90, 396 thru 454	
1.7 ratio, long slot, 7/16" stud	13801C-16 ^f

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

a 1991-00 454-502 Gen V and VI hydraulic cam engines require the installation of 99152-16 7/16"

 1991-00 434-502 Gen V and VI hydraulic cam engines require the installation of 99152-16 //16"
 c

 rocker arm studs and factory pushrod guideplates (no machining required). Mechanical camshaft
 d

 equipped engines require the installation of 99157-16 //16" rocker arm studs and 13650-1
 e

 pushrod guideplates (machining required).
 0

 0 n 68-71 engines equipped with bottleneck studs, using 99768-16 positive locking nuts will permit valve adjustment. The 72-97 engines equipped with pedestal mount rocker arms can use our 36655-16 Conversion Kit for 3/8" pushrods (no machining required) for street applications.

- b
- c Non-self aligning, must be used with pushrod guideplate cylinder heads.
- Order in quantity of 12.

For self-aligning applications only. Not for use with pushrod guideplates, or with cylinder head castings that guide the pushrod, as severe pushrod wear will occur. Not for LS1 series engines.
 f 1992-00 Gen V and VI 454-502 engines require the installation of 99152-16 7/16" rocker arm studs (no machining required) and factory pushrod guideplates.

293

Crane Aluminum Rocker Arms

Crane Cams Aluminum Rocker Arms More Horsepower, Torque And Response In An Easy Bolt-On!

Crane Cams first introduced the racing world to aluminum rockers in 1964, and since then we've manufactured and sold more than seven million Crane aluminum rockers! From the beginning, our famous **Gold-Race™** aluminum rockers have been continually enhanced with design and engineering improvements as well as materials upgrades. Now many generations later, today's **Crane Classic, Energizer®, Gold-Race™, Pro Series** stud-mount, **Gold-Race™** shaft-mount or all-new **Quick-Lift™** rockers are absolutely the strongest, most ratio-accurate, most durable aluminum rockers made!

Crane aluminum rockers are preferred by professional racing engine builders and offer outstanding power and performance advantages for street applications. An easy "Saturday afternoon" installation project, bolting on a set of Crane aluminum rockers can add from 15 up to 30+ horsepower (with increased ratios), plus increase throttle response in a street performance engine. Crane aluminum rockers are so strong, durable and reliable that Ford Motor Company[®] selected our Crane Energizer[®] needle-bearing fulcrum, full-roller rockers for their Cobra V-8 production line engines. To further demonstrate their reliability, they carried the full Ford factory warranty coverage!

Crane Cams offers aluminum rocker arms for nearly all American V-8 and V-6 engines plus many inline four and six-cylinder applications. Stock, plus optional longer-thanstock ratios, are offered for most engines. Some applications also provide offset pushrod seats for use on aftermarket cylinder heads with non-stock port locations. All Crane Cams aluminum rockers come complete with a set of our own positive locking adjusting nuts, or adjusting screws, at no extra cost to you.

The Strongest, Lightest, Most Ratio-Accurate Aluminum Rockers

	Stud Mounted, Full-Roller Fulcrum, Roller Tip				
	Energizer®	Gold-Race ™			
Main Body Material	Aerospace Quality, Vacuum Die-Formed Casting Process	Extruded Billet Heat Treated			
Manufacturing Method	CNC Machined	CNC Machined			
Maximum Open Spring Pressure	• 450 lbs.	700 lbs. Std.900 lbs. Wide-Body			
Fulcrum Design, Unique Features	 Precision Ground Steel Needle Bearings Heat Treated Steel Roller Tips Adjustable Lock Nuts Included 	 Precision Ground Steel Needle Bearings Heat Treated Steel Roller Tips Adjustable Lock Nuts Included 			
Ideal Uses	 Hydraulic & Hydraulic Roller Lifter Equipped Engines Street Performance Bracket Drag Racing Moderate Circle Track Truck Performance 	 Serious Street Bracket Drag Racing Circle Track Race Truck Performance/Race Marine Race or Pleasure Craft 			
Engine Applications	Popular V-8 Engines	Most V-8, 6 Cylinder Inline, V-6 & 4 Cylinder Engines			

Aluminum Rocker Arms, Energizer

Energizer Rocker Arms

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.			0
Application	Ratio	Stud Dia.	Part No.
American Motors V-8 66-91, 290 thru 401			
Stock ratio and standard stud diameter	1.60	3/8″	11746-16ª
Stock ratio with enlarged stud diameter	1.60	7/16″	11747-16 ^b
Chevrolet 90° V-6 78-87, 200 thru 262			
Stock ratio and standard stud diameter	1.50	3/8″	11744-12 [°]
Stock ratio with enlarged stud diameter	1.50	7/16″	11745-12 ^c
Increased ratio with standard stud diameter	1.60	3/8″	11746-12* ^c
Increased ratio with enlarged stud diameter	1.60	7/16″	11747-12*°
Chevrolet V-8 55-87, 262 thru 400			
Stock ratio and standard stud diameter	1.50	3/8″	11744-16 ^c
Stock ratio with enlarged stud diameter	1.50	7/16″	11745-16 [,]
Increased ratio with standard stud diameter (50 state legal, C.A.R.B. E.O. D-225-50)	1.60	3/8″	11746-16 [.]
Increased ratio with enlarged stud diameter (50 state legal, C.A.R.B. E.O. D-225-50)	1.60	7/16″	11747-16 [.]
Chevrolet V-8 65-90, 396-402-427-454-502, also 91-00 454-502 Gen V and VI and 01-08 8.1 Litre			
Stock ratio and standard stud diameter	1.70	7/16″	13744-16 ^d
Chrysler-Dodge-Plymouth 92-00, "Magnum" 318 (5.2L), 360 (5.9L) (except Magnum R/T)			
Stock ratio, must use Crane's stud conversion kit with guideplates (36655-16), and pushrods (36668-16), to convert from the stock pedestal rocker arm to this adjustable stud mount design. (Optional heat treated pushrods available, part no. 36621-16 .) Stock valve covers must be modified or spaced upward approximately 3/8" to avoid interference	1.60	3/8″	11746-16
Ford V-8 62-00, 221-255-260-289-302-351W			
Stock ratio and standard stud diameter	1.60	3/8″	11746-16°
Stock ratio with enlarged stud diameter	1.60	7/16″	11747-16 ^f
Ford V-8 77-00, 255-302, 5.0L H.O. and 351W		.,	
Increased ratio, pedestal mount type for 77-00 cylinder heads, non-adjustable, secured with 5/16" bolt. For hydraulic lifter, and hydraulic roller cam applications only.	1.70	5/16″ Bolt	44746-16 ⁹
Ford V-8 69-82, Boss 302, Boss 351, 351C-351M-400			
Stock ratio and standard Boss stud diameter	1.72	7/16″	27744-16 ^h
Ford V-8 68-97, 370-429-460			
Stock ratio and standard Cobra Jet stud diameter	1.72	7/16″	27744-16 ⁱ
Oldsmobile V-8 67-91, 260-307-350-400-403-425-455 cu.in.			
Increased ratio for 3/8" straight studs	1.65	3/8″	80744-16 ^{* j}
Pontiac V-8 67-81, 265 thru 455 with Straight 7/16" Rocker Arm Studs			
Increased ratio with enlarged stud diameter.	1.65	7/16″	28747-16 ^{* k}

Must machine 74-91 cylinder heads and install 99156-16 3/8" rocker arm studs and aftermarket pushrod guideplates. Special order heat treated pushrods are required for use with guideplates. b Must machine 66-91 cylinder heads and install 99157-16 7/16" rocker arm studs and aftermarket

pushrod guideplates. Special order heat treated pushrods are required for use with guideplates. c The 1988-99 engines equipped with self-aligning rocker arms require the installation of pushrod guideplates (and 99157-167/16" rocker arm studs, if applicable) and appropriate heat treated pushrods in order for these rocker arms to function properly. Valve cover clearance must also be checked. Not suitable for use with center-bolt valve covers.

- d The 1991-2000 Gen V & VI engines require the installation of 99152-16 7/16" rocker arm studs (no machining required) & factory pushrod guideplates. For applications w/ over 480 pounds open valve spring pressure, the cylinder heads must be machined for the installation of **99157-16** 7/16" rocker arm studs & 13650-1 pushrod guideplates. The 2001-2008 8.1L engines require the installation of 99155-16 7/16" rocker arm studs (no machining required) & factory pushrod guideplates. Must machine 66-00 cylinder heads and install 99156-16 3/8" rocker arm studs and 36650-1
- e pushrod guideplates (heat treated pushrods required), or use 36655-16 Conversion Kit (no machining required) on 77-00 pedestal mount cylinder heads for street applications.

f Must machine 66-00 cylinder heads and install 99157-16 7/16" rocker arm studs and 36650-1 pushrod guideplates (heat treated pushrods required).

Includes Rocker Arm Pedestal Shim Kit 99170-1.

g h The 351C-351M-400 engines equipped with pedestal mount rocker arms require the use of 52655-16 Conversion Kit (no machining required) for street applications.

- i On 68-71 engines equipped with bottleneck studs, install 99159-16 straight 7/16" studs to permit valve adjustment. The 72-97 engines equipped with pedestal mount rocker arms can use our 35655-16 Conversion Kit for 3/8" pushrods (no machining required) for street applications.
- Must machine cylinder heads and install 99156-16 3/8" rocker arm studs and aftermarket pushrod quideplates (special length heat treated pushrods required). On engines not equipped with 7/16" rocker arm studs, cylinder head machining is required for the
- installation of 99157-16 7/16" rocker arm studs.

NOTE:

Energizer rocker arms are recommended for hydraulic lifter and hydraulic roller camshaft equipped engines only. Energizer rocker arms with 11 and 44 prefix part numbers will accept a maximum valve spring dia. of 1.500" and maximum spring pressure of 500 lbs. Energizer rockers with 13, 28, and 80 prefix part numbers will accept a maximum valve spring diameter of 1.550" and 500 lbs. maximum spring pressure.

Crane Aluminum Rocker Arms

Crane Cams Aluminum Rocker Arms More Horsepower, Torque And Response In An Easy Bolt-On!

Crane Cams first introduced the racing world to aluminum rockers in 1964, and since then we've manufactured and sold more than seven million Crane aluminum rockers! From the beginning, our famous **Gold-Race™** aluminum rockers have been continually enhanced with design and engineering improvements as well as materials upgrades. Now many generations later, today's **Crane Classic, Energizer®, Gold-Race™, Pro Series** stud-mount, **Gold-Race™** shaft-mount or all-new **Quick-Lift™** rockers are absolutely the strongest, most ratio-accurate, most durable aluminum rockers made!

Crane aluminum rockers are preferred by professional racing engine builders and offer outstanding power and performance advantages for street applications. An easy "Saturday afternoon" installation project, bolting on a set of Crane aluminum rockers can add from 15 up to 30+ horsepower (with increased ratios), plus increase throttle response in a street performance engine. Crane aluminum rockers are so strong, durable and reliable that Ford Motor Company[®] selected our Crane Energizer[®] needle-bearing fulcrum, full-roller rockers for their Cobra V-8 production line engines. To further demonstrate their reliability, they carried the full Ford factory warranty coverage!

Crane Cams offers aluminum rocker arms for nearly all American V-8 and V-6 engines plus many inline four and six-cylinder applications. Stock, plus optional longer-thanstock ratios, are offered for most engines. Some applications also provide offset pushrod seats for use on aftermarket cylinder heads with non-stock port locations. All Crane Cams aluminum rockers come complete with a set of our own positive locking adjusting nuts, or adjusting screws, at no extra cost to you.

The Strongest, Lightest, Most Ratio-Accurate Aluminum Rockers

	Stud Mounted, Full-Roller Fulcrum, Roller Tip				
	Energizer®	Gold-Race ™			
Main Body Material	Aerospace Quality, Vacuum Die-Formed Casting Process	Extruded Billet Heat Treated			
Manufacturing Method	CNC Machined	CNC Machined			
Maximum Open Spring Pressure	• 450 lbs.	700 lbs. Std.900 lbs. Wide-Body			
Fulcrum Design, Unique Features	 Precision Ground Steel Needle Bearings Heat Treated Steel Roller Tips Adjustable Lock Nuts Included 	 Precision Ground Steel Needle Bearings Heat Treated Steel Roller Tips Adjustable Lock Nuts Included 			
Ideal Uses	 Hydraulic & Hydraulic Roller Lifter Equipped Engines Street Performance Bracket Drag Racing Moderate Circle Track Truck Performance 	 Serious Street Bracket Drag Racing Circle Track Race Truck Performance/Race Marine Race or Pleasure Craft 			
Engine Applications	Popular V-8 Engines	Most V-8, 6 Cylinder Inline, V-6 & 4 Cylinder Engines			

Aluminum Roller Rockers, Gold Race Extruded—Stud Mount

Gold Race Extruded Rocker Arms

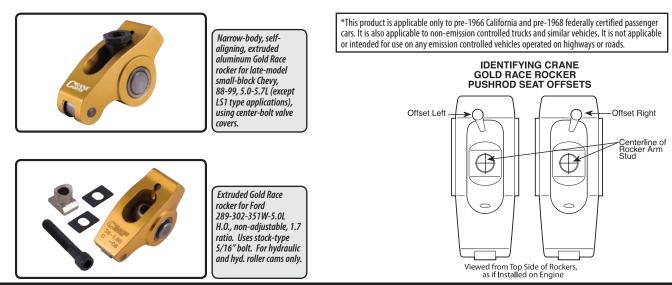
Crane Cams' needle-bearing fulcrum, roller-tip, extruded aluminum rocker arms have been racing's most popular aluminum rockers since their introduction in 1964.

Now, over seven million rockers later, the nation's leading racers and engine builders know they can trust the strength, ratio accuracy, quality, and reliability of Crane's famous gold anodized, aluminum rockers.

Custom ratios, offsets, and stud sizes available. Contact Crane's Performance Consultants for details.

Application	Ratio	Stud Dia.	Part No.
American Motors V-8 66-91, 290-304-343-360 (5.9L)-390-401 cu.in.			
Stock ratio and standard stud diameter	1.60	3/8″	36750-16ª
Stock ratio with enlarged stud diameter	1.60	7/16″	86757-16 ^b
Increased ratio with enlarged stud diameter	1.70	7/16″	36757-16 ^{*b}
Chevrolet I-6 62-84, 194-230-250-292 cu.in.			
Stock ratio and standard stud diameter	1.70	3/8″	20750-12 ^c
Stock ratio with enlarged stud diameter	1.70	7/16″	13750-12 [,]
Chevrolet 60° V-6 80-94, 173 (2.8L) and 189 (3.1L) cu.in.	Non-Self Ali	gning, Narrow Bo	dy Rocker Arms
Stock ratio with special stud diameter	1.50	3/8″	25750-12 ^d
Increased ratio with special stud diameter	1.60	3/8″	25759-12 ^{*d}
Chevrolet 90° V-6 78-86, 200-229 (3.8L) and 262 (4.3L) and Chevrolet V-8 55-87, 262-267-283-302-305 (5.0L)-307-327-350 (5.0L)-400 cu.in.	Non-Self Ali	gning Rocker Arm	5
Stock ratio and standard stud diameter	1.50	3/8″	11750-16
Stock ratio with enlarged stud diameter, clears 1.630" O.D. springs	1.50	7/16″	11752-16
Stock ratio with enlarged stud diameter, clears 1.630" O.D. springs, new "Wide Body" design for severe usage applications	1.50	7/16"	11771-16
Increased ratio and standard stud diameter (50 state legal, C.A.R.B. E.O. D-225-50)	1.60	3/8″	11759-16
Increased ratio with enlarged stud diameter, clears 1.630" O.D. springs (50 state legal, C.A.R.B. E.O. D-225-50)	1.60	7/16″	11755-16
Increased ratio with enlarged stud diameter, clears 1.630" O.D. springs, new "Wide Body" design for severe usage applications	1.60	7/16"	11772-16
Eight each of 1.5 (11750) and 1.6 (11759) ratio, with standard stud diameter (50 state legal, C.A.R.B. E.O. D-225-50)	1.5/1.6	3/8″	11748-16
Increased ratio and standard stud diameter	1.7	3/8″	70759-16*
Chevrolet 90° V-6 87-91, 262 (4.3L) Chevrolet V-8 88-99, 305 (5.0L)-350 (5.7L) cu.in.		gning, Narrow Bo olt Valve Covers	dy Rocker Arms
Stock ratio and standard stud diameter	1.50	3/8″	10750-16°
Increased ratio and standard stud diameter (50 state legal, C.A.R.B. E.O. D-225-50)	1.60	3/8″	10759-16°
	Self Alignin Center Bolt	g, Narrow Body Ro Valve Covers	cker Arms For
Stock ratio and standard stud diameter (cannot be used with a mechanical lifter cam)	1.50	3/8″	10751-16 ^f
Increased ratio and standard stud diameter (cannot be used with a mechanical lifter cam) (50 state legal, C.A.R.B. E.O. D-225-50)	1.60	3/8″	10758-16 ^f
Increased ratio and standard stud diameter with limited lift travel (.550" maximum) and certified ratio for crate motor rules applications. (Non-anodized)	1.60	3/8″	10756-16 ^{*f}

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.


- a Must machine 74-91 cylinder heads and install 99156-16 3/8" rocker arm studs and aftermarket pushrod guideplates. Special order heat treated pushrods are required for use with guideplates.
 b Must machine 66-91 cylinder heads and install 99157-16 7/16" rocker arm studs and aftermarket
- Must machine 66-91 cylinder heads and install 99157-16 7/16" rocker arm studs and aftermarket pushrod guideplates. Special order heat treated pushrods are required for use with guideplates.
 Requires 20622-12 pushrods for 194-230-250 engines.
- d For inline valve cylinder heads. Set includes special 10mm x 1.50 bottom x 3/8" x 24 top rocker arm studs (99148-12), no machining required. Check valve covers and intake manifold for clearance throughout the lift cycle.
- e The 1988-99 engines equipped with self-aligning rocker arms require the installation of pushrod guideplates (and 99156-16 rocker arm studs, if applicable) and appropriate heat treated pushrods in order for these rocker arms to function properly. Valve cover clearance must also be checked in late model applications.
- f For use in self-aligning applications. Do not use with pushrod guideplates or with cylinder head castings that guide the pushrods, as severe pushrod wear will occur. Not for use in LS1 type engines.

Aluminum Roller Rockers, Gold Race Extruded—Stud Mount

Gold Race Extruded Rocker Arms

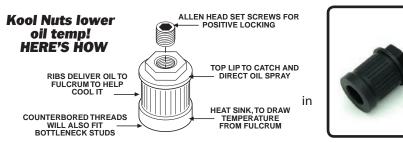
Application	Ratio	Stud Dia.	Part No.
Chevrolet V-8 58-65, 348-409-427 (Z-11)			
Stock ratio and standard stud diameter	1.70	3/8″	15750-16
Stock ratio and enlarged stud diameter	1.70	7/16″	13750-16
Chevrolet V-8 65-90, 396-402-427-454-502 also 91-00, 454-502 Gen V and VI and 01-08 8.1 Litre			
Reduced ratio and standard stud diameter	1.65	7/16″	13759-16 ^b
Stock ratio and standard stud diameter	1.70	7/16″	13750-16 ^b
Stock ratio and standard stud diameter, new "Wide Body" design for severe usage applications	1.70	7/16″	13763TR-16 ^b
Increased ratio and standard stud diameter (50 state legal, C.A.R.B. E.O. D-225-50)	1.80	7/16″	13755-16 ^b
Chrysler-Dodge-Plymouth V-8 92-00, "Magnum" 318 (5.2L), 360 (5.9L) cu.in. (except Magnum R/T)			
Stock ratio, must use Crane's Rocker Arm Stud Conversion Kit, part no. 36655-16 , and pushrods, part no. 36668-16 , to convert from the stock pedestal rocker arm to this adjustable stud mount design. (Optional heat treated pushrods available, part no. 36621-16 .) Stock valve covers must be modified, or spaced upward approximately 3/8" to avoid interference.	1.60	3/8″	11759-16
Increased ratio, must use Crane's Rocker Arm Stud Conversion Kit, 36655-16 and pushrods, 36668-16 to convert from the stock pedestal rocker arm to this adjustable stud mount design (Optional heat-treated pushrods available 36621-16) Stock valve covers must be modified, or spaced upward approximately 3/8" to avoid interference.	1.70	3/8″	70759-16*

Aluminum Roller Rockers, Gold Race Extruded—Stud Mount

Gold Race Extruded Rocker Arms

Application	Ratio	Stud Dia.	Part No.
Ford V-8 62-00, 221-260-289-302-351W cu.in. (And 5.0L H.O.)			
Stock ratio and standard stud diameter	1.60	3/8″	36750-16 ^d
Stock ratio pedestal mount type for 77-00 cylinder heads, non-adjustable, secured with 5/16" bolt. For hydraulic lifter and hydraulic			
roller cam applications only.	1.60	5/16" Bolt	36759-16°
Stock ratio with enlarged stud diameter	1.60	7/16″	86757-16 ^f
Increased ratio pedestal mount type for 77-00 cylinder heads, non-adjustable, secured w/ 5/16" bolt. For hydraulic lifter and hydraulic roller cam applications only.	1.70	5/16″ Bolt	36758-16°
Increased ratio with enlarged stud diameter (50 state legal, C.A.R.B. E.O. D-225-17)	1.70	7/16″	36757-16 ^f
Ford V-8 62-00, 221-260-289-302-351W and 302 SVO/302 Boss/351SVO blocks equipped with M-6049-N351 Sportsman cylinder heads			
Stock ratio with enlarged stud diameter, exhaust	1.60	7/16"	86757-1
NOTE: (These rocker arms are listed and sold individually)			
Ford V-8 351W and BOSS 351 Ford Racing blocks equipped with Dart Pro 1 cylinder heads			
Reduced ratio with enlarged diameter, and certified ratio for crate motor rules applications (Non-anodized)	1.50	7/16″	44755-16
Ford V-8 351W and BOSS 351 Ford Racing blocks equipped with Ford Racing Z304 cylinder heads			
Reduced ratio with enlarged diameter, .150" right offset intake, and certified ratio for crate motor rules applications (Non-anodized)	1.50	7/16″	44756-16
Ford V-8 69-82, 351C-351M-400, Boss 302 and 351 cu.in.			
Reduced ratio and standard Boss stud diameter	1.60	7/16"	27757-16 ⁹
Reduced ratio and standard Boss stud diameter	1.65	7/16″	27759-16 ⁹
Stock ratio and standard Boss stud diameter	1.73	7/16″	27750-16 ⁹
Stock ratio and standard Boss stud diameter, new "Wide Body" design for severe usage applications	1.73	7/16″	27771-16 ⁹
Ford V-8 68-97, 370-429-460 cu.in.			
Reduced ratio and standard Cobra Jet stud diameter	1.60	7/16″	27757-16 ^h
Reduced ratio and standard Cobra Jet stud diameter	1.65	7/16″	27759-16 ^h
Stock ratio and standard Cobra Jet stud diameter	1.73	7/16″	27750-16 ^h
Stock ratio and standard Cobra Jet stud diameter, new "Wide Body" design for severe usage applications	1.73	7/16″	27771-16 ^h
Oldsmobile V-8 67-91, 260-307-350-400-403-425-455 cu.in.			
Stock ratio with enlarged stud diameter	1.60	7/16″	80757-16 ⁱ
Increased ratio, with enlarged stud diameter	1.70	7/16″	36757-16
Pontiac V-8 67-81, 265-287-301-316-326-347-350-389-400-421-428-455 cu.in.			
Increased ratio for 7/16" straight studs	1.65	7/16″	28758-16*°

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.


- **b** The 1991-2000 Gen V and VI engines require the installation of **99152-16** 7/16" rocker arm studs (no machining required) and factory pushrod guideplates. For applications with over 480 pounds open valve spring pressure, the cylinder heads must be machined for the installation of 99157-16 7/16" rocker arm studs and 13650-1 pushrod guideplates. The 2001-2008 8.1L engines require the installation of **99155-16** 7/16" rocker arm studs (no machining required) and factory pushrod **h** guideplates.
- Must machine cylinder head and install 99157-16 7/16" rocker arm studs.
- d Must machine 66-00 cylinder heads and install 99156-16 3/8" rocker arm studs and 36650-1 pushrod guideplates (heat treated pushrods required), or use 36655-16 Conversion Kit (no machining required) on 77-00 pedestal mount cylinder heads for street applications.
- Includes Rocker Arm Pedestal Shim Kit 99170-1.

- f Must machine 66-00 cylinder heads and install 99157-167/16" rocker arm studs and 36650-1
- pushrod guideplates (heat treated pushrods required). The 351C-351M-400 engines equipped with pedestal mount rocker arms require the use of our q 52655-16 Conversion Kit (no machining required) for street applications.
- On 68-71 engines equipped with bottleneck studs, install 99159-16 straight 7/16" studs to permit valve adjustment. The 72-97 engines equipped with pedestal mount rocker arms can use our **35655-16** Conversion Kit for 3/8" pushrods (no machining required) for street applications.
- i Must machine cylinder heads and install 99157-16 7/16" rocker arm studs and aftermarket pushrod guideplates (special length heat treated pushrods required).

Rocker Arm Adjusting Nuts, Screws

Steel Rocker Arm Adjusting Nuts, "Kool Nuts™"

Crane's locknuts for stamped steel rocker arms are available in selflocking type standard configurations, and in our patented **Kool Nut**[™] oil deflection design. These direct the pressure-fed oil flow to the pivot ball-rocker arm interface, resulting in superior lubrication and cooling this critical area.

Stud Dia. & Thread	Description	Part No.
	Description	rait NU.
5/16"-24	Self locking	99772-16
3/8″-24	Self locking	99770-16
3/8″-24	Kool Nuts [™] with oil deflector for improved cooling and lubrication. Counterbored on bottom to also fit bottleneck studs	99768-16
7/16″-20	Self locking	99771-16
7/16″-20	Kool Nuts TM with oil deflector for improved cooling and lubrication. Counterbored on bottom to also fit bottleneck studs	99769-16

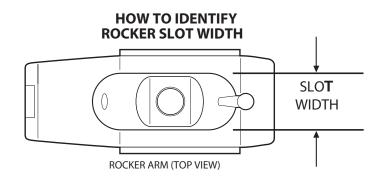
Shaft-Type Rocker Arm Adjusting Screws

Crane shaft-type rocker arm adjusting screws are precision machined from premium steel billet material and selectively hardened to provide maximum strength. These screws are extremely lightweight and drilled for oiling when necessary.

Stud Dia. & Thread	Ball/Cup Diameter	Description	Part No.
3/8″-24	5/16" ball	Chrysler V-8 "LA", "B", and 426 Hemi, with locknut	99802-16
3/8″-24	5/16" cup	For Sportsman Series shaft mount rocker arms and Ford FE V8 332 through 428 with 34791-1 rocker arm set	99785-16
3/8″-24	5/16" cup	For Pro Series shaft mount rocker arms	99785-16
3/8″-24	3/8" ball	Chrysler V-8 "LA", "B", and 426 Hemi, with locknut (For severe duty applications, special pushrods required)	99780-16
7/16″-20	5/16" ball	Chrysler V-8 "LA", "B", and 426 Hemi, with locknut (For repair or ratio modification of rocker arms)	66770AS-16
7/16"-20	3/8″ ball	Ford V-8 332 thru 428, with locknut, for 34772-16 ductile iron rocker arms	99680-16

Rocker Arm Adjusting Nuts, Screws

Rocker Arm Adjusting Nuts


Crane locknuts for Crane's roller-tip, needle bearing aluminum rocker arms feature highest quality metal bar stock, precision machined on our own automatic screw machines and heat treated in house for maximum strength and durability. Each Crane locknut comes complete with an Allen-head set screw for positive jam nut operation.

NOTE: Since mid-1985, most Crane Gold Race stud mount extruded rocker arms (except narrow body versions) and Crane Classic rocker arms have had a .600" wide top slot. Crane Energizer stud mount rocker arms have a .570" wide top slot.

Stud Diameter & Thread	Minimum Rocker Slot Width	Aluminum Rocker Adjusting Nut Part No.	Overall Height	VTS Bar (Stud Girdle Adjusting Nut Part No.) Overall Height	
3/8″-24	.550″	99788-16	1.063″	99803-8	2.013″	
3/8″-24	.550″	99795-16	.860″			
		(For center bolt valve cove	er applications)			
3/8″-24	.600″	99764-2	.700″			
		(For Crane Chevrolet LS1 r	rocker arm kit)			
3/8″-24	.600″	99793-16	1.063″			
7/16″-20	.550″	99790-16	.922″			
7/16″-20	.550″			99805-8	2.512″	
				(For Chevrolet V-8 396	thru 454 intake)	
7/16″-20	.600″	99792-16	.969″	99810-8	2.013″	
7/16″-20	.600″			99809-8	2.637″	
				(For Chevrolet V-8 396	thru 454 intake)	

Rocker Arm Shim Kits

Rocker Arm Bridge Shim Kit

Crane's Rocker Arm Bridge Shim Kit will correct for excessive hydraulic lifter preload on late model American Motors V-8's, and I-6's, and Oldsmobile V-8's with the bridge mounted rocker arm assemblies. This kit will also work on the later model Pontiac 151 I-4's with shoulder bolt mounted rocker arms. Two different thickness shims are included to decrease lifter preload by approximately .030", .060" or .090" depending on the combination of shims being used between the bridge and the cylinder head. Excessive preload may be caused by a camshaft change, valve job, head resurfacing, etc. These shims can be a quick and easy alternative to resorting to different length pushrods.

Description

Kit of 32 Rocker Arm Bridge Shims

Rocker Arm Pedestal Shim Kit

Crane's Rocker Arm Pedestal Shim Kit is for use on Ford engines utilizing non-adjustable pedestal mounted rocker arms. The hydraulic lifters in these engines may have excessive preload due to a camshaft change, valve job, head resurfacing, etc. To cure this problem, without resorting to different pushrods, we offer this pedestal shim kit containing two different thickness shims. These shims are placed between the rocker arm pedestal and the cylinder head, and will reduce the preload by approximately .030", .060", or .090". These will fit the Ford V-8, 255-302, 302 H.O., 351W, 351C, 351M, 400, and 370-429-460 engines.

Description	Part No.
Kit of 32 Rocker Arm Pedestal Shims	99170-1

Needle Bearing Roller Fulcrum Conversion Kit

Crane Cams' drop-in needle bearing fulcrum conversion kit for Ford pedestal-mount rocker arms enables you to retrofit standard non-adjustable rockers with fully rollerized fulcrum assemblies. This eliminates the greatest source of friction in the rocker arm, resulting in less wasted horsepower, lower oil temperatures, greater strength and load carrying abilities, greater vacuum at a given RPM, and better fuel economy. This kit is intended for use with hydraulic lifter and hydraulic roller camshaft applications only.

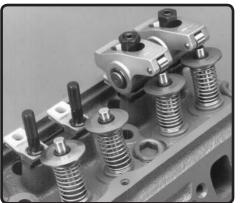
All hardware is included: New heat treated fulcrums; needle bearing assemblies and hardened hold-down bolts. Pedestal shim kit also included to enable you to optimize hydraulic lifter preload for best performance and reliability. No machining required.

These will fit all pedestal mount factory rocker arms for Ford V-8 engines: 77-00 255 and 302, 77-97 351W, 70-82 351C, 351M, 400, 73-97 370-429-460. Rocker arms NOT included.

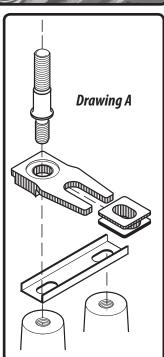
Application	Part No.
Complete drop-in assembly.	36806-16

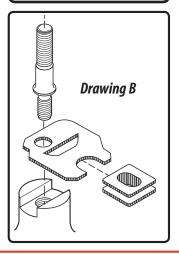
ulic lifter preload on late he bridge mounted ntiac 151 I-4's with included to decrease he combination of sive preload may be se shims can be a quick Part No. 99179-1	

included


Rocker Arm Guideplate Conversion Kits

Rocker Arm Guideplate Conversion Kits


Converts Pedestal-Mount Dodge and Ford Cylinder Heads to Adjustable **Rocker Arms**


Crane Cams' rocker arm stud/pushrod guideplate conversion kits enable you to convert late-model Dodge and Ford V-8 engines with pedestal mount rocker arms to an adjustable-type valve train without machine work or cylinder head removal. These kits allow standard pushrods to be retained, in most instances, as the guideplate uses a special composite insert that prevents metal-to-metal contact. Each kit includes guideplates, guideplate inserts, studs, stud installation nut, and complete instructions. (Rocker arms, adjusting nuts, and pushrods are not included.) These kits are intended for mild performance applications using hydraulic lifter or hydraulic roller cams, and are not recommended for competition usage.

Description

Description	Part No.
Dodge 92-02, Magnum V-8 318 (5.2L) and 360 (5.9L) engines with 5/16"-18 threaded stud bosses. Must use 11746-16 or 11759-16 aluminum rocker arms for 3/8" rocker arm studs and 5/16" dia. 36621-16 (heat treated) pushrods.	36655-16 (Drawing A)
Dodge 92-02, Magnum V-8 318 (5.2L) and 360 (5.9L) engines with 5/16"-18 threaded stud bosses. Must use 11747-16 or 11755-16 aluminum rocker arms for 7/16" rocker arm studs and 5/16" dia. 36621-16 (heat treated) pushrods.	36656-16 (Drawing A)
Dodge Aluminum Magnum and Crate Motor cylinder heads with 3/8"-16 threaded stud bosses. Must use 11746-16 or 11759-16 aluminum rocker arms for 3/8" rocker arm studs and 5/16" dia. 36621-16 (heat treated) pushrods.	70655-16 (Drawing A)
Ford V-8 77-00, 255-302, 302 H.O., 351W engines. Will accept 3/8" stud die-formed steel or Crane aluminum rocker arms and 5/16" diameter pushrods.	36655-16 (Drawing A)
Ford V-8 77-00, 255-302, 302 H.O., 351W engines. Will accept 7/16" stud Crane aluminum rocker arms and 5/16" diameter pushrods.	36656-16 (Drawing A)
Ford V-8 70-82, 351C, 351M, 400, and Ford V-8 72-97, 370-429-460 engines. Will accept 7/16" stud die-formed steel or Crane aluminum rocker arms and 5/16" dia. pushrods.	52655-16 (Drawing B)
Ford V-8 72-97, 370, 429, 460 Engines. Will accept 7/16" stud die-formed steel or Crane aluminum rocker arms and 3/8" diameter pushrods.	35655-16 (Drawing B)
Replacement guideplate insert for 5/16" diameter pushrods (included in kits)	52655GB-16
Replacement guideplate insert for 3/8" diameter pushrods (included in kits)	35655GB-16

Rocker Arm Stud Conversion Kits

Rocker Arm Conversion Stud Kits for Big-Block Chevy Gen V & VI V-8, 454-502 cu.in. and 8.1 Litre V-8

Converts Non-Adjustable Chevrolet Gen V & VI 454-502 and 8.1L V-8 Engines to Adjustable Rocker Arms

Chevrolet's 1991-00 Gen V and VI, 454-502 and 01-08 8.1 litre big-block V-8 engines offer great performance potential but are handicapped by their non-adjustable, selfaligning rocker arms and valve train. In stock form this system works great, but for performance applications or any instance where an aftermarket camshaft and valve train are called for, the answer is "no way"!

Now Crane Cams offers an ingenious, simple, easy and low-cost way to convert these non-adjustable valve train engines to the obvious performance advantages of high strength, screw-in rocker studs, pushrod guideplates, and die-formed steel rockers or roller fulcrum, aluminum rocker arms.

These are unique rocker arm studs that replace the stock studs without retapping, machining or removal of the cylinder heads.

For the Gen V and VI, rocker arm stud kit **99152-16** is made with a 3/8" diameter bottom thread that bolts directly into the stock rocker bolt location. On top is a 7/16" threaded stud end that allows you to install any adjustable Chevy big-block rocker directly onto the stud. Factory pushrod guideplates must be used to correctly align the pushrods. You can use part no. **13634-16** heat treated pushrods or 3/8" diameter stock pushrods from any big-block Chevy V-8 equipped with adjustable rockers.

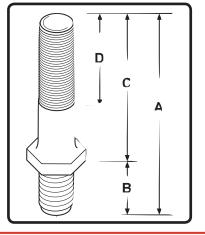
The Crane **99152-16** "big-and-small" studs are not recommended for use in competition applications, or with valve spring open pressures over 480 lbs. For those applications use **99157-16** 7/16" x 7/16" studs (you must drill and re-tap new threads in the heads) and **13650-1** guideplates.

For the 2001-08 8.1 litre engines, rocker arm stud kit **99155-16** incorporates a 10mm-1.5 bottom thread that bolts into the stock rocker stand location. The 7/16"-20 top thread again allows you to use any adjustable Chevy big-block rocker. Our **26640-16** Pro Series one piece heavy wall heat treated pushrods are recommended for proper valve train geometry.

Application	Part No.
Chevrolet V-8 91-00, 454 and 502 Gen V and Gen VI Engines	99152-16
Chevrolet V-8 01-08, 8.1 Litre Engines	99155-16

INSTALLATION OF CONVERSION STUDS IN '91-00 GEN V AND GEN VI HEADS, AND 01-UP 8.1L HEADS, ENABLING USE OF ADJUSTABLE ROCKER ARMS Part No. 99152-16 for Gen V and Gen VI engines 3/8"-16 for Gen V and Gen VI engines 10mm-1.5 for 8.1 Litre engines Must re-use the factory guideplate with conversion studs

Rocker Arm Studs


Rocker Arm Studs

Crane's screw-in rocker arm studs eliminate problems resulting from press-in studs pulling out at high RPM and in high valve spring pressure applications. Made from high quality alloy steel, Crane studs are precision machined and heat treated for reliable operation with today's valve train loading. Specially machined threads and shoulder area assures firm and positive rocker arm support with minimum movement or distortion.

The **99148** studs are used to convert Chevrolet 60° V-6 80-94, 2.8-3.1L engines with non-self aligning 10mm stud rocker arms to use adjustable narrow body 3/8" stud rocker arms without cylinder head machining.

Top Stud Diameter	Bottom Stud Diameter					
& Thread	& Thread	Dim. A	Dim. B	Dim. C	Dim. D	Part No.
3/8″-24	5/16"-18	2.313	.813	1.500	.875	99146-16
3/8″-24	3/8″-16	2.313	.813	1.500	.875	99145-16
3/8″-24	10mm-1.5	2.384	.813	1.572	.582	99148-16
3/8″-24	7/16″-14	2.396	.700	1.750	.806	99156-16
7/16″-20	5/16"-18	2.313	.813	1.500	.875	99147-16
7/16″-20	7/16″-14	2.560	.800	1.760	.860	99157-16
7/16″-20	3/8″-16	2.650	.750	1.900	1.000	99152-16
	Chevrolet Gen V and VI en valve spring pressure			es, not recomi	mended for ap	plications with
7/16″-20	10mm-1.5	2.650	.750	1.900	1.000	99155-16
(Conversion stud for	Chevrolet 8.1 litre V-8,	must use fact	ory guideplate	es, no machinir	ng required.)	
7/16″-20	7/16″-14	2.670	.740	1.930	1.060	99159-16

Pro Series Rocker Arm Studs

Crane Cams professional quality, Pro-Series rocker arm studs feature an extra large radii for reduced stud flex, even with today's extreme valve spring pressures and high rpm racing engine operating levels. Our Pro-Series rocker studs are precision manufactured from 190,000 P.S.I. strength alloy steel material with rolled threads, and precise top-to-bottom concentricity. These are state-of-the-art items designed and priced for those seeking the highest quality parts available. The **99151** stud has a longer than normal unthreaded portion in the top section, providing superior support and stability for the rocker arm fulcrum.

Top Stud Diameter & Thread	Bottom Stud Diameter & Thread	Dim. A	Dim. B	Dim. C	Dim. D	Part No.
3/8″-24	8mm-1.25	2.157	.720	1.437	.625	99154-16
3/8″-24	8mm-1.25	2.360	.615	1.745	.800	99158-16
7/16″-20	7/16″ -14	2.650	.750	1.900	1.000	99153-16
7/16″-20	7/16″-14	2.700	.800	1.900	.800	99151-16

Timing Chains and Components

Performance Steel Billet, CNC Machined, Roller Timing Chain Sets

Crane Performance Steel Billet Gear and Roller Chain Sets offer the precision, strength and accuracy of billet steel, CNC machined camshaft and crankshaft sprockets with the strength, friction reduction and wear resistance of a double-row, roller timing chain. Most kits include a seven keyway crank sprocket for easy degreeing of your camshaft. Where applicable, most sets are machined for, and include, a thrust shim.

Note: Due to the increased width of the sprockets and chain, clearance must be checked between the timing set and the block casting. Some applications may require minor grinding of the block for clearance.

Application	Set Part No.
Chevrolet 90° V-6 78-86, 200 thru 262 cu. in. and Chevrolet V-8 55-87, 262 thru 400 cu. in.	
	11975-1*
Chevrolet 90° V-6 78-86, 200 thru 262 cu. in. and Chevrolet V-8 55-87, 262 thru 400 cu. in. with thrust bearing	
	11976-1*
Chevrolet V-8 87-91, 305 and 350 cu. in. with Factory Hydraulic Roller Camshaft	
Complete set with multiple keyway crank sprocket and captured needle bearing thrust washer.	10975-1*
Chevrolet V-8 65-95, 396-402-427-454-502 cu. in. (including Gen V)	
(NOTE: Does not fit Gen VI or 8.1L)	13975-1*
Chrysler Hemi V-8 51–56, 301-331-354 cu. in. and 57–58 392 cu. in.	
	69975-1 [*]
Chrysler-Dodge-Plymouth "LA" V-8 64-93, 273-340-360 cu. in. and 67-91, 318 cu. in.	
	69975-1 [*]
Chrysler-Dodge Magnum V8 92-02, 5.2-5.9 litre	
	69975-1 [*]
Chrysler-Dodge-Plymouth "B" V-8 70-78, 383 thru 440 cu. in. (Three bolt), and Chrysler-Dodge-Plymouth V-8 66-71, 426 Hemi	
	68975-1*
Ford V-8 73-01, 255 (4.2 L)-302-302 H.O-351W	
	44975-1*
Ford V-8 69-82, 351C-351M-400 cu. in.	
	52975-1*
Ford V-8 68-97, 370-429-460 cu. in.	
	35975-1*
Oldsmobile V-8 64-84, 260-307-330-350-400-403-425-455 cu. in.	
	80975-1*
Pontiac V-8 55-81, 265 thru 455 cu. in.	
	28975-1*

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

Timing Chains and Components

Pro-Series Steel Billet, CNC Machined, Roller Timing Chain Sets

Crane Cams' Pro-Series Steel Billet Gear and Roller Chain Sets offer the precision, strength and accuracy of billet steel, nitride hardened, CNC machined camshaft and crankshaft sprockets with the strength, friction reduction and wear resistance of a premium quality, German manufactured, double-row, roller timing chain. The billet 4140 steel nitride hardened crankshaft sprocket features nine separate keyway locations, providing up to eight degrees of advance or retard.

(33)
N. C. C.

Application	Set Part No.
American Motors V-8 66-91, 290 thru 401 cu. in.	
Complete set with multiple keyway crank sprocket and captured needle bearing thrust washer.	86977-1 [*]
Chevrolet 90° V-6 78-86, 200 thru 262 cu.in. and Chevrolet V-8 55-87, 262 thru 400 cu.in.	
Complete set with multiple keyway crank sprocket and machined to fit supplied thrust washer.	11984-1*
Replacement Chain	11978-1
Replacement Thrust Washer (.031")	11984TW-1
Replacement Thrust Washer (.150")	11984TWT-1
Complete set with multiple keyway crank sprocket and captured needle bearing thrust washer	11977-1*
Replacement Chain	11978-1
Chevrolet LS1/LS6 V-8 97-15, 5.7 Litre and Vortec 4800, 5300, 6000 (will not fit LS2)	
Complete set with steel billet gears and double roller chain, plus all attaching hardware. Cam sprocket has vernier adjustment. No cam sensor triggers.	144984-1*
Chevrolet LS2 (early) V-8 6.0L	
Complete set with steel billet gears and double roller chain with thrust bearing. Cam sprocket has single trigger cam sensor feature. Crank sprocket has 9 keyways.	144985-1°
Chevrolet LS2 (late), LS3, LS7, and L92 V-8 6.0-6.2-7.0L Three Bolt	
Complete set with steel billet gears and double roller chain with thrust bearing. Cam sprocket has four trigger cam sensor feature. Crank sprocket has 9 keyways.	144986-1*
Chevrolet V-8 65-95, 396 thru 454 & 502 cu.in. (including Gen V)	
Complete set with multiple keyway crank sprocket and machined to fit supplied thrust washer. (NOTE: Does not fit Gen VI or 8.1L)	13984-1*
Replacement Chain	13978-1
Replacement Thrust Washer (.031")	13984TW-1
Chevrolet V-8 65-95, 396 thru 454 & 502 cu.in. (including Gen V)	
Complete set with multiple keyway crank sprocket and captured needle bearing thrust washer. (NOTE: Does not fit Gen VI or 8.1L)	13977-1*
Replacement Chain	13978-1
Chevrolet V-8 96-00, 454 (7.4L) - 502 (8.2L) Gen VI	
Complete set with multiple keyway crank sprocket and captured needle bearing thrust washer.	16977-1 [*]
Chevrolet V-8 01-08, 8.1L L18 (Vortec 8100)	
Complete set with multiple keyway crank sprocket and captured needle bearing thrust washer.	26977-1*
Chrysler-Dodge-Plymouth "B" 70-78, 383 thru 440 cu. in. (Three bolt), and Chrysler-Dodge-Plymouth V-8 66-71, 426 Hemi	
Complete set with multiple keyway crank sprocket and captured needle bearing thrust washer.	68977-1 [*]
Ford V-8 73-01, 255 (4.2L), 302, 302 H.O., 351W, 351 SVO	
Complete set with multiple keyway crank sprocket and machined to fit supplied thrust washer.	44984-1*
Replacement Chain	11978-1

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

Due to the increased width of the sprockets and chain, clearance must be checked between the timing set and the block casting. Some applications may require minor grinding of the block for clearance.

NOTE:

Tools

Description

Cam Degreeing "Tune-A-Cam" Kit

Everything you need to quickly, easily and accurately degree-in your camshaft for maximum performance. Complete kit contains: precision dial indicator, with custom design base to mount to cylinder head, piston stop, pointer, checking springs, degree wheel and instructions —all in a hard molded plastic carrying case.

Part No.

99030-1

Part No. 99881-2

Checking Spring

Tune-A-Cam Kit (Complete Kit)

(Low Tension Valve Spring)

This low tension spring can be compressed with a single finger. It is to be used when "mockingup" a cylinder head with a pair of valves and retainers, for checking such things as: valve lift, valve to piston clearance, and degreeing a cam at the retainer.

Description	
Pair of Low Tension Valve Train Checking Springs	

Cylinder Pressurization Kit

When changing the valve springs on an assembled engine while using one of our exclusive valve spring compressors, or performing other maintenance that requires your cylinders to be pressurized, this convenient kit provides a quick and economical method to accomplish this. The kit contains a premium quality hose, having an o-ringed 14mm and 18mm threaded adaptor at one end to thread into the spark plug hole, while the other end has a female ¼" NPT threaded brass fitting to receive your choice of quick-disconnect adaptors. There's also a long 14mm threaded adaptor for aluminum heads, to provide better sealing and providing superior thread engagement.

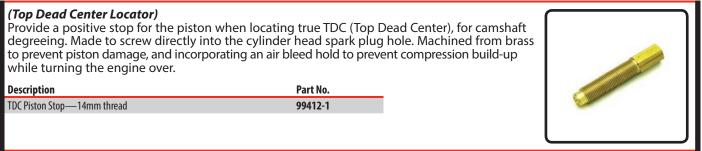
Description

VALVE TRAIN

Part No. 99474-1

Cylinder Pressurization Kit for cylinder heads having 14 and 18mm spark plugs

Degree Wheel


Crane's degree wheels are made from rigid, durable stamped steel, 91/2" in diameter, and come with adapter inserts for 7/16", 1/2", and 5/8" center holes.

Description Degree Wheel with Adapters

Part No. 99162-1

Piston Stop

Tools

Pushrods, Adjustable Checking - See page 290

Oil Pump Primer

Successful engine builders know that externally priming the oiling system of a new engine eliminates dangerous "dry" initial start-up! Our Chevrolet oil pump primer tool features a special bushing that seals the oil galley and completely primes and pressurizes the entire engine oil system. All models feature an upper collar that also prevents oil pump drive side-loading. Use your heavy duty 3/8" drive drill motor to build oil pressure and uniformly distribute oil throughout the engine for initial start-up.

Application	Part No.
Chevrolet V-8, 262 thru 400, 396 thru 454, and 90° V-6	99010-1
Ford V-8, 221 thru 302, Boss 302, (1/4" hex)	99012-1

Organizer Tray for Valve Train

Lightweight tray accepts a wide range of rockers, pushrods, adjusting nuts, lifters and spark plugs. Integral handholds make handling easier. Resistant to heat, oils and solvents.

Description	Р	art No.
/alve Train Organizer Tray	9	9015-1
		L L

Valve Spring Compressors

For Small Block Chevrolet Models to fit all production small block V-8 and V-6 engines – including late model LS1/LS2/LS6 & Vortec This handy tool is designed for removing valve springs while the cylinder head is attached to the engine. This facilitates the installation of new valve springs in substantially less time than it takes using a conventional valve spring compressor. In fact, it reduces the spring removal and replacement time on F-body cars to one-quarter of the time required for other tools. Use a ratchet or impact wrench to compress the springs. The rugged heat-treated steel fixtures are precision CNC-machined to assure proper seating on the cylinder head & valve spring retainer.

Part No.
99473-1
99472-1
99475-1

Valve Spring Height Micrometer

Rotating the tool expands it to simulate installed height. The micrometer measurements make it extremely easy to read. The tool will measure from 1.600" to 2.100" installed height with an accuracy of .001".

Description Height Micrometer 1.600-2.100" Part No. 99019-1

Valve Spring Seat Machining Tool Bodies

These carbide-tipped tools machine the valve spring seat to the precise diameter and depth for high performance spring applications. Crane Machining Tool Arbors are required to pilot these tools in the valve stem bore.

Application	Part No.
Machines 1.320" O.D., .630" I.D.	99404-1
Machines 1.475" O.D., .630" I.D.	99403-1
Machines 1.570" O.D., .630" I.D.	99406-1
Machines 1.638" O.D., .630" I.D.	99405-1
Machines 1.760" O.D., .630" I.D.	99414-1

Valve Spring Seat Machining Tool Arbors

These arbors accurately pilot the Valve Spring Seat Machining Tools by locating in the valve stem bore.

Application	Part No.
Use with 5/16" valve stems	99026-1
Use with 11/32" valve stems	99027-1
Use with 3/8" valve stems	99028-1
Use with 8mm valve stems	99025-1

Vacuum Kits and Accessories

Adjustable Vacuum Advance Kits

Now you can actually tailor your ignition system to meet a wide variety of driving conditions and requirements with these unique, easy-to-install adjustable vacuum advance kits. Comes complete with adjustable vacuum canister, featuring the unique adjustable vacuum diaphragm, three sets of advance weight springs, and a 3/32" allen wrench, plus complete instructions for installation and operation.

The adjustability provided by these kits permits you to run the maximum ignition advance throughout the RPM range, without encountering detonation. Improved performance, efficiency, and dependability are the major benefits obtained. Once the kit is installed, you can also quickly compensate for changes in fuel quality and altitude.

Application	Part No.
Delco Point Type (Includes Limiter Plate)	99601-1 [*]
Ford V-8 73-85 with Electronic Ignition (without computer controls)	99607-1 *
G.M. H.E.I. (Includes Limiter Plate)	99600-1 *

Vacuum Timing Limiter Plate

Here's an easy-to-install item that allows you to limit the amount of vacuum timing needed for certain engine/vehicle applications using the Crane Adjustable Vacuum Kit.

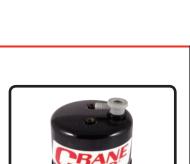
With Crane's Adjustable Vacuum Advance Kits, the adjustment made through the vacuum port of the cannister adjusts the rate of vacuum timing change as engine vacuum changes.

The Crane Vacuum Timing Limiter plate actually changes the amount of that vacuum timing. This is especially helpful with applications such as high compression ratio engines, heavy engine loads (such as very low numerical rear axle gearing) or heavy vehicle weights such as motor homes, trucks with trailers, etc..

Each plate notch will shorten the amount of vacuum timing by 2°. It will also advance the initial timing to 2° because of the change in the starting position of the breaker plate or magnetic pick up.

Application Vacuum Timing Limiter Plate — for GM/Delco V-8 point-type and H.E.I. ignition distributors 99619-1*

Vacuum Reserve System


Is That "Big Cam" Giving Your Vacuum Assisted Power Brakes And Other Accessories Problems? Our Original Vacuum Reserve System Delivers Needed Vacuum Storage!

This unique kit allows you to store needed vacuum to operate your vacuum assisted power brakes, even with a more radical camshaft! Crane's Vacuum Reserve System utilizes a one-way check valve that stores engine vacuum until it's needed . . . like when you apply the brakes and your engine can't supply the needed vacuum! Compactly sized at just 5" x 7", this unit can be installed in tight areas. Comes complete with all hardware. Power brake hose not included.

Application	Part No.
Vacuum Reserve System, Complete Kit including Fittings	99590-1

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

Part No.

About Valve Springs

Valve Springs . . . Hardly An "Open & Shut" Subject!

Valve springs are at least as important as any other major performance component in an engine; yet, they are probably the most misunderstood and neglected. Incorrect or worn valve springs cause conditions that are often misdiagnosed as fuel or ignition problems. When all of the fuel and ignition system components have been replaced; and the "gremlins" are still in the engine, chances are the valve springs are either set up at the wrong tension, worn out, or just the wrong spring for the cam profile. This last factor is often the most puzzling, yet offers the greatest chance for significant improvements in engine performance.

Due to their highly stressed design (valve springs are coiled from specially heat-treated, super-clean, supersophisticated alloys of steel), valve springs have several critical characteristics that are generally called "resonant frequency" or "natural harmonics". These are similar to those of a lead crystal goblet. By sounding a specific frequency musical note, the goblet will shatter. An undampened valve spring run at steady speed at its natural frequency will either self-destruct or lose enough of its strength and tension that it can no longer properly control the valve action.

At Crane, we design springs to maximize the performance of Crane Cams. In doing so, we put the resonant frequency outside of the intended operating range of the spring. This is not always the case, especially with springs produced by the OE manufacturers for production vehicles.

For years, especially before onboard computers, valve springs were used as "rev-limiters" to help the OE manufacturers in their efforts to minimize warranty problems caused by over-enthusiastic drivers. These springs usually had a resonant frequency located somewhere in the 4400-5200 RPM range. When a vehicle was accelerated, the engine would rev through the low end and mid-range perfectly until the engine speed hit somewhere in the 4400-5200 RPM range. Then it would either just stop pulling or the engine would start misfiring badly. This was typically diagnosed as a fuel or ignition problem when, in actuality, it was the factory's valve spring resonant frequency helping protect the engine.

A good set of valve springs, even on an otherwise stock engine, will usually provide a significant performance improvement throughout the RPM range as well as a marked improvement in fuel economy, smoother idle, improved cold start, and better cold weather drivability.

What is most important is selecting a valve spring with the correct seat pressure, open pressure, and spring rate for the camshaft in the engine. At Crane Cams, we constantly test and evaluate various cam lobe profiles vs. spring combinations, so that we can give you the right spring recommendations for your cam. However, with over 80,000 profiles in

our camshaft lobe library and over 60 different valve springs in our catalog, it is impossible for us (or any company) to test every possible combination. Because of this, we offer guidelines on how to select springs for custom applications (special valve stem lengths, weights, etc.). It is in this area of the unknown or untested that the greatest opportunities exist of finding your own special combination that yields a power and performance increase beyond your competitors.

What we're talking about is virtually free HP just for choosing the right springs!

If you have purchased a cam (Crane or another brand), and it doesn't seem to perform to your expectations, it is quite likely a different valve spring might be able to make an improvement (It could also be a problem with pushrod stiffness and/or rocker arm geometry.) If you are pushing the envelope in any area of motorsports competition, it is necessary to constantly evaluate various combinations of engine components. Frequently, racers ignore the effects of the valve springs on the dynamics of the valve train. By experimenting with various valve spring combinations you will probably find the most power for your money and/or time. In addition, you just might cure that "fuel system" or "ignition system" problem you thought you had!

Valve Train Questions

Valve Spring Rate and How to Use It

The rate of a spring is the force necessary to compress (or deflect) the spring a specified distance. For example, if we say that a spring has a rate of 250 lbs. per inch (250#/in.), it will take 250 pounds of force to compress the spring 1 inch. Fortunately, valve springs are coil springs, and coil springs are easy to understand because they have an almost linear spring rate. In other words, if it takes 400 lbs. to compress a spring 1 inch, it only takes 100 lbs. to compress the spring .250 in., 200 lbs. to compress it .500 in., and 300 lbs. to compress it .750 in. Some people refer to spring rate as "stiffness", and it is the understanding of this spring characteristic that is most important in selecting and setting up springs on an automotive cylinder head.

Frequently a taller, softer spring is a better choice for a performance application than a short, stiff spring.

Consider the following possibility:

A vehicle owner wants to use a .520" valve lift camshaft in an application and is considering different valve springs.

Spring A has an installed pressure of 125# at 1.750" installed height and has a rate of 280#/in.

Spring B has an installed pressure of 115# at 1.750" installed height with a rate of 410#/in.

At .520" lift, **Spring A** has an open pressure of 271# (this is 125# of seat pressure plus [.520" x 280#/in] = 146# from spring compression). At .520" lift, **Spring B** has an open pressure of 328# (this is 115# of seat pressure plus [.520" x 410#/ in] = 213# from spring compression). Both of these springs would work on a street performance application requiring good performance and reliability. However, **Spring A** with a lower open pressure of 271# could probably be used on a cylinder head with pressed in rocker studs; while **Spring B** would definitely require screw in studs for adequate reliability. **Spring B** would probably provide better performance above 6000 RPM (especially with relatively heavy valves) because of its higher open pressure of 328#. **Spring A** would probably idle a little smoother with higher vacuum, especially if a high pressure oil pump or thicker oil is used. This is a result of **Spring A**'s higher seat pressure of 125#.

As you can see from the example above, there are often different springs that can offer different benefits on the same cam profile. **Spring A** offers good performance over a wide RPM range at a lower total valve train cost (this assumes that the heads were not machined for screw in studs). **Spring B** offers the possibility of somewhat improved performance beyond 6000 RPM. The vehicle owner needs to decide what he wants from his vehicle and what he wants to spend.

In all-out racing, we frequently see the need for different springs on the same lobe profile depending on the anticipated RPM range. Frequently, circle track racers will run two different tracks with the same engine but with different rear end gearing. Often there can be as much as 500-700 RPM difference in the top end engine speed between the two tracks. It is not uncommon to find that the car runs better on the track with the lower peak RPM using a spring with a lower seat pressure and softer rate. At the track where the engine runs to the higher speed, the engine needs more seat pressure and a stiffer spring rate. Every combination of engine, chassis, and track is different. Significant performance improvements can often be achieved by experimenting with valve springs. If you aren't paying attention to your springs, the guy winning most of the races probably is!

Choosing Valve Springs

How to Select a Valve Spring

With the many choices of aftermarket cylinder heads, most with longer-than-stock length valves, the recommendation of a specific spring for a specific cam is almost impossible. It is now necessary to select the spring that will best fit the cylinder head configuration. We offer the following as general guidelines only:

1) "FLAT FACED LIFTER" cam/lifter applications (Street & Street/Strip) seat pressures

- a. Small Block: 105-125# Seat Pressure
- b. Big Block: 115-130# Seat Pressure (Note: Big Block applications need higher seat pressures due to their larger, heavier valves.)

2) "FLAT FACED LIFTER" Open pressures should not exceed 330# open pressure (sustained after spring break-in for acceptable cam and lifter life.

- a. Open pressures should be a minimum of 220# for applications up to 4000 RPM.
- b. For good performance above 4000, open pressures should be at least 260# with stock weight valves. (Lightweight valves require less spring open pressure.)
- c. Spring open pressures over 280# can cause pressed-in studs to come loose; therefore, we recommend screw-in studs for open pressures above 280#.

3) HYDRAULIC ROLLER CAMS require higher spring seat pressures to control the heavier roller tappets and the more aggressive opening and closing rates available to roller cam profiles.

- a. Small Block applications: 120-145# seat pressure
- b. Big Block applications: 130-165# seat pressure

4) HYDRAULIC ROLLER CAMS use higher open pressures to control the high vertical opening inertia of the heavier roller followers.

- a. Small Block applications need at least 260# for general driving applications up to 4000 RPM.
- b. Moderate performance small block applications like 300-360# open.
- c. Serious small block applications can tolerate 400-425#* open pressures and still expect reasonable valve train life when top quality springs, pushrods, and lubricants are used.
- d. Big Block applications need at least 280# for general driving applications up to 4000 RPM.
- e. Moderate performance big block applications like 325-375# open pressure.
- f. Serious big block performance applications can tolerate 450#* open pressure and still expect reasonable valve train life when top quality springs, pushrods, and lubricants are used.

*Note: Open pressures in excess of 360# require the use of roller tappet bodies made of billet steel. Crane hydraulic roller and solid roller tappets are made from heat treated steel billet to withstand the stresses of high-performance use. Most stock hydraulic roller tappet bodies are made of cast iron and cannot tolerate high spring loads.

5) MECHANICAL ROLLER CAM/LIFTER

Applications are generally for serious street/strip use and full competition. Most are not used in daily-drivers where day-to-day reliability is stressed. Instead, most of these cams are intended for winning performance. These cams are designed with very aggressive opening and closing rates. High seat pressures are necessary to keep the valves from bouncing when they come back to the seat. In all cases, the valve action and spring pressures required mandate the use of high-strength, one-piece valves. However, Crane does offer the SR-Series of Street Roller camshafts intended for daily usage.

- a. **Seat Pressures** are determined by valve/retainer weight, engine RPM and life expectancy of components before replacement is required. Milder roller cams require 165# on the seat as an absolute minimum. 180-200# is common for most modest performance applications. 220-250# is common for most serious sport categories and some circle track professional categories. Pro-Stock and Blown Alcohol/Fuel drag applications use as much as 340-500# on the seat.
- b. **Open Pressures** need to be high enough to control the valve train as the lifter goes over the nose of the cam. Ideally, the minimum amount of open pressure to eliminate or minimize valve train separation is desired. Any excess open pressure only contributes to pushrod flex, which can aggravate valve train separation. For serious racing applications this can be determined only by experimentation and track testing. For general guidelines we offer the following
 - i. Street/Strip performance with long cam/lifter life desirable, 350-450# open.
 - ii. Circle track and moderate bracket racing 450-600@ open.
 - iii. Serious drag racing and limited distance circle track racing 600# and more.

	0.D	I.D.	Damper	Seat Press.	Open Press.	Coil Bind	Rate (lbs/in.)	Max Net Lift	Application	Part No.
Single V	Valve Sp	rings								
	1.000	0.730	No	62 lbs @1.475	130 @ 1.025	0.910	151 lbs/in.	0.475	Ford Duratec 1.8 – 2.3 litre DOHC 4V 4 cyl. included in 903-2007 valve spring and retainer kit.	96845-16
Top: Bottom:	0.930 1.025	0.567 0.662	No	90 lbs @1.470	252 @ .970	0.900	324 lbs/in.	0.500	Ford Modular 4.6 – 5.4 litre DOHC 4V V-8 beehive, ovate wire.	40830-32
	1.065	0.725	No	60 lbs @1.535	255 lbs @ 1.063	0.987	413 lbs/in.	0.500	Chrysler/Dodge Neon DOHC I-4	180830-16
	1.065	0.725	No	85 lbs @1.535	244 lbs @ 1.135	1.014	398 lbs/in.	0.470	Chrysler/Dodge Neon SOHC I-4	158830-16
Top: Bottom:	0.967 1.096	0.636 0.765	No	85 lbs @1.640	250 @ 1.040	1.000	275 lbs/in.	0.620	Ford 4.6-5.4L 2 valve & 3 valve V-8 beehive, ovate wire.	37830-16
	1.255	0.870	Yes	114 lbs @1.700	340 @ 1.200	1.153	432 lbs/in.	0.487	Small Block Chevy Street/Strip: RV/Truck Power. Stock dia spring for 1.700" installed ht. .480" max recommended valve lift.	99848-16
	1.255	0.870	No	124 lbs @1.750	374@1.150	1.100	409 lbs/in.	0.640	Late Model LT-1 w/aluminum heads; LS1 or other alum. heads w/1.770-1.820" inst. hts. XHTCS	99845-16
	1.255	0.870	Yes	125 lbs @ 1.800	383 @ 1.200	1.100	428 lbs/in.	0.640	SB Chevy apps. up to .600″ valve lift with stock spring seats. Flat tappets install @ 1.800″; hyd rlr install @ 1.750-1.800″ XHTCS	99846-16
	1.260	0.876	Yes	107 lbs @ 1.800	348 @ 1.200	1.110	395 lbs/in.	0.600	SB Chevy hyd rlr w/1.750" installed ht. SB Chevy flat tappet w/1.770-1.800" inst. ht.	96802-16
	1.265	0.775	Yes	125 lbs @ 1.750	388 @ 1.250	1.100	526 lbs/in.	0.600	SB Chevy Performance hydraulic roller cams, PAC enhanced wire	144846-16
Top: Bottom:	1.055 1.290	0.650 0.885	No	130 lbs @ 1.800	318@1.200	1.140	313 lbs/in.	0.600	LS1/LS2 Performance hydraulic roller cams beehive, ovate wire.	99831-16
	1.435	1.035	Yes	107 lbs @ 1.700	317 @ 1.150	1.037	330 lbs/in.	0.600	Various Ford 302-351W V-8's, Ford 300 6cyl, Mopar 360's and Olds 350/400/455	96803-16
	1.437	1.077	Yes	104 lbs @ 1.750	229 @ 1.150	1.069	204 lbs/in.	0.620	Ford V-8 RV and mild street appls. Used w/96840, 96842, 96843 for various hyd roller and flat tappet street/strip and bracket apps.	96806-16
	1.440	1.040	No	98 lbs @ 1.700	260 @ 1.200	1.080	328 lbs/in.	0.560	AMC 6cyl; SB Ford; Olds V-8's; Street/Strip, RV/ Truck Power applications.	99833-16
Top: Bottom:	1.095 1.445	0.650 1.000	No	155 lbs @ 1.880	377 @ 1.280	1.210	370 lbs/in.	0.650	Big Block Chevy and FE Ford, beehive ovate wire.	99832-16
Top: Bottom:	1.295 1.450	0.859 1.014	No	118 lbs @ 1.950	375 @ 1.380	1.320	457 lbs/in.	0.580	Ford 5.0/351W Street/Strip, RV/Truck Power, Beehive	99841-16
	1.460	1.060	Yes	110 lbs @ 1.550	303 @ 1.100	0.935	442 lbs/in.	0.605	Many Pontiac V-8 Street/Strip applications	99840-16
	1.460	1.060	Yes	114 lbs @ 1.800	287 @ 1.250	1.139	310 lbs/in.	0.600	Ford V-8's w/1.770-1.850" installed hts. Used w/96840 and 96842 for High Perf hyd rlrs and solid flat tappet cams.	96801-16
	1.500	1.086	Yes	113 lbs @ 1.600	280 @ 1.150	1.000	412 lbs/in.	0.565	SB Chrysler; Street/Strip; RV/Truck Power	99835-16
	1.500	1.086	Yes	121 lbs @ 1.800	298 @ 1.300	1.130	354 lbs/in.	0.660	AMC V-8; BB Chevy w/1.880" installed ht: Street/Strip, RV/Truck Power.	99839-16
	1.539	1.125	Yes	129 lbs @ 1.950	358 @ 1.200	1.130	312 lbs/in.	0.700	BB Chevy and BB Chrysler hyd rlr and High Perf flat tappet cams. Use +.050" keepers. Used with 96843 , 96844 inners for several mech roller cams.	96807-16

Inner Valve Springs

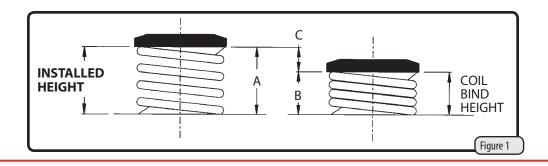
The Inner Springs shown below are available separately for "Mix-and-Match" Dual Spring Combinations using "96" part number prefix single valve springs. See specific "96" Dual Springs for correct components. These Inner Springs are not recommended for use with "99" prefix springs. Sold in sets of 16.

0.937	0.697	No	29 lbs @ 1.600	90 @ 1.000	0.925	96 lbs/in.	0.615	For use with 96801, 96806, Outer Valve Springs	96842-16
0.953	0.697	No	54 lbs @ 1.500	130@1.000	0.916	132 lbs/in.	0.500	For use with 96806, 96807, Outer Valve Springs	96843-16
0.970	0.700	No	51 lbs @ 1.750	134@1.150	1.014	135 lbs/in.	0.676	For use with 96801, 96806 Outer Valve Springs	96840-16
1.015	0.731	No	57 lbs @ 1.800	160@1.150	1.045	155 lbs/in.	0.650	For use with 96807 Outer Valve Springs	96844-16

0.D	I.D.1	I.D.2	Damper	Seat Press.	Open Press.	Coil Bind	Max Net Lift w /.060″ clearance	Rate (lbs/in.)	Application	Part No.
Dual V	alve Spri	ings								
1.212	0.900	0.674	No	93 lbs @ 1.550	266 @ .950	0.865	0.625	290 lbs/in.	Buick V-6 & Buick 350 V-8	99891-16
1.218	0.906	0.680	No	91 lbs @ 1.300	220 @ .900	0.783	0.457	337 lbs/in.	Early Ford 2.0L SOHC & VW liquid cooled	99879-8
1.297	0.667	0.917	No	148 lbs @ 1.800	413 @ 1.150	1.060	0.660	408 lbs/in.	LS Performance hydraulic roller camshafts.	144838-16
1.298	0.664	0.914	No	151 lbs @ 1.800	461@1.150	1.080	0.680	477 lbs/in.	LS Performance hydraulic roller camshafts, XHTCS material.	144847-16
1.304	0.980	0.754	No	96 lbs @ 1.650	230 @ 1.150	0.927	0.663	215 lbs/in.	Nissan 4 cyl; Ford 2.3L SOHC	99884-8
1.344	1.000	0.730	No	107 lbs @ 1.820	274@1.300	1.057	0.703	334 lbs/in.	Small Block Chevy 87-91 L98 and Fast Burn alum. heads w/hydraulic roller cams	96887-16
1.437	1.080	0.697	Yes	134 lbs @ 1.750	283 @ 1.250	1.185	0.600	296 lbs/in.	Several SB Chevy, SB Ford flat tappet and hyd rlr apps. (96806 outer/96842 inner)	96873-16
1.437	1.080	0.697	Yes	128 lbs @ 1.800	328 @ 1.200	1.115	0.625	322 lbs/in.	Various hyd rlr & flat tappet street perf. & mild bracket racing. (96806 outer/96843 inner)	96874-16
									SB Chevy & SB Ford hyd rlrs and flat tappet bracket racing w/long valves or tall assy hts.	
1.437	1.080	0.700	Yes	131 lbs @ 1.850	345 @ 1.200	1.110	0.680	326 lbs/in.	(96806 outer/96840 inner) Hydraulic and mechanical flat faced lifter	96872-16
1.449	1.075	0.794	No	120 lbs @ 1.875	394@1.175	1.035	0.625	392 lbs/in.	camshafts, mild hydraulic roller camshafts. BB Ford and BB Chrysler hyd rlr and flat tappet	99892-16
1.460	1.060	0.697	Yes	126 lbs @ 1.850	366 @ 1.250	1.175	0.615	404 lbs/in.	street/strip use. (96801 outer/96842 inner)	96877-16
1.460	4 075				102 - 1 150	4 000	0.740	201 11 //	BB Chevy, BB Ford, BB Chrysler premium RV/ Truck Power applications. Flat tappet racing	
1.460	1.075	0.803	No	130 lbs @ 1.850	402 @ 1.150	1.080	0.710	391 lbs/in.	use.	99893-16
1.460	1.060	0.700	Yes	134 lbs @ 1.900	424 @ 1.250	1.154	0.686	448 lbs/in.	High perf hydraulic rollers; Sportsman flat tap- pet racing, moderate perf solid rollers (96801 outer/96840 inner)	96870-16
1.465	1.091	0.807	No	112 lbs @ 1.650	336@1.100	0.950	0.690	438 lbs/in.	AMC 6 cyl, Buick V-8's, many perf cams with short assy hts requiring high lifts and moderate spring rate	99838-16
1.500	1.050	0.726	No	300 lbs @ 2.100	1002 @ 1.200	1.130	0.900	780 lbs/in.	Small diameter, low mass, all-out race, Nano- Peened™, Pacaloy wire.	961356-16
1.500	1.050	0.726	No	420 lbs @ 2.175	1200 @ 1.175	1.130	1.000	780 lbs/in.	Small diameter, low mass, high lift drag race, Nano-Peened™, Pacaloy wire.	961355-16
1.522	1.050	0.726	No	400 lbs @ 2.250	1252 @ 1.300	1.190	0.950	895 lbs/in.	Small diameter, low mass, all-out race, Nano- Peened™, Pacaloy wire.	961360-16
1.530	1.116	0.766	Yes	131 lbs @ 1.900	410 @ 1.250	1.160	0.630	428 lbs/in.	BB Chevy hyd and solid flat tappet racing; BBC, BB Ford, & Ford 351/400 hyd rlr cams	99890-16
1.539	1.125	0.697	Yes	160 lbs @ 1.900	424 @ 1.300	1.145	0.700	444 lbs/in.	BB Chevy and BB Chrysler solid street rollers or hyd rlrs w/+.050" taller inst. ht. (96807 outer/96843 inner)	96879-16
1.539	1.125	0.731	Yes	200 lbs @ 1.900	508 @ 1.250	1.152	0.680	480 lbs/in.	Various solid rlr applications for Pro Street & bracket use (96807 outer/96844 inner)	96878-16
1.540	1.140	0.754	Yes	144 lbs @ 1.900	403 @ 1.300	1.175	0.665	434 lbs/in.	Various Big Block hyd rlr applications	99895-16
				-					Various Big Block hyd rlr apps. Harmonics optimized for sustained high RPM marine use.	
1.540	1.140	0.760	Yes	150 lbs @ 1.900	560@1.150	1.135	0.755	528 lbs/in.	Solid flat tappets with tall assembly hts. Professional roller cam race applications	99896-16
1.540	1.115	0.729	Yes	224 lbs @ 1.950	638@1.200	1.130	0.760	544 lbs/in.	Electro-Polished	96883-16
1.550	1.100	0.706	Yes	275 lbs @ 2.000	805 @ 1.200	1.150	0.800	663 lbs/in.	Various Small and Big Block roller camshafts, drag racing	961226-16
1.550	1.100	0.788	No	250 lbs @ 2.000	765 @ 1.200	1.150	0.800	644 lbs/in.	High rate dual spring for aggressive valve train. Premium circle track, Nano-Peened™, PAC enhanced wire.	961325-16
1.550	1.100	0.706	Yes	275 lbs @ 2.000	805 @ 1.200	1.150	0.800	662 lbs/in.	High rate dual spring with damper for ag- gressive valve train. Premium circle track, Nano-Peened™, PAC enhanced wire.	961326-16
1.550	1.050	0.726	No	425 lbs @ 2.300	1440 @ 1.300	1.230	1.000	1015 lbs/in.	Small diameter, low mass, high lift drag race, Nano-Peened™, Pacaloy wire.	961354-16
1.551	1.119	0.699	Yes	226 lbs @ 2.000	717 @ 1.250	1.150	0.790	652 lbs/in.	Drag Race & Circle Track roller cams w/1.950- 2.000" installed hts	96886-16

am	S

							Max Net Lift w /.060″	Rate		
0.D	I.D.1	I.D.2	Damper	Seat Press.	Open Press.	Coil Bind	clearance	(lbs/in.)	Application	Part No.
Dual V	'alve Spri	ings								
1.555	1.130	0.743	Yes	256 lbs @ 2.000	652 @ 1.250	1.178	0.762	510 lbs/in.	Professional roller cam race applications Electro-Polished	96884-16
1.565	1.146	0.740	Yes	190 lbs @ 1.950	552 @ 1.250	1.200	0.690	504 lbs/in.	Solid street rollers/Bracket racing; Hi Perf big block hyd rlrs w/tall assy hts.	99876-16
1.565	1.129	0.749	Yes	215 lbs @ 1.950	685 @ 1.200	1.121	0.769	618 lbs/in.	Bracket Race & Circle Track Roller Cams XHTCS Spring	99885-16
1.593	1.154	0.741	Yes	254 lbs @ 2.050	687 @ 1.280	1.220	0.780	576 lbs/in.	Professional circle track endurance, ID chamfered coils, radiused damper ends, PAC enhanced wire.	96885-16
1.625	1.175	0.851	No	280 lbs @ 2.100	847 @ 2.100	1.100	0.900	629 lbs/in.	Bracket Race applications with height lift / aggressive valve train and RPM requirements, Pacaloy wire.	961228-16
1.625	1.175	0.769	Yes	244 lbs @ 2.000	801@1.150	1.090	0.850	656 lbs/in.	Drag Race roller cams with approx. 2.00″ inst hts. XHTCS	99880-16
1.625	1.175	0.769	Yes	250 lbs @ 2.050	673 @ 1.300	1.210	0.750	564 lbs/in.	Various Big Block roller camshafts, lower lift bracket racing, PAC enhanced wire.	961299-16
1.625	1.175	0.851	No	275 lbs @ 2.000	810@1.150	1.100	0.850	625 lbs/in.	Various Big Block roller camshafts, high lift bracket racing, PAC enhanced wire.	961224-16
Triple	Valve Spi	rings								
1.645	1.195	0.635	No	250 lbs @ 2.050	801 @ 1.250	1.130	0.800	689 lbs/in.	Various Big Block roller camshafts, high lift bracket racing, PAC enhanced wire.	961246-16
1.645	1.195	0.635	No	290 lbs @ 2.070	835 @ 1.270	1.130	0.800	682 lbs/in.	Various Big Block roller camshafts, high lift bracket racing, Nano-Peened™, PAC enhanced wire.	961347-16
1.645	1.195	0.635	No	332 lbs @ 2.100	950 @ 1.200	1.130	0.900	688 lbs/in.	Various Big Block roller camshafts, high lift bracket racing, Nano-Peened™, PAC enhanced wire.	961348-16
1.667	1.195	0.635	No	300 lbs @ 2.100	963 @ 1.250	1.135	0.850	780 lbs/in.	Various Big Block roller camshafts, high lift bracket racing, PAC enhanced wire.	96888-16
1.675	1.203	0.634	No	362 lbs @ 2.100	1035 @ 1.200	1.161	0.879	684 lbs/in.	Pro Drag Racing including blown alcohol & fuel	96848-16
1.675	1.203	0.634	No	352 lbs @ 2.200	1024@1.200	1.161	0.979	690 lbs/in.	Pro Drag Racing including blown alcohol & fuel	96849-16


More Valve Train Questions

What is Valve Spring Coil Bind and how does it relate to Spring Travel and Valve Lift?

When the valve spring is compressed until its coils touch one another and can travel no further, it is said to be in coil bind. The catalog (pages 317–319) shows the approximate coil bind height for the various Crane Cams valve springs. To measure this you must install the retainer in the valve spring, then compress the spring until it coil binds. Now measure from the bottom side of the retainer to the bottom of the spring. This measurement is the coil bind height. (See Figure 1) This can be done on the cylinder head with a spring compression tool in a bench vise, or in a professional valve spring tester.

Using Figure 1, subtract the coil bind height "B" from the valve spring installed height "A". The difference "C" is the maximum spring travel. The spring travel is usually at least .060" greater than the full lift of the valve. This safety margin of .060" (or more) is necessary to avoid the dangers of coil bind and over-stressing the spring.

If coil bind occurs, the resulting mechanical interference will severely damage the camshaft and valve train components.

Valve Spring Sp	oec Chart	t		E	BOLD Numbers are recommended closed pressures @ installed height.					
Spring Type	Single	Single	Single	Single	Single	Single	Single	Single	Single	
0.D.	1.000	1.065	1.065	1.025/0.930	1.096/0.967	1.255	1.255	1.255	1.260	
I.D.	0.730	0.725	0.725	0.662/0.567	0.765/0.636	0.870	0.870	0.870	0.876	
Damper	No	No	No	No	No	Yes	No	Yes	Yes	
Installed Height	1.475	1.535	1.535	1.470	1.640	1.700	1.750	1.800	1.800	
Coil Bind	0.910	0.987	1.014	0.900	1.000	1.153	1.100	1.100	1.110	
Spring Rate (lbs/in.)	151	413	398	324	275	432	415	428	395	
Max. Net. Lift	0.475	0.500	0.470	0.500	0.600	0.487	0.640	0.640	0.600	
Part No.	96845	180830	158830	40830	37830	99848	99845	99846	96802	
2.300										
2.250										
2.200										
2.150										
2.100										
2.050										
2.000										
1.950										
1.900										
1.850								104		
1.800						81	103	125	107	
1.750						100	124	147	125	
1.700					69	114	145	169	144	
1.650					82	137	165	190	162	
1.600					96	158	187	213	181	
1.550		54	79	64	110	179	208	235	199	
1.500	58	74	94	80	124	201	228	256	220	
1.450	66	95	114	96	137	222	249	278	238	
1.400	74	115	134	113	151	243	270	299	258	
1.350	81	136	154	129	165	265	290	321	280	
1.300	89	156	173	145	179	287	311	342	302	
1.250	96	177	193	161	192	313	332	363	325	
1.200	104	197	213	177	206	340	353	383	248	
1.150	111	218	233	194	220		374	405		
1.100	119	238	253	210	234					
1.050	126	259		226	247					
1.000	134			242	261					
0.950	142			258						
0.900										

Steel Retainers (see page 330)						99915 99916	99914	99915 99916	99915 99916
Titanium Retainers 7°	905-0003	158660	158660	40660	37660				
(see page 331)									
Titanium Retainers 10°									
(see page 331)									
Spring Seats									
(see page 342)									

Valve Spring Spe	c Chart			BOLD Numbers	are recommende	d closed pressures (installed height.
Spring Type	Single	Single	Single	Single	Single	Single	Single
0.D.	1.265	1.290/0.885	1.435	1.437	1.440	1.445/1.095	1.450/1.295
I.D.	0.865	1.055/0.650	1.035	1.080	1.040	1.000/0.650	1.014/0.859
Damper	Yes	No	Yes	Yes	No	No	No
Installed Height	1.750	1.800	1.700	1.750	1.700	1.880	1.950
Coil Bind	1.100	1.140	1.037	1.069	1.080	1.210	1.139
Spring Rate (lbs/in.)	526	313	330	204	328	370	457
Max. Net. Lift	0.600	0.600	0.600	0.620	0.560	0.650	0.580
Part No.	144846	99831	96803	96806	99833	99832	99841
2.300							
2.250							
2.200							
2.150							
2.100							
2.050							
2.000							95
1.950						129	118
1.900		99				148	141
1.850	73	114		86		166	164
1.800	99	130		96		185	187
1.750	125	146	91	104	83	203	209
1.700	151	161	107	113	98	222	232
1.650	177	177	123	122	113	240	255
1.600	204	193	132	130	128	259	278
1.550	230	208	148	140	143	277	301
1.500	256	224	164	150	159	296	324
1.450	282	240	181	160	174	314	347
1.400	308	255	198	171	189	333	369
1.350	335	271	215	181	205	351	392
1.300	361	287	234	192	222	370	415
1.250	388	302	251	203	239	388	438
1.200	413	318	272	215	256		461
1.150	439		289	229	274		
1.100			317	240	293		
1.050							
1.000							
0.950							
0.900							

Steel Retainers	99915	144943	99946	99936	99936	99976	99942
(see page 330)	99916	99976	99969	99944	99944		
Titanium Retainers 7°		99637				99637	
(see page 331)							
Titanium Retainers 10°					99630		
(see page 331)							
Spring Seats							
(see page 342)		99454					

Valve Spring Sp	ec Chart			BOLD	Numbers are re	commended clos	sed pressures @	installed height.
Spring Type	Single	Single	Single	Single	Single	Single	Single	Single
0.D.	1.460	1.460	1.500	1.500	1.539	0.937	0.953	0.970
I.D.	1.060	1.060	1.086	1.086	1.125	0.697	0.697	0.700
Damper	Yes	Yes	Yes	Yes	Yes	No	No	No
Installed Height	1.550	1.800	1.600	1.800	1.950	1.600	1.500	1.750
Coil Bind	0.935	1.139	1.000	1.130	1.130	0.925	0.916	1.014
Spring Rate (Ibs/in.)	442	310	412	354	312	96	132	135
Max. Net. Lift	0.605	0.600	0.565	0.660	0.700	0.615	0.500	0.676
Part No.	99840	96801	99835	99839	96807	*96842	*96843	*96840
2 200								
2.300								
2.250								
2.200								
2.150 2.100								
2.050 2.000					115			
1.950		75			129			
1.900		88		86	136			
1.850		101		102	130			38
1.800		114		102	149			45
1.750		128		138	102	14		51
1.700		123		155	192	19		58
1.650		157	92	172	207	23		63
1.600	91	171	113	172	207	29	42	70
1.550	110	186	133	206	237	32	48	76
1.500	131	201	155	224	252	37	54	83
1.450	151	218	174	242	269	42	60	90
1.400	171	235	195	260	286	47	66	97
1.350	191	252	215	279	302	51	73	105
1.300	212	269	234	298	318	56	80	112
1.250	233	287	256	320	338	61	87	120
1.200	255	304	277	338	358	66	94	127
1.150	279		298	359		71	102	134
1.100	303		319			76	111	
1.050	328		342			82	120	
1.000	352		364			90	130	
0.950	378							
0.900								

Steel Retainers	99936	99936	99936	99936	99962		
(see page 330)	99944	99944	99944	99944	99970		
Titanium Retainers 7°							
(see page 331)							
Titanium Retainers 10°	99630		99630	99630			
(see page 331)					99641		
Spring Seats	99457		99459	99459			
(see page 342)							

Valve Spring Sp	ec Chart			BOLD	BOLD Numbers are recommended closed pressures @ installed height.						
Spring Type	Single	Dual	Dual	Dual	Dual	Dual	Dual	Dual			
0.D.	1.015	1.212	1.218	1.298	1.298	1.304	1.344	1.437			
I.D.	0.731	0.674	0.680	0.667	0.664	0.754	0.730	0.697			
Damper	No	No	No	No	No	No	No	Yes			
Installed Height	1.800	1.550	1.300	1.800	1.800	1.650	1.800	1.750			
Coil Bind	1.045	0.865	0.783	1.060	1.080	0.927	1.057	1.185			
Spring Rate (lbs/in.)	155	290	337	408	477	215	334	296			
Max. Net. Lift	0.650	0.625	0.457	0.660	0.680	0.663	0.710	0.600			
Part No.	*96844	99891	99879	144838	144847	99884	96887	96873			
2.300											
2.250											
2.200											
2.150											
2.100											
2.050											
2.000											
1.950	33										
1.900	41			107	103						
1.850	49			128	127			106			
1.800	57			148	151		114	120			
1.750	64			168	175	76	129	134			
1.700	72			189	199	86	144	148			
1.650	80	66		209	223	96	160	162			
1.600	88	79		230	246	107	176	175			
1.550	95	93		250	270	118	192	189			
1.500	103	107		270	294	128	208	204			
1.450	111	121		291	318	139	224	219			
1.400	119	135		311	342	150	240	234			
1.350	126	148	76	332	366	161	257	250			
1.300	134	162	91	352	390	172	274	267			
1.250	143	176	106	372	413	184	292	283			
1.200	151	190	122	393	437	195	310	299			
1.150	160	204	137	413	461	206	330				
1.100		219	152			218	350				
1.050		234	168			230					
1.000		250	184								
0.950		266	202								
0.900		284	220								

_ /							
Steel Retainers (see page 330)	99912 99916	99926	144944	144944	99967	99935	99944 99969
Titanium Retainers 7° (see page 331)			99975	99975			99669
Titanium Retainers 10° (see page 331)			144661	144661			99630
Spring Seats (see page 342)			99657	99657			99465

Valve Spring Spec Chart					BOLD Numbers are recommended closed pressures @ installed height.						
Spring Type	Dual	Dual	Dual	Dual	Dual	Dual	Dual	Dual			
0.D.	1.437	1.437	1.449	1.460	1.460	1.460	1.465	1.500			
I.D.	0.697	0.700	0.794	0.697	0.803	0.700	0.807	0.726			
Damper	Yes	Yes	No	Yes	No	Yes	No	No			
Installed Height	1.800	1.850	1.875	1.850	1.850	1.900	1.650	2.100			
Coil Bind	1.115	1.110	1.035	1.175	1.080	1.154	0.950	1.130			
Spring Rate (lbs/in.)	322	326	392	404	391	448	438	780			
Max. Net. Lift	0.625	0.680	0.625	0.615	0.710	0.686	0.690	0.900			
Part No.	96874	96872	99892	96877	99893	96870	99838	961356			
2.300											
2.250											
2.200								222			
2.150								261			
2.100								300			
2.050								339			
2.000								378			
1.950				88	92	113		417			
1.900		115	110	107	112	134		456			
1.850	112	131	130	126	130	154		495			
1.800	128	146	149	144	149	174		534			
1.750	142	160	169	163	167	194		573			
1.700	156	175	189	183	186	215	91	612			
1.650	171	189	208	203	205	236	112	651			
1.600	186	205	228	222	223	256	131	690			
1.550	202	221	247	242	242	278	151	729			
1.500	218	238	267	261	261	300	171	768			
1.450	234	255	287	282	279	323	190	807			
1.400	252	272	306	304	298	348	210	846			
1.350	270	291	326	324	318	373	230	885			
1.300	289	309	345	346	338	398	251	924			
1.250	308	327	365	366	358	424	271	963			
1.200	328	345	385	389	380	447	292	1002			
1.150	352	368	404		402		313	1041			
1.100			424				336				
1.050							360				
1.000							383				
0.950											
0.900											

Steel Retainers (see page 330)	99944 99969	99944 99969	99953 99954	99944 99969	99953 99954	99944 99969	99944 99969	99970 99974
Titanium Retainers 7° (see page 331)	99669	99669	99639	99669	99669	99669	99669	99663
Titanium Retainers 10° (see page 331)	99630	99630		99630	99630	99630	99630	99640
Spring Seats (see page 342)	99465	99465		99465		99465		99465 99455

Valve Springs

Valve Spring Sp	ec Chart				BOLD Numbers	s are recomme	nded closed p	ressures @ ins	stalled height.
Spring Type	Dual	Dual	Dual	Dual	Dual	Dual	Dual	Dual	Dual
0.D.	1.500	1.522	1.530	1.539	1.539	1.540	1.540	1.540	1.550
I.D.	0.726	0.726	0.776	0.697	0.697	0.754	0.760	0.729	0.706
Damper	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Installed Height	2.175	2.250	1.900	1.900	1.900	1.900	1.900	1.950	2.000
Coil Bind	1.130	1.190	1.160	1.145	1.152	1.175	1.085	1.130	1.150
Spring Rate (lbs/in.)	780	895	428	444	480	434	528	544	663
Max. Net. Lift	1.000	0.950	0.630	0.700	0.680	0.665	0.755	0.760	0.800
Part No.	961355	961360	99890	96879	96878	99895	99896	96883	961226
2 200		257							
2.300	2/1	357							
2.250	361	402							
2.200	400	447							
2.150	439	491						140	200
2.100	478	536						148	209
2.050	517	581		110	154		110	174	242
2.000	556	626	112	116	154	422	110	200	275
1.950	595	670	112	137	178	123	128	224	308
1.900	634	715	131	160	200	144	150	250	341
1.850	673	760	151	180	222	165	173	275	374
1.800	712	805	171	202	244	186	196	300	407
1.750	751	849	190	223	266	207	220	327	441
1.700	790	894	210	244	288	228	244	352	474
1.650	829	939	229	266	311	250	267	379	507
1.600	868	984	250	286	335	272	290	404	540
1.550	907	1028	271	307	354	292	316	432	573
1.500	946	1073	292	328	383	312	343	458	606
1.450	985	1118	313	350	409	334	372	484	639
1.400	1025	1163	336	375	436	357	399	512	672
1.350	1064	1207	360	401	460	380	428	541	706
1.300	1103	1252	385	424	484	403	460	572	739
1.250	1142	1297	410	448	508	430	491	604	772
1.200	1181	1342	435	471	532	457	524	638	805
1.150	1220						560		838
1.100									
1.050									
1.000									
0.950									
0.900									

Popular Recommended Components

Steel Retainers (see page 330)	99970 99974	99970 99974	99962 99970	99926	99970 99974	99956 99970	99956 99970	99970 99974	99970 99974
Titanium Retainers 7° (see page 331)	99663	99663	99659		99659	99678 99681	99678 99681	99678 99681	
Titanium Retainers 10° (see page 331)	99640	99640	99641	99641	99634 99641	99631 99632	99631 99632		99631 99639
Spring Seats (see page 342)	99465 99455	99465 99455	99466		99460	99464	99466 99464	99460	99465

Valve Springs

Valve Spring Sp	ec Chart				BOLD Numbe	ers are recomm	ended closed	pressures @ in	stalled height.
Spring Type	Dual	Dual	Dual	Dual	Dual	Dual	Dual	Dual	Dual
0.D.	1.550	1.550	1.550	1.551	1.555	1.565	1.565	1.625	1.593
I.D.	0.788	0.706	0.726	0.699	0.743	0.740	0.749	0.851	0.741
Damper	No	Yes	No	Yes	Yes	Yes	Yes	No	Yes
Installed Height	2.000	2.000	2.300	2.000	2.000	1.950	1.950	2.100	2.050
Coil Bind	1.150	1.150	1.230	1.150	1.178	1.200	1.121	1.100	1.220
Spring Rate (lbs/in.)	644	662	1015	652	510	504	618	629	576
Max. Net. Lift	0.800	0.800	1.000	0.790	0.762	0.690	0.769	0.900	0.770
Part No.	961325	961326	961354	96886	96884	99876	99885	961228	96885
2.300			425						
2.250			476						
2.200			526					217	
2.150			577					249	
2.100	186	209	628	167	207			280	227
2.050	218	242	679	197	232		161	311	254
2.000	250	275	729	226	256	163	189	343	280
1.950	282	308	780	255	280	190	215	374	305
1.900	314	341	831	284	308	214	242	406	330
1.850	347	374	882	314	332	239	270	437	356
1.800	379	407	932	344	357	264	297	469	383
1.750	411	441	983	374	381	290	324	500	411
1.700	443	474	1034	406	407	314	352	532	440
1.650	475	507	1085	439	431	339	381	563	468
1.600	507	540	1136	473	458	364	411	595	496
1.550	540	573	1186	507	482	390	444	626	526
1.500	572	606	1237	541	508	415	475	658	556
1.450	604	639	1288	574	533	441	505	689	587
1.400	636	672	1339	610	560	466	536	721	618
1.350	668	706	1389	643	585	493	572	752	647
1.300	701	739	1440	683	612	522	606	784	676
1.250	733	772	1491	717	652	552	645	815	
1.200	765	805			692		685	846	
1.150								878	
1.100									
1.050									
1.000									
0.950									
0.900									

Popular Recommended Components

99970 99974	99970 99974	99970 99974	99974 99970	99956 99970	99956 99970	99956 99970		99970 99974
99661	99661	99663	99659	99675 99681	99678 99681	99678 99681	99660	99675
99639 99641	99639 99641	99640	99634 99641	99631 99632	99631 99632	99634 99641	99638	99635 99632
99464	99465 99464	99465 99455	99465	99460	99460 99464	99460 99464	99463	99460
	99974 99661 99639 99641	99974 99974 99661 99661 99639 99639 99641 99641 99464 99465	99974 99974 99974 99661 99661 99663 99639 99639 99640 99641 99641 99465 99464 99465 99465	99974 99974 99974 99970 99970 99974 99659 99641 99641 99641 99645 99465 99465 99465 99465 99465	99974 99974 99974 99970 99970 99661 99661 99663 99659 99675 99639 99639 99640 99634 99631 99641 99655 99641 99632 99465 99465 99465	99974 99974 99974 99970 9970 9970 9970 9970 9970 9970 9970 9970 9970 9970 9970 9970 99671 99678 99681 99631 99631 99632 99632 99640 99460 99460 99460	99974 99974 99974 99970 9970 99678 99678 99681 99681 99681 99631 99631 99632 99632 99640 99460 99460 <	99974 99974 99974 99970 99970 99970 99970 99970 99661 99661 99663 99659 99675 99678 99681 99680 99639 99641 99641 99632 99632 99641 99632 99641 99464 99465 99465 99460 99460 99463

Valve Springs

Valve Spring Sp	pec Chart				BOLD Numbe	rs are recomm	ended closed	pressures @ ir	stalled height.
Spring Type	Dual	Dual	Dual	Triple	Triple	Triple	Triple	Triple	Triple
0.D.	1.625	1.625	1.625	1.645	1.645	1.645	1.667	1.675	1.675
I.D.	0.769	0.769	0.851	0.635	0.635	0.635	0.635	0.634	0.634
Damper	Yes	Yes	No	No	No	No	No	No	No
Installed Height	2.000	2.050	2.000	2.050	2.070	2.100	2.100	2.100	2.200
Coil Bind	1.090	1.210	1.100	1.130	1.130	1.135	1.135	1.161	1.161
Spring Rate (lbs/in.)	656	564	625	689	682	688	780	684	690
Max. Net. Lift	0.850	0.750	0.850	0.800	0.800	0.900	0.850	0.879	0.979
Part No.	99880	961299	961224	961246	961347	961348	96888	96848	96849
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	701210	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20010	20012
2.300								230	289
2.250								262	320
2.200						263		295	352
2.150		194			236	298	261	329	385
2.100	182	222	212	216	270	332	300	362	418
2.050	213	250	244	250	304	366	339	396	452
2.000	244	278	275	284	338	401	378	430	487
1.950	275	306	306	319	372	435	417	462	520
1.900	306	335	338	353	406	469	456	498	554
1.850	337	363	369	388	440	504	495	530	588
1.800	368	391	401	422	474	538	534	564	623
1.750	400	419	432	457	508	572	573	598	657
1.700	431	447	464	491	542	607	612	633	692
1.650	463	476	495	526	576	641	651	668	727
1.600	496	504	527	560	610	675	690	704	761
1.550	528	532	558	594	644	710	729	740	797
1.500	560	560	590	629	678	744	768	776	832
1.450	594	588	621	663	712	778	807	815	870
1.400	627	617	653	698	746	813	846	857	906
1.350	663	645	684	732	781	847	885	900	942
1.300	696	673	716	767	815	881	924	942	981
1.250	731	701	747	801	849	916	963	987	1024
1.200	764		779	835	883	950	1002	1035	
1.150	801		810			984			
1.100									
1.050									
1.000									
0.950									
0.900									

Popular Recommended Components

Steel Retainers (see page 330)	99962								
Titanium Retainers 7° (see page 331)	99675	99660	99660	99662	99662	99662	99678 99681	99678 99681	99678 99681
Titanium Retainers 10° (see page 331)	99638	99638	99638	99632			99632 99636	99632 99636	99632 99636
Spring Seats (see page 342)	99466 99463	99466 99463	99463	99461	99461	99461			

Steel Valve Spring Retainers

STANDARD CONFIGURATION

Crane Cams' steel valve spring retainers are precision manufactured from high quality bar stock steel, heat treated for maximum strength and durability, and black oxided for corrosion resistance. Crane steel retainers are made for 8mm, 5/16", 11/32", and 3/8" valve stem diameters with 7° taper and are compatible with either Crane stamped steel or machined steel valve stem locks. Retainers for 3/8" diameter valve stems will also accommodate Crane Multi Fit steel locks (All locks sold separately. See pages 340–341). We additionally offer retainers designed for specific engine applications.

MULTI FIT STYLE STEEL RETAINERS WITH 7° TAPER

The Multi Fit style has the same basic tapered I.D. dimensions as a normal 7° steel retainer made for a 3/8" valve stem diameter, and are manufactured from premium quality bar stock material. By using the special thick Multi Fit Valve Stem Locks, these retainers can be used with either 5/16" or 11/32" valve stem diameters. By using Crane Cams' 3/8" machined steel valve locks, these same retainers will accommodate a 3/8" valve stem also. Locks are sold separately, see pages 340–341.

MULTI FIT STYLE STEEL RETAINERS WITH 10° TAPER

Our Multi Fit 10 degree retainers and locks differ from the conventional 10 degree items, as we use a smaller outside diameter lock, enabling the retainer to have a greater cross section in the critical area separating the inner spring steps from the tapered center hole. This provides superior strength and stability when compared to the competition, and these retainers are designed for use **only** with our Multi Fit locks. Compatible locks are offered for 8mm, 5/16", 11/32" and 3/8" valve stems in standard square groove and bead groove configurations. Optional assembly height locks are also offered, see pages 340–341.

Titanium Valve Spring Retainers

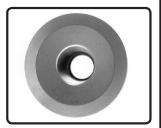
The lighter your valve train components, the quicker the engine will rev. Titanium retainers are **40% lighter** than steel. All Crane titanium retainers are machined from certified American-made bar stock. Beware of the recent influx of inexpensive "titanium" retainers. These are probably made of **inferior imported material**, and **will not** pass certification standards.

MULTI FIT STYLE TITANIUM RETAINERS WITH 7° TAPER

The Multi Fit style has the same basic tapered I.D. dimensions as a normal 7° steel retainer made for a 3/8" valve stem diameter, and are manufactured from premium quality bar stock material. By using the special thick Multi Fit Valve Stem Locks, these retainers can be used with either 5/16" or 11/32" valve stem diameters. By using Crane Cams' 3/8" machined steel valve locks, these same retainers will accommodate a 3/8" valve stem also. Locks are sold separately, see pages 340–341.

POSI-STOP™ DESIGN TITANIUM RETAINERS WITH 7° TAPER

Absolutely The Strongest Titanium Retainer/Lock System Available! Proven In Competition By Nationally-Known Pro Stock, Top Fuel, Funny Car, And Short-Track Race Teams! Crane Cams' Posi-Stop titanium retainers feature the patented stepped design that reinforces the bottom of the retainer. This both *significantly increases the integral strength of the retainer*, and *eliminates* the valve lock's ability to *pull through* the bottom of the retainer. "Posi-Stop" retainers are made for 5/16", 11/32", or 3/8" valve stem diameters with 7° taper, and come with matching Crane machined valve stem locks.


MULTI FIT STYLE TITANIUM RETAINERS WITH 10° TAPER

Our Multi Fit 10 degree retainers and locks differ from the conventional 10 degree items, as we use a smaller outside diameter lock, enabling the retainer to have a greater cross section in the critical area separating the inner spring steps from the tapered center hole. This provides superior strength and stability when compared to the competition, and these retainers are designed for use **only** with our Multi Fit locks. Compatible locks are offered for 8mm, 5/16", 11/32" and 3/8" valve stems in standard square groove and bead groove configurations. Optional assembly height locks are also offered, see pages 340–341.

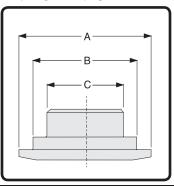
CONVENTIONAL DESIGN TITANIUM RETAINERS WITH 10° TAPER

Our conventional 10 degree titanium retainers are made from premium quality titanium alloy bar stock that is precisely machined on our own automated equipment. Each retainer is carefully quality control inspected for precision and accuracy. These retainers are available in the popular conventional 10° design, for strength and light weight. *Locks are sold separately*, see pages 340–341.

Valve Spring Retainers

How to Use the Valve Spring Retainer Dimension, Retainer Height, and Spring to Retainer Charts

The following pages supply you with specific information on the various valve spring retainers, valve stem locks, and their compatibility with the valve springs that Crane Cams offers. These parts can be used anywhere their physical size can be accommodated, and where the resulting spring tension and spring travel is compatible with the camshaft, rocker arms, and lifters. Different combinations of valve springs, retainers and/or locks can be selected to match your particular needs.

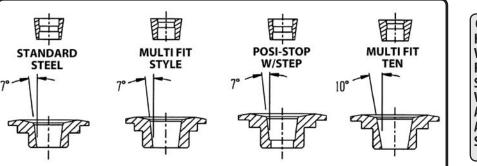

SPRING RETAINER DIMENSIONS

Spring Retainer Dimensions are provided so you can determine how the retainer fits the valve springs, see pages 330-331.

Retainer Dimension "A" fits over the outer spring;

Retainer Dimension "B" fits into the I.D. of the outer spring;

Retainer Dimension "C" fits into the I.D. of the innermost spring.



RETAINER HEIGHT CHART

Crane presents a new simplified method of matching the proper valve spring retainers and valve stem locks to your required assembly height. Simply measure your cylinder head from the spring seat to the top of the valve stem lock groove on the valve, and compare that to your needed assembly height. The chart indicates the relative heights for all of our retainer and standard height lock combinations, from the outer spring step to the top of the lock groove. No fixtures or sample parts are required, just the ability to measure! You can also take advantage of our wide range of +.050" and -.050" height locks to further refine your choices. This way you can minimize the shims required to achieve proper heights and pressures, and provide a more stable platform for your valve springs. See pages 332–334.

SPRING TO RETAINER CHART

This chart shows what retainers are available to fit a particular part number valve spring. It is based on the diameter of the spring and matching diameter of the retainers. It is further broken down by valve stem size, then the material and design of the retainer, see pages 335–337.

Crane Cams Has The Correct Valve Spring Retainers, Valve Springs And Valve Locks For Any Application... Street Or Race!

Valve Spring Retainer Dimensions - Steel

Valve Stem			iner Dimens		D (1)
Dia.	Spring O.D., Type and Special Applications	A	В	C	Part No.
7° Multi Fit	Steel Retainers for 5/16", 11/32", and 3/8" Valve Stem Diameters				
	For 5/16" square groove valve stems: use 99093-1 (standard), 99085-1 (+.050"), or For 11/32" square groove valve stems: use 99094-1 (standard), 99087-1 (+.050"), or For 3/8" square groove valve stems: use 99098-1 (standard), 99099-1 (+.050"), or 9 Valve stem locks for 5/16", 11/32", and 3/8" valve stems with bead groove configuration	or 99088-1 (050") valve : 9 089-1 (050") valve ste	stem locks m locks		
ALL	1.275" Dual	1.250	.910	.650	99975-
ALL	1.055/1.290" to 1.095/1.445" Conical Single	.980	.640		99976-
ALL	1.430" to 1.500" Dual	1.375	1.030	.675	99950-
ALL	1.430" to 1.500" Dual or Triple	1.375	1.060	.675	99948-
ALL	1.430" to 1.500" Dual or Triple	1.375	1.060	.675	99957-
ALL	1.430" to 1.500" Single or Dual	1.425	1.060	.685	99969-
ALL	1.430" to 1.500" Single or Dual	1.425	1.060	.685	99973-
ALL	1.460" Dual	1.375	1.075	.792	99954-
ALL	1.510" to 1.625" Dual	1.500	1.100	.690	99970-
ALL	1.510" to 1.625" Dual	1.500	1.100	.690	99974-
ALL	1.530″ Dual	1.500	1.111	.765	99962-
ALL	1.540″ Dual	1.500	1.135	.725	99964-
ALL	1.540" Dual	1.500	1.135	.725	99961-
ALL	1.540" to 1.630 Dual or Triple	1.500	1.135	.635	99955-
	tainers for Specific Valve Stem Diameters and Applications	1.500	1.155	.000	,,,,,,
/ Steerner					
8mm	1.055" top / 1.290" bottom Beehive Single Chevrolet LS1/LS2/LS6 V-8	1.027	.637		144943-
8mm	1.275" Dual Chevrolet LS1/LS2/LS6 V-8	1.250	.910	.640	144944-
	1.225" to 1.250" Single or Dual	1.250		.010	
11/32″	for self-aligning rocker arms	1.210	.865	.595	99914-
11/32″	1.225" to 1.250" Single or Dual	1.203	.867	.607	99916-
11/32″	1.225" to 1.250" Single or Dual	1.203	.867	.607	99915-
11/32″	1.295" top / 1.450" bottom Conical Single Ford 302 H.O. V-8	1.250	.859		99942-
11/32″	1.320" Dual Ford SOHC 2.3L I-4	1.250	.985	.745	99967-
11/32″	1.344" Dual Chevy L98/Fast Burn alum. heads	1.275	.990	.720	99935-
11/32″	1.430" to 1.500" Single or Dual	1.375	1.030	.675	99946-
11/32″	1.430" to 1.500" Single or Dual	1.375	1.060	.675	99936-
11/32″	1.430" to 1.500" Single or Dual	1.375	1.060	.675	99944-
11/32″	1.430" to 1.500" Single or Dual	1.375	1.060	.675	99943-
11/32″	1.460" Dual	1.375	1.075	.792	99953-
11/32″	1.460" Dual for self-aligning rocker arms	1.375	1.075	.792	99951-
11/32″	1.540" to 1.630" Dual or Triple	1.500	1.135	.635	99956-
	it Steel Retainers	1.500	1.135	.035	
	For 5/16" square groove valve stems: use 99071-1 (standard), 99072-1 (+.050"), or For 11/32" square groove valve stems: use 99074-1 (standard), 99075-1 (+.050"), or For 3/8" square groove valve stems: use 99077-1 (standard), 99078-1 (+.050"), or 9 Valve stem locks for 5/16", 11/32", and 3/8" valve stems with bead groove configuration	or 99073-1 (050") valve ste 9076-1 (050") valve ste	stem locks m locks		
ALL	1.430" to 1.500" Single or Dual	1.425	1.060	.685	99971-
ALL	1.510" to 1.625" Dual	1.500	1.100	.690	99972-
	NOTE: These recommended locks differ from competing conventional 10°locks and our Multi-Fit titanium retainers by 25%. Also, many competing 10 degree 9° to 11-1/2°. Because of the accurate, robust design of Crane locks, they 10° retainers, and competitor's locks won't work with Crane Multi Fit 10° to 10° retainers.	locks vary in production fi are incompatible with mos	rom		
Steel Retai	ners with Unique Taper for Specific Applications				
11/32″	1.225" to 1.250" Single or Dual for Buick, 11° Taper	1.200	.867	.599	99912-
3/8″	1.430" to 1.500" Dual for Buick, 11° Taper	1.375	1.075	.698	99910-

 NOTE:
 The retainers are packaged in various quantities depending on the engine application. The suffix number (after the dash) in the part number indicates the quantity. For example, part no 99944-16 would be packaged with 16 retainers. Consult the engine application pages or the numerical price list for the correct quantity suffix.

 NOTE:
 See pages 332-334 for our new Retainer Height Chart.

Valve Spring Retainer Dimensions - Titanium

Valve Stem				ainer Dimensio		
Dia.	Spring O.D., Type and Special Applications		A	В	C	Part No.
7° Multi Fit	t Titanium Retainers for 5/16", 11/32	", and 3/8" Valve Stem Diameters				
	For 11/32" square groove valve stems: use 9 For 3/8" square groove valve stems: use 990	093-1 (standard), 99085-1 (+.050″), or 99086-1 9094-1 (standard), 99087-1 (+.050″), or 99088 - 98-1 (standard), 99099-1 (+.050″), or 99089-1 ve stems with bead groove configuration also avai	-1 (050") valve (050") valve ste	stem locks em locks		
ALL	1.275″ Dual		1.250	.918	.640	99657-
ALL	1.500" to 1.550" Dual		1.400	1.040	.715	99663-
ALL	1.530" to 1.550" Dual		1.440	1.105	.687	99659-
ALL	1.540" to 1.595" Dual		1.500	1.150	.720	99655-
\LL	1.550" Dual		1.440	1.090	.695	99661-
ALL	1.625" Dual		1.510	1.165	.760	99660-
ALL	1.625" to 1.675" Triple		1.500	1.180/.860	.620	99656-
ALL	1.645" Triple		1.530	1.185	.860	99662-
7° Titaniun	n Retainers for Specific Valve Stem Di	ameters and Applications				
5.5mm	1.000" Single	Ford Duratec 1.8 – 2.3L DOHC 4 Valve I-4	.945	.710		903-0503
ómm	.999" top/1.095" bottom Beehive Single	Ford 4.6 - 5.4L 3 Valve V-8	.885	.615		39660-
ómm	1.065" Single	Chrysler/Dodge SOHC/DOHC 4 Valve I-4	.995	.715		158660-
7mm	.930" top/1.025" bottom Beehive Single	Ford 4.6 - 5.4L 4 Valve V-8	.850	.560		40660-
7mm	.967" top/1.096" bottom Beehive Single	Ford 4.6 - 5.4L 2 Valve V-8	.885	.615	.503	37660-
Bmm	1.055" top/1.290" bottom Beehive Single	Chevrolet LS1/LS2/LS6 V-8	.974	.620		99637-
Bmm	1.255″ Single		1.180	.856		99658-
Bmm	1.275″ Dual	Chevrolet LS1/LS2/LS6 V-8	1.250	.910	.640	144661-
7° Posi-Sto	p Titanium Retainers for Specific Val	ve Stem Diameters				
1/32″	1.430" to 1.500" Dual		1.375	1.045	.703	99669-
1/32″	1.540″ Dual		1.500	1.135	.740	99675-
1/32″	1.560" to 1.630" Triple		1.500	1.135	.635	99678-
1/32″	1.560" to 1.630" Triple		1.500	1.135	.635	99681-
8/8″	1.540″ Dual		1.500	1.135	.740	99676-
8/8″	1.560" to 1.630" Triple		1.500	1.135	.635	99679-
	•	are packaged with appropriate Crane Cams machi	ned valve stem lo	ocks.		
10° Crane /	Multi Fit Titanium Retainers					
	For 11/32" square groove valve stems: use 9 For 3/8" square groove valve stems: use 990	071-1 (standard), 99072-1 (+.050″), or 99070-1 9074-1 (standard), 99075-1 (+.050″), or 99073- 77-1 (standard), 99078-1 (+.050″), or 99076-1 ve stems with bead groove configuration also avai	-1 (050") valve (050") valve ste	stem locks em locks		
\LL	1.540" to 1.595" Dual		1.500	1.150	.720	99635-
LL	1.625" to 1.675" Triple		1.500	1.180/.860	.620	99636-
	titanium retainers by 25%. Also, many competi	rom competing conventional 10°locks and they inc ng 10 degree locks vary in production from 9° to 1 competitors 10° retainers, and competitor's locks	1-1/2°. Because	of the accurate, r	obust desia	1
0° Conver	ntional Titanium Retainers					
LL	1.430" to 1.500" Dual or Triple		1.375	1.060	.675	99630-
LL	1.500" to 1.550" Dual		1.400	1.040	.715	99640-
\LL	1.510" to 1.625" Dual		1.500	1.100	.690	99641-
LL	1.550″ Dual		1.440	1.090	.695	99639-
\LL	1.540" to 1.560" Dual		1.500	1.120	.735	99631-
ALL	1.550" to 1.560" Dual		1.500	1.095	.700	99634-
\LL	1.560" to 1.630" Triple		1.500	1.135	.635	99632-
\LL	1.625" Dual		1.510	1.165	.760	99638-
	NOTE: These retainers can be used with 10 degree valve stem locks are used: 99080-1	1/32" or 3/8" valve stems with single keeper groo for 5/16"; 99081-1 for 11/32"; 99082-1 for 3/8". S	ves provided tha See page 341 for	t the appropriate +.050″ and050	conventiona O″ optional lo	al ocks.

NOTE: The retainers are packaged in various quantities depending on the engine application. The suffix number (after the dash) in the part number indicates the quantity. For example, part no 99944-16 would be packaged with 16 retainers. Consult the engine application pages or the numerical price list for the correct quantity suffix. NOTE: See pages 332-334 for our new Retainer Height Chart.

Valve Spring Retainer Height Chart

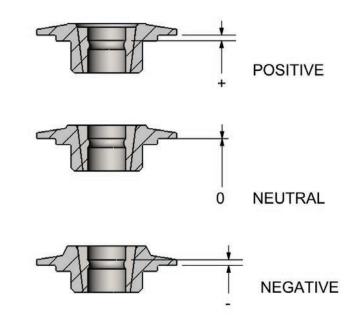
Retainer Height Chart

To be able to achieve the proper valve spring height, while using the minimum amount of valve spring shims, can be challenging when working with applications that use other than stock components. There has never been an industry standard to compare the relationship of retainer heights with each other, although we have previously listed our retainer heights by comparing them with each other. This has been somewhat helpful if you have at least one of our retainers on hand for comparison purposes, but doesn't properly address the variations of valve stem diameters, valve stem lock thicknesses, and taper angles.

With this new listing, we are providing a measurable dimension that can be easily checked for the cylinder head and valve combination you're working with. No sample retainers or fixtures are needed. The Retainer Height dimensions listed indicate the relationship of the outer step of the retainer that the outer valve spring sets against, with the top of the valve stem lock groove in the valve stem.

If the dimension on the chart is .000", the outer retainer step, and the top of the lock groove are at the same height. If the dimension is positive, such as .060", then the outer retainer step is .060" above the top of the lock groove. If the dimension is negative, such as -.040", then the outer spring step is .040" below the top of the lock groove. Check the accompanying drawings for a visual explanation.

This will enable you to measure from the valve spring seat on the cylinder head, to the top of the lock groove in the valve, then compare that dimension to your desired valve spring assembly height (see the Valve Spring Retainer Dimension pages 330–331, and the Valve Spring to Retainer Cross Reference pages 335–337 for additional information). If you need an assembly height that's .060" higher than your measured dimension, check the listings for the applicable retainers for your valve springs, and look for a height figure close to .060".


The standard height Crane Cams valve stem lock part numbers are listed with each diameter valve stem (where applicable) to achieve these figures. Remember, most of our valve stem locks are also available in +.050" and -.050" heights (see pages 340–341), to extend the available height combinations that can be created.

The retainers are listed by material, then by lock configuration.

The valve stems are listed by diameter and lock groove configuration.

Certain unique specific retainers are listed using their usual valve locks, such as the Buick 11 degree, and the Ford Modular items.

We hope this will make choosing your components easier, and provide a more reliable valve spring retainer/valve stem lock combination for your application.

Valve Spring Retainer Height Chart

Steel Retainers

Retainer Part No.	Valve Stem Dia (Valve Stem Lo						
7° Crane Multi Fi	t and 3/8″						
	5/16 sq.	5/16 bead	11/32 sq.	11/32 bead	3/8 sq.	7mm bead	8mm bead
	99093	99101	99094	99104	99098	99106	99107
99948	055	055	050	050	080	055	055
99950	.045	.045	.050	.050	.020	.045	.045
99954	.040	.040	.045	.045	.015	.040	.040
99955	.055	.055	.060	.060	.030	.055	.055
99957	.045	.045	.050	.050	.020	.045	.045
99961	.125	.125	.130	.130	.100	.125	.125
99962	.125	.125	.130	.130	.100	.125	.125
99964	.040	.040	.045	.045	.015	.040	.040
99969	.045	.045	.050	.050	.020	.045	.045
99970	.045	.045	050	.050	.020	.045	.045
99973	.110	.110	.115	.115	.085	.110	.110
99974	.110	.110	.115	.115	.085	.110	.110
99975	005	005	.000	.000	030	005	005
99976	.010	.010	.015	.015	015	.010	.010
7° Specific							
•	11/32 sq.	8mm bead					
	99097	99108					
99914	.035						
99915	.020						
99916	055						
99935	.075						
99936	.005						
99942	.285						
99943	.135						
99944	.075						
99946	.075						
99951	.135						
99953	.135						
99956	.125						
99966	.135						
99967	.215						
144943		020					
144944		030					
10° Crane Multi I	Fit						
	5/16 sq.	11/32 sq.	3/8 sq.				
99971	.030	.055	.045				
99972	.030	.055	.045				
11° Specific							
99912	11/32 Buick	060					
99910	3/8 Buick	085					

Section Continued 🧡

Valve Spring Retainer Height Chart

Titanium Retainers

Retainer Part No.	Valve Stem Diam (Valve Stem Lock	eter Part No.)					
7° Crane Multi Fit	and 3/8″						
	5/16 sq.	5/16 bead	11/32 sq.	11/32 bead	3/8 sq.	7mm bead	8mm bead
	99093	99101	99094	99104	99098	99106	99107
99655	.045	.045	.050	.050	.020	.045	.045
99656	.045	.045	.050	.050	.020	.045	.045
99657	005	005	.000	.000	030	005	005
99659	.115	.115	.115	.115	.085	.115	.115
99660	.115	.115	.115	.115	.085	.115	.115
99661	.115	.115	.115	.115	.085	.115	.115
99662	.115	.115	.115	.115	.085	.115	.115
99663	.115	.115	.115	.115	.085	.115	.115
7° Specific							
37660	7mm 3-groove	070					
39660	6mm	.050					
158660	6mm	.025					
40660	7mm 3-groove	.000					
99637	8mm	030					
99658	8mm	055					
144661	8mm	030					
903-0503	5.5mm	.020					
7° "Posi-Stop" Spe	ecific						
	11/32 sq.	3/8 sq.					
	99097	99098					
99669	.075						
99675	.150						
99676		.060					
99678	.075						
99679		.030					
99681	.165						
10° Crane Multi F	it						
	5/16 sq.	11/32 sq.	3/8 sq.				
	99071	99074	99077				
99635	.030	.055	.045				
99636	.030	.055	.045				
10° Conventional							
	5/16 sq.	5/16 bead	11/32 sq.	11/32 bead	3/8 sq.	3/8 bead	
	99080	99115	99081	99116	99082	99117	
99630	.110	.110	.110	.110	.080	.080	
99631	.150	.150	.150	.150	.120	.120	
99632	.095	.095	.095	.095	.065	.065	
99634	.045	.045	.045	.045	.015	.015	
99638	.115	.115	.115	.115	.115	.115	
99639	.115	.115	.115	.115	.115	.115	
99640	.115	.115	.115	.115	.115	.115	
99641	.155	.155	.155	.155	.155	.155	

Valve Spring to Retainer Cross Reference

Single Springs

Valve Spring Part No.	7° S 5/16″	iteel Retainer 11/32″	3/8″	10° Steel Retainer	Titaniur 7°	n Retainer 10°	- 8mm	SpringSeat (L.D.)
37830	None	None	None	None	37660	None	None	None
40830	None	None	None	None	40660	None	None	None
96801	99969	99936 99943 99944 99969	99948 99957 99969	99971	None	None	None	None
96802	None	99914 99915 99916	None	None	None	None	None	None
96803	99969	99946 99969	99950 99969	99971	None	None	None	None
96806	99969	99936 99943 99944 99951 99953 99969	99948 99954 99957 99969	99971	None	None	None	None
96807	99962 99970	99962 99970	99962 99970	99972	None	99641	None	None
96845	None	None	None	None	903-0503	None	None	None
99831	99976	99976	99976	None	99637	None	144943	99454 (.502")
99832	99976	99976	99976	None	99637	None	None	99456 (.500") 99457 (.570") 99458 (.637")
99833	99950	99936 99943 99944 99946 99950	99948 99950 99957	None	None	99630	None	99457 (.570″)
99835	99950 99969	99936 99943 99944 99950 99969	99948 99950 99957 99969	99971	None	99630	None	99459 (.637″)
99839	99950 99969	99936 99943 99944 99950 99969	99948 99950 99957 99969	99971	None	99630	None	99459 (.637")
99840	99950 99969	99936 99943 99944 99950 99969	99948 99950 99957 99969	99971	None	99630	None	99457 (.570″)
99841	None	99942	None	None	None	None	None	None
99842	None	None	None	None	None	None	None	None
99846	None	99914 99915 99916	None	None	None	None	None	None
99848	None	99914 99915 99916	None	None	None	None	None Section Coi	None

Valve Spring to Retainer Cross Reference

Single Springs

	7°	Steel Retain	er	10° Steel Retainer	Titaniu	m Retainer	Spring Seat
Valve Spring Part No.	5/16″	11/32″	3/8″		7 °	10°	(I.D.)
144846	None	99914 99915 99916	None	None	99658	None	None
158830	None	None	None	None	158660	None	None
180830	None	None	None	None	158660	None	None

Dual Springs

Valve Spring Part No.	7° 5/16″	Steel Retain 11/32″	er 3/8″	10° Steel Retainer	7° Tita 5/16″	nium Posi 11/32″	i-Stop 3/8″	Titaniu 7°	m Retainer 10°	8mm	Spring Seat (I.D.)
96870	99969	99936 99943 99944 99969	99957 99969	99971	None	99669	None	None	99630	None	99465 (.570″)
96872	99969	99936 99943 99944 99969	99948 99957 99969	99971	None	99669	None	None	99630	None	99465 (.570″)
96873	99969	99936 99943 99944 99969	99948 99957 99969	99971	None	99669	None	None	99630	None	99465 (.570″)
96874	99969	99936 99943 99944 99969	99948 99957 99969	99971	None	99669	None	None	99630	None	99465 (.570″)
96877	99969	99936 99943 99944 99969	99948 99957 99969	99971	None	99669	None	None	99630	None	99465 (.570")
96878	99970 99974	99970 99974	99970 99974	99972	None	None	None	99659	99634 99641	None	99460 (.570")
96879	99970 99974	99970 99974	99970 99974	99972	None	None	None	99659	99634 99641	None	99465 (.570")
96883	99970 99974	99970 99974	99970 99974	99972	None	99678 99681	99679	99659	99641	None	99460 (.570")
96884	99961 99964 99970 99974	99956 99961 99964 99970 99974	99955 99961 99964 99970 99974	99972	None	99675 99678 99681	99676 99679	None	99631 99632 99641	None	99460 (.570″)
96885	99970 99974	99970 99974	99970 99974	99972	None	99675	None	None	99631 99632 99663	None	99460 (.570")
96886	99970 99974	99970 99974	99970 9997 4	99972	None	None	None	99659	99634 99641	None	99465 (.570")
96887	None	99935	None	None	None	None	None	None	None	None	None
99838	99969	99936 99943 99944 99969	99948 99957 99969	99971	None	99669	None	None	99630	None	None

Valve Spring to Retainer Cross Reference

Dual Springs

Valve Spring		Steel Retain	er	10° Steel		nium Posi	-Stop		m Retainer	0	Spring Seat
Part No.	5/16″	11/32″	3/8″	Retainer	5/16″	11/32″	3/8″	7°	10°	8mm	(I.D.)
99876	99970 99974	99956 99970 99974	99955 99970 99974	99972	None	99678 99681	99676	None	99631 99632	None	99460 (.570") 99464 (.637")
99879	None	None	None	None	None	None	None	None	None	99926	None
99880	99962	99962	99962	99972	None	99675	99676	99655	99638	None	99466 (.570") 99463 (.637")
99884	None	99967	None	None	None	None	None	None	None	None	None
99885	99961 99964 99970 99974	99956 99961 99964 99970 99974	99955 99961 99964 99970 99974	99972	None	99678 99681	99676	None	99634 99641	None	99460 (.570") 99464 (637")
99890	99962 99970 99974	99962 99970 99974	99962 99970 99974	99972	None	None	None	99659	99641	None	99466 (.570")
99891	None	99912 99914 99915 99916	None	None	None	None	None	None	None	None	None
99892	99954	99951 99953 99954	99954	99971	None	None	None	None	None	99639	None
99893	99952 99969	99951 99953 99969	99954 99969	99971	None	99669	None	None	99630	None	None
99895 99896	99961 99964 99970 99974	99956 99961 99964 99970 99974	99955 99961 99964 99970 99974	99972	None	99675 99678 99681	99676 99679	None	99631 99632 99641	None	99466 (.570") 99464 (.637")
144838	99975	99975	99975	None	None	None	None	99657	None	144661	None
144847	99975	99975	99975	None	None	None	None	None	None	144661	None
961224	None	None	None	None	None	None	None	99660	99638	None	99463 (.637")
961226	None	None	99970 99974	99972	None	None	None	99661	99639	None	99465 (.570")
961228	None	None	None	None	None	None	None	99660	99638	None	99463 (.637")
961299	None	None	None	None	None	None	None	99660	99638	None	99466 (.570") 99463 (.637")
961325	None	None	99970 99974	99972	None	None	None	99661	99639 99641	None	99464 (.637")
961326	None	None	99970 99974	99972	None	None	None	99661	99639 99641	None	99465 (.570") 99464 (.637")
961354	None	None	99970 99974	99972	None	None	None		99640	None	99465 (.570") 99455 (.637")
961355 961356	None	None	99970 99974 99970	99972 99972	None	None None	None	99663 99663	99640 99640	None	99465 (.570") 99455 (.637") 99465 (.570")
961360	None	None	99974 99970	99972	None	None	None	99663	99640	None	99405 (.570") 99455 (.637") 99465 (.570")
	None	None	99974	,,,,,,,	None	None	None	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JJUHU	None	99455 (.637")
Triple Springs											
96848	None	None	None	None	None	99678 99681	99679	99656	99632 99636	None	None
96849	None	None	None	None	None	99678 99681	99679	99656	99632 99636	None	None
96888	None	None	None	None	None	99678 99681	99679	99656	99632 99636	None	None
961246	None	None	None	None	None	None	None	99662	None	None	99461 (.637")
961347	None	None	None	None	None	None	None	99662	None	None	99461 (.637")
961348	None	None	None	None	NULLE	None	NULLE	7900Z	None	NUTE)

Valve Spring and Retainer Kits

Valve Spring and Retainer Kits

Crane Cams Valve Spring and Retainer Kits offer an easy, costsaving method of insuring that your performance camshaft installation has the correct, matched valve springs and retainers needed to deliver maximum performance. These springs are designed to allow the increased RPM and more aggressive valve train operation that allows a Crane performance cam installation to "wake up" even stock engines. Crane steel and titanium valve spring retainers are designed to correctly fit the supplied Crane springs. The steel retainers are made from premium quality steel, precisely machined and heat treat hardened for strength, durability and wear resistance. The titanium retainers are manufactured from certified American made bar stock. Best of all, most of these Crane Valve Spring and Retainer Kits can be easily installed with no cylinder head machining necessary.

Applications are available for popular I-4 and V-8 engines. Consult the engine applications pages for correct usage.

		Contents	
Application	Part No.	Valve Springs	Retainers
American Motors V-8 66-91, 290 thru 401			
	64308-1	99839-16	99957-16
Chevrolet V-8 67-87, 262 thru 400			
	11308-1	99848-16	99915-16
XHTCS material, Saturday Night Special	11309-1 ª (Includes Locks 99095-1)	99846-16	99915-16
Chevrolet V-8 57-99, 262-400			
Requires cylinder head machining	11310-1 ^b	99838-16	99944-16
Chevrolet V-8 92-99, 350 LT1			
With aluminum cylinder heads	10308-1 (Includes Locks 99097-1)	99893-16	99951-16
Chevrolet V-8 94-99, 350 LT1			
With iron cylinder heads	10309-1	99845-16	99914-16
Chevrolet V-8 95-96, Vortec 350			
	10309-1	99845-16	99914-16
Chevrolet V-8 97-Up, LS-Series 4.8-5.3-5.7-6.0-6.2 litre			
For up to .600″ gross valve lift	144318-1 (includes spring seats 99454	99831-16 - 16 , seals 99818-16 , 8	144943-16 (locks 99108-1)
For up to .680" gross valve lift, XHTCS material	144313-1 (includes spring seats 14446	144847-16 0-16, seals 99818-16 ,	144944-16 & locks 99108-1)
For up to .680" gross valve lift, XHTCS material	144314-1 (includes spring seats 14446	144847-16 0-16, seals 99818-16,	144661-16 & locks 99108-1)
For up to .660″ gross valve lift	144317-1 (includes spring seats 14446	144838-16 0-16, seals 99818-16,	144944-16 & locks 99108-1)
For up to .660″ gross valve lift	144316-1 (includes spring seats 14446	144838-16 0-16, seals 99818-16 ,	144661-16 & locks 99108-1)
Chevrolet V-8 65-98, 396 thru 502			
	13308-1	99839-16	99948-16
Chevrolet V-8 80-95, Truck 366 thru 454			
With short valve spring assembly height	13309-1	96801-16	99957-16

Valve Spring and Retainer Kits

Valve Spring and Retainer Kits

		Conter	nts
Application	Part No.	Valve Springs	Retainers
Chrysler-Dodge Neon I-4 95-05, SOHC 4V 2.0L			
	903-2003	158830-16	158660-16
Chrysler-Dodge Neon, PT Cruiser I-4 95-09, DOHC 4V 2.0-2.4L			
	903-2002	180830-16	158660-16
Chrysler-Dodge-Plymouth V-8 64-91, "LA" 273 thru 360 and 67-91, 318			
	69308-1	99835-16	99948-16
Chrysler-Dodge-Plymouth V-8 58-78, "B" 350 thru 440			
	64308-1	99839-16	99957-16
Ford Duratec I-4 02-05, DOHC 4V 1.8-2.0-2.3L			
	903-2007	99845-16	903-0503
Ford V-8 62-87, 221-302 and 69-97, 351W			
	36308-1	96803-16	99946-16
Requires Cylinder Head Machining	11310-1 ^ь	99838-16	99944-16
Ford V-8 85-00, 302 and 302 H.O. w/Hydraulic Roller Camshafts			
Conical design, for stock cylinder head	44308-1 ^c	99841-16	99942-16
	(Includes Locks 9909	4 and 99097)	
Conical design, for GT40P and similar long exhaust valve cylinder heads	44309-1	99841-16	99942-16
	(Includes locks 99094	4)	
Ford V-8 70-77, 351C-351M-400			
	52308-1	96801-16	99948-16
Ford V-8 71-72, Boss 351 and 79-82, 351M-400			
	35308-1	96801-16	99944-16
Ford V-8 63-76, FE 352 thru 428			
	13309-1	96801-16	99957-16
Ford V-8 68-97, 370 thru 460			
	35308-1	96801-16	99944-16
Oldsmobile V-8 67-84, 260 thru 455 39° Bank Angle and 64-67, 330 thru 425 45° Bank Angle			
	36308-1	96803-16	99946-16
Requires Cylinder Head Machining	11310-1 ^b	99838-16	99944-16
Pontiac V-8 55-81, 265 thru 455			
	28308-1	99840-16	99944-16
Requires Cylinder Head Machining	11310-1 ^b	99838-16	99944-16

a Standard diameter valve springs for 1967-87 cylinder heads with 1.700" assembly height. Check valve guide to lock/retainer clearance at maximum valve lift, valve guide machining may be required.
 b Must machine cylinder heads. Check valve guide to lock/retainer clearance at maximum valve lift, valve guide machining may be required.
 c Optional kit for 79-00 302, 302 H.O., and 351W engines to provide increased valve spring travel when using stock cylinder heads.

Valve Stem Locks

340

Machined Steel Locks 7°

Description

The ultimate in strength and wear resistance. These locks are machined from highest quality alloy steel billet material using the finest automatic screw machines and then carefully heat treated. Engineered specifically for today's high engine speeds and high-tension valve springs. These machined steel locks are the only locks to be used with our "Posi Lock" valve spring retainers. Oxide finished for corrosion protection, and color coded for assembly height identification.

Part No.

99091-1

99095-1

99097-1

99096-1

99099-1

99098-1

99089-1

Machined Steel Locks 7°

For 5/16" diameter Valve Stems (Black)

For 11/32" diameter Valve Stems +.050" installed height (Yellow)

For 11/32" diameter Valve Stems -.050" installed height (Silver)

For 3/8" diameter Valve Stems +.050" installed height (Yellow)

For 3/8" diameter Valve Stems -.050" installed height (Silver)

For 11/32" diameter Valve Stems standard height (Black)

For 3/8" diameter Valve Stems standard height (Black)

These machined steel locks are precision machined and heat treated in our own facility for the latest generation of engine technology. Although primarily designed for the Chevrolet LS1/LS2/ LS6 families, they are also applicable to most valve stems that require a bead-style valve lock.

Description	Part No.
For 8 mm Valve Stems (standard OEM dimension)	99108-1
For 8 mm Valve Stems increased O.D. (Multi Fit)	99107-1

Multi-Fit Valve Stem Locks 7°

Our steel billet heat treated Multi-Fit locks feature an increased outside diameter for additional strength, durability and fatigue resistance. These Multi-Fit locks are highly recommended for any high RPM, high valve spring tension, or heavy valve application prone to lock distortion and retainer pull-through. The 7° taper actually provides more clamping force than wider 10° taper locks and are the preferred choice of professional engine builders and racers. (Use only with Crane Multi-Fit retainers).

Description	Part No.		
For 5/16" diameter Valve Stems +.050" installed height (Yellow)	99085-1		
For 5/16" diameter Valve Stems standard height (Green)	99093-1		
For 5/16" diameter Valve Stems050" installed height (Silver)	99086-1	NOTE: Crane Locks are color coded for easier identification	n.
For 11/32" diameter Valve Stems +.050" installed height (Yellow)	99087-1		
For 11/32" diameter Valve Stems standard height (Green)	99094-1		_
For 11/32" diameter Valve Stems050" installed height (Silver)	99088-1		
For 3/8" diameter Valve Stems +.050" installed height (Yellow)	99099-1		
For 3/8" diameter Valve Stems standard height (Black)	99098-1		
For 3/8" diameter Valve Stems050" installed height (Silver)	99089-1		

Sinale Groove Desian

Titanium Retainers.

Single Bead Design

Single Groove Design

NOTE:

This design lock is packaged with all Crane "Posi-Stop"

Section Continued

Valve Stem Locks

Multi-Fit Valve Stem Locks 7°

Our steel billet heat treated Single Bead Multi-Fit locks provide all of the strength and durability advantages of our single square groove design, and are compatible with most of the aftermarket bead lock valves currently available. Also available in +.050" and -.050" assembly height versions for 5/16" and 11/32" valve stems, these are designed specifically for use with only our Multi-Fit retainers.

Description	Part No.
For 5/16" diameter Valve Stems +.050" installed height (Yellow)	99102-1
For 5/16" diameter Valve Stems standard height (Black)	99101-1
For 5/16" diameter Valve Stems050" installed height (Silver)	99100-1
For 11/32" diameter Valve Stems +.050" installed height (Yellow)	99105-1
For 11/32" diameter Valve Stems standard height (Black)	99104-1
For 11/32" diameter Valve Stems050" installed height (Silver)	99103-1
For 7 mm Valve Stems standard height (Black)	99106-1
For 8 mm diameter Valve Stems standard height (Black)	99107-1

Multi-Fit Valve Stem Locks 10°

Crane 10 degree heat treated, fully machined steel billet, Multi-Fit locks were designed to allow the retainer to have an increased cross-section in the critical area between the tapered hole for the locks and the valve spring steps. Having greater retainer integrity will now provide a more stable platform for the valve springs, reducing retainer breakage and the possibility of the locks separating from the valve stem under adverse operating conditions. Many competing 10 degree locks vary in production from 9 deg to 11-1/2 degree. Because of the accurate, robust design of Crane locks, they are incompatible with most competitors 10 degree retainers, and competitor's locks won't work with Crane Multi-Fit 10 degree retainers.

Description	Part No.
For 5/16" diameter Valve Stems +.050" installed height (Silver)	99072-1
For 5/16" diameter Valve Stems standard height (Green)	99071-1
For 5/16" diameter Valve Stems050" installed height (Yellow)	99070-1
For 11/32" diameter Valve Stems +.050" installed height (Silver)	99075-1
For 11/32" diameter Valve Stems standard height (Green)	99074-1
For 11/32" diameter Valve Stems050" installed height (Yellow)	99073-1
For 3/8" diameter Valve Stems +.050" installed height (Silver)	99078-1
For 3/8" diameter Valve Stems standard height (Green)	99077-1
For 3/8" diameter Valve Stems050" installed height (Yellow)	99076-1

Machined Steel Locks 10° Conventional

Many engine builders are used to a conventional 10° taper, and these machined steel locks are perfect for any racing application where the conventional 10° design is specified. (Use only w/ 99630, 99631, 99632, 99633, 99634, 99638, 99639, or 99640 Crane retainers or competitors' conventional 10° retainers). Locks are recessed for lash cap clearance.

Description	Part No.
For 5/16" diameter Valve Stems +.050" installed height (Yellow)	99109-1
For 5/16" diameter Valve Stems standard height (Black)	99080-1
For 5/16" diameter Valve Stems050" installed height (Silver)	99112-1
For 11/32" diameter Valve Stems +.050" installed height (Yellow)	99110-1
For 11/32" diameter Valve Stems standard height (Black)	99081-1
For 11/32" diameter Valve Stems050" installed height (Silver)	99113-1
For 3/8" diameter Valve Stems +.050" installed height (Yellow)	99111-1
For 3/8" diameter Valve Stems standard height (Black)	99082-1
For 3/8" diameter Valve Stems050" installed height (Silver)	99114-1

Machined Steel Locks 10° Conventional

Description	Part No.
For 5/16" diameter Valve Stems +.050" installed height (Yellow)	99118-1
For 5/16" diameter Valve Stems standard height (Black)	99115-1
For 5/16" diameter Valve Stems050" installed height (Silver)	99121-1
For 11/32" diameter Valve Stems +.050" installed height (Yellow)	99119-1
For 11/32" diameter Valve Stems standard height (Black)	99116-1
For 11/32" diameter Valve Stems050" installed height (Silver)	99122-1
For 3/8" diameter Valve Stems +.050" installed height (Yellow)	99120-1
For 3/8" diameter Valve Stems standard height (Black)	99117-1
For 3/8" diameter Valve Stems050" installed height (Silver)	99123-1

Single Groove Design

Single Bead Design

Single Groove Design

Single Bead Design

Valve Seals, Valve Train Accessories

Valve Lash Caps

Precision machined from 8620 steel alloy, heat treated and black oxided. Provides a better wear surface and lengthens valve for correct geometry. (Maintain .030" clearance from bottom of lash cap to top of the valve locks)

Application	Part No.	
5/16" diameter valve stems (.162" tall, .060" thick)	99420-16	
11/32" diameter valve stems (.162" tall, .060" thick)	99421-16	
11/32" diameter valve stems, for Ford 2300 c.c. SOHC (.210" tall, .100" thick)	99423-8	States 1
3/8" diameter valve stems (.162" tall, .060" thick)	99422-16	
7mm diameter valve stems, for Ford 4.6-5.4L SOHC V-8 & 4.6L DOHC V-8(.200" tall, .080" thick)	99424-16	
8mm diameter valve stems (.162" tall, .060" thick)	99425-16	
8mm diameter valve stems, for Ford 2000 c.c. SOHC (.204" tall, .050" thick)	99045-8	

Valve Spring Locators and Cups

Crane shatters the myth that "all spring seats are the same". Our new spring cups (those that contain the O.D. of the valve springs) and locators (that locate the I.D. of the valve springs) incorporate tapered vertical surfaces to eliminate the spring chafing that can guickly deteriorate and lead to premature failure and breakage of the most expensive valve springs. And when valve springs break, the damage is usually catastrophic. These heat-treated steel billet items are advised for applications ranging from street performance to professional racing. Available for specific applications, and most popular dimensioned valve springs. Don't chance your engine dinary "spring seat".

	to an or
	0.D.
	Locators
	1.240
	1.290
	1.290
	1.290
	1.290
	1 205

VALVE TRAIN

0.D.	I.D.	Spring O.D.	Spring I.D.	Base Thickness	Part No.
Locators					
1.240	.505	_	.650 (for LS1/LS2/LS6 applications)	.050	144460-16
1.290	.512	_	.990	.062	99456-16
1.290	.578	_	.990	.062	99457-16
1.290	.640	_	.870	.062	99468-16
1.290	.640	_	.990	.062	99458-16
1.295	.570	_	.718 (for L98/Fast Burn alum. head a	.050 pplications)	99467-16
1.320	.502	_	.872 (for LS Series applications)	.060	99454-16
1.480	.640	_	.716	.062	99455-16
1.500	.570	—	.695	.055	99465-16
1.500	.570	_	.730	.055	99460-16
1.558	.570	_	.760	.055	99466-16
Cups					
1.685	.637	1.570	_	.062	99464-16
1.730	.630	1.520	_	.300	99459-8
	(for eliminating rotators on Che	evrolet 396-454-502 and 8.1L cy	/linder heads)		
1.745	.637	1.630	_	.062	99463-16
1.745	.637	1.650	_	.062	99461-16

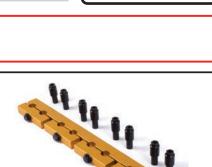
Valve Spring Shims

Durable steel shim stock, zinc plated for wear resistance.				
Description	Set Part No.			
.015 x 1.480 x .765 (Hardened, set of 16)	99050-1			
.015 x 1.640 x .635 (Hardened, set of 16)	99046-1			
.030 x 1.480 x .765 (Set of 32)	99051-1			
.060 x 1.480 x .765(Set of 32)	99052-1			

Valve Train Stabilizers

Valve Stem Seals

Crane Cams valve stem seals provide maximum valve stem oil control. These seals wipe excess oil from the valve stem by means of a unique spring loaded wiper assembly, thus preventing unwanted oil from reaching and contaminating the cylinder. Machining usually required.


Valve Stem Diameter	Guide O.D.	Seal O.D.	Part No.
PTFE Seals			
5/16″	.500″	.600″	99825-16
5/16″	.531″	.620″	99824-16
11/32″	.500″	.600″	99826-16
11/32″	.531″	.620″	99820-16
3/8″	.500″	.600″	99828-16
3/8″	.531″	.620″	99822-16
Metal Jacket Viton Seals			
5/16″	.500″	.546″	99710-16
5/16″	.531″	.575″	99711-16
11/32″	.500″	.546″	99712-16
11/32″	.531″	.575″	99713-16
8mm	.500″	.600″	99818-16

Valve Train Stabilizers... Quick-Lock™ Stud Girdles

Crane Cams' Quick Lock Valve Train stabilizers are a unique approach to the now common use of stud girdles for racing engine applications. Most importantly, the Crane Quick-Lock unit slashes the time required for removal and replacement of the stabilizer unit to a fraction of the time other units require. Crane VTS bars are made from finest quality aluminum bar stock, machined to precise blueprint specifications and attractively gold anodized for corrosion resistance. Each Crane VTS comes complete with all necessary hardware including heat treated steel rocker arm adjusting nuts. They are easily installed and require no cylinder head machining or modifications for installation.

(CAUTION: Added height of the Crane VTS requires the use of aftermarket tall valve covers)

Application	Part No.				
Chevrolet V-8 262 thru 400 cu.in. & Pontiac-Brodix w/ standard rocker arm stud spacing					
For 3/8" rocker arm studs (99803 nuts included)	11600-1				
For .600" wide top slot rocker arms and 7/16" rocker arm studs (99810 nuts included)	11604-1				
Chevrolet V-8 396 thru 454 (will not fit casting 14044861)					
For .600" wide top slot rocker arms (99809 intake and 99810 exhaust nuts included)	13602-1				
Ford V-8 370-429-460 cu.in.					
For .600" wide top slot rocker arms and 7/16" rocker arm studs (99810 nuts included)	35602-1				

(Machining Required)

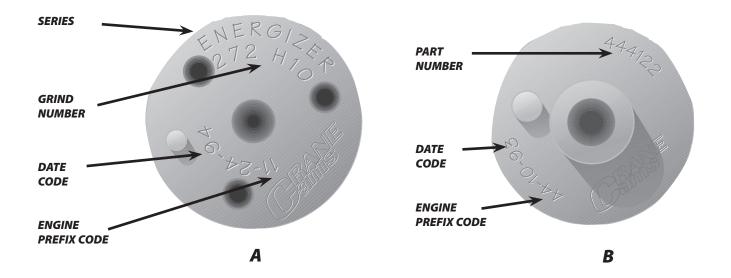
Promotional Items

Promotional Items

Crane Cams Black with White Logo

Description	Part No.
Catalogs	
Crane Cams Master Catalog	99193-14
Crane Cams Master Catalog on USB Drive	PP0814A
Crane Cams Lobe Master Listing	PP1112A
Decals - Contingency	
Crane Cams 11″ (32 sq. in.)	99174-1
Decals and Patches	
Crane Cams 6" Decal	99189-1
Crane Cams 5" Patch	99209-1
Key Tags	
Crane Cams White Tag with Red Logo	PP0612B
Banners and Clings	
30" x 96" Crane Cams Black on White Banner	99196-1
"Crane Cams Available Here" Cling	99188-1
Caps	

PP1010B



344

How to Identify Your Crane Cam

The above illustrates an easy method for identifying some of the most popular Crane camshafts. To use this, you must first view the end of the camshaft. (Some Crane and Cam Dynamics cams for thrustplate equipped engines are marked on the opposite end of that shown here.) Make note of the two digit engine prefix code number, the series name, and the grind number.

For example, the two cams listed above would be:

A Engine Code – 11 Series – Energizer Grind Number – 272 H10 (Part Number – **10005**)

B Engine Code – 44 Part Number – 444122 Grind Number – 2030

NOTE: There are many more camshafts made by Crane Cams than are shown in this catalog.

Camshaft Regrinding and Special Labor Services

Camshaft Regrinding and Special Labor Services

Most combinations of intake and exhaust profiles and lobe separation may be ordered. We suggest that you contact our technical staff for recommendations, using our most current offerings. Be certain to send a completely filled out Cam Profile Recommendation Form to ensure prompt attention.

Pricing includes normal straightening, regrinding, and Parko lubrite treating where applicable. Additional charges will apply for any special machining that is required for regrinding (removing gears, oil pump drives, end plugs, drilling, tapping, centering, etc.). It is not practical to re-heat treat or re-harden camshafts that have already been processed.

We have restructured our regrinding labor pricing and part numbers to be representative of the variety of camshaft materials currently in use. The Labor Part Numbers have a suffix indicating these types of camshaft materials:

- 1 Cast or chillcast iron
- 2 Cast steel, induction hardened steel, and 8620 or 9310 carburized steel
- **3** Through-hardened tool steel
- 4 Exotic steel

*This product is applicable only to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission controlled trucks and similar vehicles. It is not applicable or intended for use on any emission controlled vehicles operated on highways or roads.

Regrinding Your Camshaft

Engine Description	Labor Part No.
Most single cylinder	980061, 980062, 980063, 980064
Most two cylinder	980081, 980082, 980083, 980084
Most I-4	980071, 980072, 980073, 980074
Most I4 SOHC	980031, 980032, 980033, 980034
Most I4 D0HC—per pair	980821, 980822, 980823, 980824
Most I4 with multi-indexed lobes	981231, 981232, 981233, 981234
Most I4 OHC with multi-indexed lobes—per cam	981161, 981162, 981163, 981164
Most I4 with Inverse Radius lobes	980782, 980783, 980784
Most I6	980571, 980572, 980573, 980574
Most I6 SOHC	980791, 980792, 980793, 980794
Most I6 DOHC—per pair	980821, 980822, 980823, 980824
Most I6 with multi-indexed lobes	981231, 981232, 981233, 981234
Most I6 OHC with multi-indexed lobes—per cam	981161, 981162, 981163, 981164
Most I6 with Inverse Radius lobes	980632, 980633, 980634
Most V6	980571, 980572, 980573, 980574
Most V6 SOHC—per pair	980801, 980802, 980803, 980804
Most V6 DOHC—per set of four	980811, 980812, 980813, 980814
Most V6 with multi-indexed lobes	981221, 981222, 981223, 981224
Most V6 OHC with multi-indexed lobes—per cam	981241, 981242, 981243, 981244
Most V6 with Inverse Radius lobes	980632, 980633, 980634
Most I8	980771, 980772, 980773, 980774
Most I8 with multi-indexed lobes	981231, 981232, 981233, 981234
Most V8	980011, 980012, 980013, 980014
Most V8 SOHC—per pair	980121, 980122, 980123, 980124
Most V8 DOHC—per set of four	980131, 980132, 980133, 980134
Most V8 with multi-indexed lobes	981221, 981222, 981223, 981224
Most V8 OHC with multi-indexed lobes—per cam	981251, 981252, 981253, 981254
Most V8 with Inverse Radius lobes	980842, 980843, 980844
Most V12	980501, 980502, 980503, 980504
Most V12 SOHC— per pair	980651, 980652, 980653, 980654
Most V12 DOHC—per set of four	980551, 980552, 980553, 980554
Most industrial I6 or V8	980531, 980532, 980533, 980534

Round Lobe Steel Billet Camshafts

Rough grind, heat treat or harden, and finish grind customer's supplied round lobe spool. If copper plating is required, an additional charge will be incurred. Crane supplied cores may be available at an additional charge.

Engine Description	Labor Part No.
Most single cylinder	980702, 980703, 980704
Most two cylinder	980702, 980703, 980704
Most I4	980712, 980713, 980714
Most I6	980722, 980723, 980724
Most V6	980852, 980853, 980854
Most V8	980852, 980853, 980854
Most industrial I6	980482, 980483, 980484

Special Machining Operations

Description	Labor Part No.
Grind gearfit step on front journal	98073
Grind cam bearing journals—single size	98076
Grind cam bearing journals—stepped sizes	98126
Install additional dowel pin	98087
Cut additional keyway	98127
Groove cam bearing journal for oiling	98088
Hob distributor drive gear	98095
Install cast iron rear journal and distributor gear	98075
Drill and tap rear of cam for Sander drive	98089
Ultra Pro microfinish camshaft—single step process	98113
Ultra Pro microfinish camshaft—dual step process	98116
Nitride camshaft	98115
Gun drill camshaft (up to 28")	98096
Undercut barrel on customer's camshaft for regrind	98117
Turn barrel, journals, lobes on round lobe camshaft	98118
Copper plate customer's round lobe steel camshaft—up to 20"	98098-20
Copper plate customer's round lobe steel camshaft—20 to 30"	98098-30
Copper plate customer's round lobe steel camshaft—30 to 40"	98098-40
Remove broken bolts or dowel pins—each	98120
Miscellaneous cam grind labor (excessive straightening, recut centers, rust removal, etc.)	98093
Miscellaneous shop labor—per hour	98111

Camshaft Inspection and Design Services

Description	Labor Part No.
Camshaft inspection service	98014
Design standard type lobe shape	98015
Design Translating follower lobe shape	98019
Generate plate master from design	98016

Procedure for Sending Camshafts for Regrinding

Before shipping your camshaft, please directly contact Crane Cams for the assignment of a Return Goods Authorization (RGA) number. This is necessary for tracking your camshaft throughout our procedures. While in contact with our technical staff, have as much information as possible about your combination readily available, to assist in making the proper new grind choice, or to facilitate repairs. When shipping the camshaft to us, you must include your name, address, E-mail address and daytime phone number, along with your RGA number on the outside of the package. After receiving and inspecting your camshaft, we will contact you to verify the operations that will be performed, along with your method of payment.

Other Engine Applications

Although the following engines are not listed in the Applications Section of this catalog, we can regrind your camshaft and provide most kit components. Some new camshaft cores are available, as indicated by the asterisk (*).

American Motors/Jeep			Chrysler, DeSoto, Do	odge			GMC			
155 cu.in (2.5 Litre)	I-4	84-92	1700cc		-4	78-83	224-248-270-302		I-6	39-63
4.0 Litre	I-6	99-05	2.2-2.5L OHC		1-4	81-94	Johnson/Rodeck (A.	IPE)		
Arias/Fontana/MBR			235-250-265		Flathead I-6	37-54	481x	*	V-8	ALL
2.5 Litre	I-4	84-09	218-230		Flathead I-6		MG Midget - Sprite	- Mi	ni BMCA	
8.3 Litre	V-8	85-09	170-198-225		I-6	60-85	848-1275cc	*	-4	57-84
10.0 Litre *	V-8	85-05	3.9L		V-6	88-94	Oldsmobile			
Buick			3.3L		60° V-6	90-94	2.3 L DOHC Quad 4		-4	88-96
198-225	V-6	62-67	301-331-354	*	V-8	51-56	2.3 SOHC Quad 4		1-4	92-96
231	V-6	75-77	276-291		V-8	52-55	303-324		V-8	49-55
196-231-252	V-6	78-86	241-259-270		V-8	53-56	324-371		V-8	56-58
3.3-3.8 Litre	V-6	87-94	330-341-345		V-8	56-57	371-394		V-8	59-64
248-263-320	I-8	39-53	315-325		V-8	56-58	215	*	V-8	61-63
264-322	V-8	53-56	392	*	V-8	57-58	307		V-8	85-90
364-401-425 *	V-8	57-66	277-301-303-318-326		V-8	56-66	330-400-425 45°	*	V-8	64-67
215 *	V-8	61-63	350-440 Single Bolt B		V-8	58-78	500 DRCE2	*	V-8	ALL
300-340	V-8	64-67	5.7 Litre R5P7		V-8	ALL	500 DRCE3	*	V-8	ALL
350	V-8	68-80	Hemi 99 500	*	V-8	ALL	Pontiac			
Cadillac			Crosley				195		1-4	60-63
331-365-390	V-8	49-62	44 cu.in.		-4	46-55	151		I-4	77-78
390-429	V-8	63-67	Dart				151 (2.5 Litre)		1-4	79-89
250 (4.1 L)-4.5-4.9	V-8	82-94	500 5" bore spacing	*	V-8	ALL	151 (2.5 Litre)		1-4	90-91
Chevrolet			Donovan				230-250 SOHC		I-6	66-69
153	I-4	62-71	417	*	V-8	ALL	215	*	V-8	61-63
2300cc SOHC	-4	71-75	Ford, Lincoln, Mercu	urv			Rambler	—	VO	01 05
2000cc DOHC	Cosworth I-4		1600cc	,	1-4	71-80	250-287-327		V-8	56-66
1800-2000cc	I-4	82-93	1.6-1.9 Litre		CVH I-4	81-93			V-0	30-00
216-235	I-6	37-53	2000cc SOHC		I-4	71-74	Rodeck	*	14.0	A11
235-261	I-6	54-62	2300-2500cc		HSC I-4	85-93	481x	*	V-8	ALL
292	I-6	63-84	215-223		I-6	52-53	481x2	~	V-8	ALL
140-145	Corvair 6 cyl.		223		I-6	54-64	Rover			
164	Corvair 6 cyl.		262		I-6	62-64	215-3.5-3.9-4.2 Litre	*	V-8	68-00
200-229	V-6	78-84	144-170-200-250		I-6	60-83	Studebaker			
262 (4.3 Litre)	V-6	85-91	2600-2800cc		V-6	72-82	224-232-259-289		V-8	51-64
3.4-3.5 Litre	V-6	ALL	2800cc		V-6	83-85				
			232		V-6	82-84				
			3.0L		V-6	86-94				
			4.5L SV0		V-6	88-98				
			221		Flathead V-8					
			239		Flathead V-8					
			279-317-341-368		V-8	52-57				
			256-272-292-312	*	V-8	55-62				
			332-352-390		V-8	58-62				
						50 02				

383-410-430-462

302 Boss

427 SOHC

429 Boss Hemi

V-8

* V-8

* V-8

* V-8

58-68

69-70

69-70

63

Flat Tappet Camshaft Break-in Procedure

WARNING: NEW LIFTERS MUST BE INSTALLED WITH YOUR NEW CAMSHAFT

Prior to installation:

- Check the compatibility of the camshaft with the remainder of the valve train components (valve springs, rockers, etc.)
- On race type, high spring load applications, use lighter load springs or remove the inner spring (dual spring application) just for break-in.

CRANE FLAT TAPPET CAMSHAFT RECOMMENDED BREAK-IN PROCEDURE

Due to the EPA's mandate for zinc removal from most motor oils, proper flat tappet camshaft break-in procedure is more critical than ever before. This is true for both hydraulic and mechanical flat tappet camshafts. As a point of interest, the most critical time in the life of a flat tappet camshaft is the first 20 minutes of break-in during which the bottoms of the lifters "mate-in" with the cam lobes.

There are some oils with additive packages that are better for camshaft break-in, such as Crane's 10W-40 Break-In oil, (**Part # 99300-1**), or the Driven[™] Hot Rod oils. Also consider a **"race only" petroleum- based** oil, and include **Crane Cams Part # 99003-1 Super Lube**" additive. **Do not use API rated SL, SM, or SN oil.**

CAUTION: We do not recommend the use of synthetic oils for break-in. Prior to installing the camshaft and lifters, it is recommended that the crankcase be drained and filled with new, clean oil, as listed above. The oil filter should also be changed at this time. Proper flat tappet camshaft break-in starts with the cam installation and includes the following steps:

- 1. Before installing the camshaft and lifters, wash them thoroughly in clean mineral spirits to remove the rust preventative that is placed on the cam before shipping. NOTE: As a rule of thumb, always thoroughly clean any part before installing it in an engine. Never assume that the parts are cleaned before packaging. During shipping, packaging material can rub into the component surface and must be removed.
- 2. DO NOT "pump-up" hydraulic lifters before use. This can cause the lifters to hold a valve open during engine cranking, which will cause low compression. The low compression will delay engine start-up and is very detrimental to proper camshaft break-in.

- 3. With the supplied moly paste lube, coat the bottom of the lifters, cam lobes and distributor gear. Use Crane Cams assembly lube Part # **99008-1** on all other surfaces and components.
- 4. Set your valve lash or lifter preload. Try to minimize the number of times that you rotate the engine, as this can displace the moly paste from the lobes and lifters.
- 5. If possible, prime the oiling system. When priming, rotate the engine at least two complete revolutions to assure oil gets to all valve train components. Valve covers should be off to assure that all rockers are oiling.
- 6. Preset the ignition timing to start the engine at a fast idle. It is important that the static ignition timing is set as close as possible and if the engine has a carburetor, it should be filled with fuel. The engine needs to start quickly without excessive cranking to insure immediate lubrication to the cam lobes.
- 7. Start the engine and immediately bring to 3,000 rpm. Timing should be adjusted, as quickly as possible, to reduce excessive heat or load during break-in. Get the engine running fairly smooth and vary the engine speed from 1500-3000 RPM in a slow, to moderate, acceleration/deceleration cycle. During this time, be sure to check for any leaks and check out any unusual noises. If something doesn't sound right, shut the engine off and check out the source of the noise. Upon restart, resume the high idle speed cycling. Continue the varying break-in speed for 20–30 minutes. This is necessary to provide proper lifter rotation to properly mate each lifter to its lobe. Should the engine need to be shut down for any reason, upon re-start it should be immediately brought back to 3000 rpm and the break-in continued for a total run time of 20–30 minutes.
- 8. Let the engine cool, and then drain the crankcase and properly dispose of the oil and oil filter. Refill the crankcase with a premium petroleum-based oil, not a synthetic oil. At this point the initial break-in is complete. You can drive the vehicle in your normal manner. We recommend changing the oil and filter after 500 miles. You might want to put another 5000 miles on the cam before switching to a synthetic, if that is your preference.

Flat Tappet Camshaft Break-in Procedure

Flat Tappet Camshaft Break-in Procedure (continued)

ADDITIONAL INFORMATION

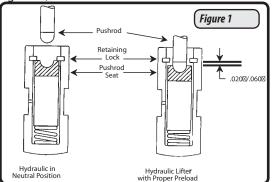
Spring Pressures: For extended camshaft life, flattappet cams should not be run with more than the recommended open valve spring pressure. Racing applications will often need to run more spring pressure at the expense of reduced camshaft life. In order to break-in a camshaft with high open pressures, the inner springs should be removed to reduce break-in load. The inner springs can then be reinstalled after initial break-in is complete.

Lifter Rotation: Flat tappet cams (both hydraulic and mechanical) have the lobes ground on a slight taper and the lifters appear to sit offset from the lobe centerline. This will induce a rotation of the lifter on the lobe. This rotation draws oil to the mating surface between the lifter and the lobe. If it is possible to view the pushrods during break-in, they should be spinning as an indication that the lifter is spinning. If you don't see a pushrod spinning, immediately stop the engine and find the cause. *Never use old flat tappet lifters on a new cam.* On flat tappet cams, the lobes and lifter bottoms mate together. If the lifters are removed from the engine, they must go back on the same lobe from which they were removed. **Crane Cams recommends the use of high quality lifters to prevent premature cam or lifter wear. Crane lifters are of the highest quality.**

Big Block Chevrolets have an oil-priming idiosyncrasy. When priming a Big Block Chevy with a drill motor and priming tool, it is often necessary to prime for as long as 20 minutes (while rotating the engine) to get oil to all of the lifters and rockers. It is advisable to prime these engines with the valve covers removed so you can check to see oil coming out of all of the rocker arms before firing the engine. This last step is advisable on all engines, but particularly on Big Block Chevrolets.

Hydraulic lifters have been the choice of the automotive industry for many years for several good reasons. When compared to a mechanical lifter, the hydraulics are: 1. Quieter.

- 2. Low maintenance.
- 3. Able to adjust for thermal expansion of the engine.
- 4. Considered as a built in shock absorber, eases stress on valve train.
- 5. Capable of having a "Bleed Rate" that can be designed to accommodate different engine RPM ranges.


Most engines use either the standard design hydraulic lifter or the low friction, high performance hydraulic roller design. Hydraulic lifters are the best for street applications, high performance, and mild racing applications where low maintenance and low cost is a primary concern.

What is the difference in the design of a Hydraulic and Mechanical Lifter?

Basically, the hydraulic lifter pushrod seat is moveable, the mechanical lifter seat is not. Both lifter types can look the same from the outside, with both usually having pushrod seats held in by a retaining lock. The pushrod seat in a mechanical lifter usually registers upon an internal step inside the lifter body preventing it from moving (thus it gets the nickname "Solid Lifter"). What's below the pushrod seat is not restricted by a step, but instead sits on top of a moveable hydraulic mechanism which acts like a tiny hydraulic pump. Below this mechanism is valving, and a spring to produce an upward force, moving the pushrod seat upward against the retaining lock.

What is Hydraulic Lifter Preload?

Mechanical cam designs require a running clearance or valve lash, while hydraulic lifters are just the opposite. When the rocker arm assembly is properly torqued down into position, the pushrod must take up all the clearance and descend into the hydraulic lifter, causing the pushrod seat to move down by .020" to .060". The distance that the pushrod seat moves down away from the retaining lock is the "Lifter Preload". The hydraulic mechanism requires this precise amount of "preload" for it to do its job properly. (See Figure 1.)

What happens if the amount of Hydraulic Lifter Preload is wrong? If clearance exists between the pushrod and the seat in the hydraulic lifter, after the rocker arm assembly has been torqued down, you will have no lifter preload. In this case the valve train will be noisy when the engine is running. All of the hydraulic force produced by the lifter will be exerted against the lifter's retaining lock, and this could cause the lock to fail. If the opposite occurs, and the pushrod descends too far (more than .060") with the lifter on the base circle, then you may have excessive lifter preload. In theory, a hydraulic lifter will only pump up to whatever preload it is set to. With excessive preload, as the engine RPM and oil pressure increases, the hydraulic mechanism could pump-up the pushrod seat if the valve spring cannot control the proper motion of the valve. This could cause the valve to stay off its seat during most of, or all, its entire cycle. This reduces the cylinder pressure, lowering the performance of the engine. Backfiring may also occur. The following sections will offer suggestions on how to correct this.

When rebuilding an engine, what can cause Lifter Preload to change?

Almost anything can affect lifter preload. If you do a valve job, surface the block or heads, change the head gasket thickness, or buy a new camshaft, the amount of preload can be affected. Sometimes these changes cancel one another out and your preload stays the same; this is more by luck than design. This is why you must always inspect the amount of preload the lifter has when reassembling the engine and be sure that it is correct.

A Fast and Easy Way to Check Hydraulic Lifter Preload when using Non-Adjustable Rocker Arms

With the cam, hydraulic lifters and pushrods in place, install your rocker arm assembly. Use the prescribed method in your repair manual and torgue down all the valve train bolts in the proper sequence. Pick a cylinder that you are going to check. Hand rotate the engine in its normal direction of rotation until both valves are closed. You are on the compression cycle for that cylinder. (At this position the valve springs are at their least amount of tension making the job a little easier to do.) Wait a few minutes, allowing the lifters to bleed down. Now, lay a rigid straightedge across the cylinder head, supporting it on the surface of the head where the valve cover gasket would go. Using a metal scribe and the straightedge, carefully scribe a line on both pushrods. Now carefully remove the torque from all valve train bolts, removing any pressure from the pushrods. Wait a few minutes for the pushrod seat in the hydraulic lifter to move back to the neutral position. Carefully scribe a new line on both pushrods. Measure the distance between the two scribe marks, it represents the amount of lifter preload. If the lines are .020" to .060" apart you have proper lifter preload. If the lines are the same or less than .020" apart you have no, or insufficient, preload. If the lines are further apart than .060", you have excessive lifter preload.

Methods to Adjust for Proper Hydraulic Lifter Preload

There are several different methods for increasing or decreasing the amount of lifter preload, depending on valve train design and how the rocker arm is held onto the cylinder head. Keep in mind that the automotive manufacturers have made changes to the valve train over the years. What may work on one year's engine may not work for another, even though they are basically the same engine. There is one method that universally works on all these engines, change the pushrod length! Use a longer pushrod to increase preload, a shorter to reduce preload.

Hydraulic Lifters (continued)

Many methods are illustrated throughout the catalog, here are a few of them:

- Custom length pushrods
- Bottleneck stud shims
- Bridge mount rocker arm shims
- Pedestal mount rocker arm shims
- Adjustable conversion rocker arm studs/kits
- "Kool Nut" adjusting nuts
- Guideplate and rocker arm conversion kits
- Adjustable rocker arms (both stud and shaft mounted)
- Replacement guideplates and studs

Using Adjustable Rocker Arms to set Hydraulic Lifter Preload

The easiest method to arrive at proper lifter preload is when you have an engine with "Adjustable Valve Train". Unfortunately, since 1967 most domestic engines, with the exception of small and big block Chevrolets, have been made with non-adjustable rocker arms. The Crane Catalog shows you several ways of converting your engine to an adjustable rocker arm system. The following sections will describe how to set the preload with adjustable rocker arms.

Hydraulic Lifters Can Be Adjusted at Any Engine Temperature

Since hydraulic lifters can compensate for thermal expansion of the engine, the adjusting can be done with the engine cold; hot adjustment is not necessary.

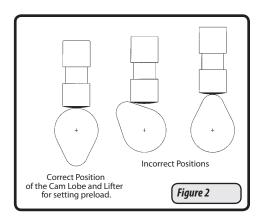
Adjusting Hydraulic Lifters for Proper Preload

In order to adjust the preload, the lifter must be properly located on the base circle or "Heel" of the lobe. (See Figure 2.) At this position the valve is closed and there is no lift taking place. You will need to watch the movement of the valves to determine which lifter is properly positioned for adjusting.

- 1. Remove the valve covers, and pick a cylinder that you are going to set the preload on.
- 2. Hand rotate the engine in its normal direction of rotation and watch the exhaust valve on that particular cylinder. When the exhaust valve begins to open, stop and adjust that cylinder's intake rocker arm. (Why? Because when the exhaust valve is just beginning to open, the intake lifter will be on the base circle of the lobe, the correct position for adjusting the intake.)
- 3. Back off the intake rocker arm adjuster and remove any tension from the pushrod. Wait a minute or two for that hydraulic lifter to return to a neutral position. The spring inside the lifter will move the pushrod seat up against the retaining lock if you give it time to do so. (If you are installing brand new lifters they will be in the neutral position when they come in the box.)
- 4. Now spin the intake pushrod with your fingers while tightening down the rocker arm. When you feel a slight resistance to the turning of the pushrod, you are at "Zero Lash". Turn the adjusting nut down one half to one full turn from that point. Lock the adjuster into position. The intake is now adjusted properly.
- 5. Continue to hand turn the engine, watching that same intake. It will go to full open and then begin to close. When it is almost closed, stop and adjust the exhaust

rocker arm on that particular cylinder. (Again, when we see the intake almost closed, we are sure that exhaust lifter is on the base circle of the lobe.) Loosen the exhaust rocker arm and follow the same procedure described before in steps 3 and 4 to adjust this rocker arm.

6. Both valves on this cylinder are now adjusted, and you can move on to your next cylinder and follow the same procedure again.


Do Hydraulic Lifters Need to be Primed with Oil?

Many people mistakenly believe that hydraulic lifters must be soaked in oil overnight and be hand pumped up with a pushrod before installing into a new engine, however this is not necessary. In fact, this could cause the lifter to act as a "solid" and prevent obtaining proper preload. What is very necessary is the priming of the entire engine's oil system before starting up a new engine for the first time. This is done by turning the oil pump with a drill motor to force oil throughout the entire engine. Crane Cams offers oil pump primers for Chevrolet and Ford engines. (see page 311)

What is a Hi Intensity Hydraulic Lifter?

Part of engineering a hydraulic lifter is to determine what its "Bleed Rate" will be. The "Bleed Rate" is a scientific method of determining the time it takes the hydraulic lifter to lose its pressure once it is fully pumped up solid with oil. By changing this rate, the lifter can give different performance factors to the engine. One such design is the Crane Cams Hi Intensity Lifter. Its increased bleed rate enables it to provide improved vacuum, increased cylinder pressure and performance in the lower RPM ranges. It is best suited for those engines that are using a big camshaft profile that requires more compression ratio than the engine actually has. This situation would normally cause a loss of bottom end performance, but with the Crane Cams Hi Intensity Lifter the bottom end torque is restored.

NOTE: Hi Intensity Lifters are only for use if the compression ratio is below the recommended minimum shown on the application page for the particular camshaft you have selected. Otherwise higher than desired cylinder pressures may result, causing detonation.

Adjusting the Valve Train

Mechanical Lifters

All pushrod engines using mechanical (solid) lifters, or mechanical roller lifters, must have an adjustable valve train so that precise adjustment for "Valve Lash" can be made to match the camshaft's requirements. Valve lash is the running clearance that exists between the tip of the valve stem and the valves mating surface of the rocker arm. (It is expressed in the Crane Catalog as "Valve Lash" and on the camshaft specification card as "Valve Setting". Both terms mean the same thing.) The amount of valve lash can vary between camshaft profile designs, being as small as .010" on some and as great as .035" on others. It is important to use the recommended valve lash when you first test the performance of the engine. You must also be concerned with thermal expansion of the engine components. This is especially true if using aluminum alloy cylinder heads, or block. For this reason, Crane requires that the valve lash be set with the engine "Hot" on all pushrod engines using mechanical lifters. This will insure that the minimum required clearance (valve lash) is maintained throughout the engine's operating temperature range.

Compensating for a Cold Engine when Adjusting Valve Lash

When installing a new cam, the engine will be cold but the lash specifications are for a hot engine. What are you to do? There is a correction factor that can be used to get close. We mentioned that the alloy of the engine parts can be affected by thermal expansion in different ways, therefore the amount of correction factor to the lash setting depends on whether the cylinder heads and block are made out of cast iron or aluminum. You can take the "hot" setting given to you in the catalog or cam specification card and alter it by the following amount to get a "cold" lash setting.

- With iron block and iron heads, add .002"
- With iron block and aluminum heads, subtract .006"
- With both aluminum block and heads, subtract .012"

Remember this correction adjustment is approximate and is only meant to get you close for the initial start up of the engine. After the engine is warmed up to its proper operating temperature range, you must go back and reset all the valves to the proper "hot" valve lash settings.

Setting Valve Lash on Mechanical Cams

All the valves must be set individually and only when the lifter is properly located on the base circle of the lobe. At this position the valve is closed and there is no lift taking place. How will you know when the valve you are adjusting is in the proper position with the lifter on the base circle of the cam? This can be accomplished by watching the movement of the valves.

- 1. When the engine is hot (at operating temperature) remove the valve covers and pick the cylinder that you are going to adjust.
- 2. Hand turn the engine in its normal direction of rotation while watching the exhaust valve on that particular cylinder. When the exhaust valve begins to open, stop and adjust that cylinder's intake valve. (Why? Because when the exhaust is just beginning to open, the intake lifter will be on the base circle of the lobe, so the intake is the one we can now adjust.)

- 3. Use a feeler gauge, set to the correct valve lash, and place it between the tip of the valve stem and rocker arm, unless otherwise specified. Adjust until you arrive at the proper setting and lock the adjuster in place.
- 4. After the intake valve has been adjusted, continue to rotate the engine, watching that same intake valve. The intake valve will go to full lift and then begin to close. When the intake is almost closed, stop and adjust the exhaust valve on that particular cylinder. (Again, when we see the intake valve almost closed, we are sure that the exhaust lifter is on the base circle of the lobe.) Use the feeler gauge and follow the procedure described before in step 3.
- 5. Both valves on this cylinder are now adjusted, so move to your next cylinder and follow the same procedure again. In the future you may find shortcuts to this method, but it still remains the best way to do the job correctly.

Using Valve Lash to Help Tune the Engine

The engine only responds to the actual movement of the valves. Since the valve cannot move until all the running clearance (valve lash) has been taken up, the amount of valve lash you use affects the engine's performance. For example, if you decrease the amount of (hot) valve lash, the valve will open slightly sooner, lift higher, and close later. This makes the camshaft look bigger to the engine, because of a slight increase of actual running duration and lift. If you increase the amount of (hot) lash the opposite occurs. The valve will open later, lift less, and close sooner. This shows the engine a smaller cam with slightly less actual running duration and lift. You can use this method on a trial basis to see what the engine responds to and keep the setting that works the best. Just remember, the more lash you run, the noisier the valve train will be. If the clearance is excessive it can be harsh on the other valve train components. Therefore, for prolonged running of the engine we do not recommend increasing the amount of hot lash by more than +.004" from the recommended setting. Nor do we recommend decreasing the hot lash by more than -.008".

Warning:

"Tight Lash" camshafts cannot deviate from the recommended hot lash setting by more than +.002" increase, or -.004" decrease. "Tight Lash" cams are those which have recommended valve settings of only .010", .012", or .014" on the specification card. These lobe designs have very short clearance ramps and cannot tolerate any increase in the recommended valve lash. The extra clearance can cause severe damage to valve train components.

With "Tight Lash" cams, we recommend using only the prescribed amount of hot valve lash, and that close inspection of the engine be maintained.

Please realize that changing valve lash settings from the recommended design specifications will change the harmonic characteristics of the valve train, possibly causing valve spring deterioration and breakage.

Commonly Asked Valve Spring Questions

Commonly Asked Valve Spring Questions

What is Valve Spring Installed Height?

Installed height is the dimension measured from the bottom of the valve spring retainer, where the outer valve spring locates, to the spring pocket in the cylinder head, when the valve is closed. (See Figure 3)

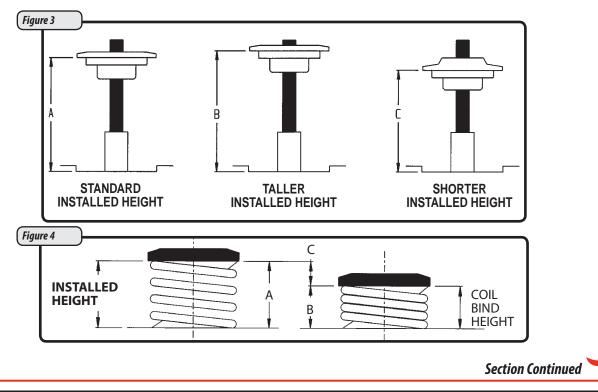
How Does Installed Height Affect the Spring Tension?

Installed height is the determining factor of what the valve spring "Closed Tension" will be. The camshaft specification card, and the spring section of the catalog both show what the approximate tension a particular valve spring will exert if installed at a specific height. For example, spring part no. **99848** shows 114# @ 1.700". This means that if this spring is installed at a height of 1.700" it should exert 114# of tension with the valve closed.

How Do You Change Installed Height, and What Effect Does it Have?

The easiest way to lessen installed height is to insert a shim in the spring pocket below the valve spring. Another method is to use a different design valve spring retainer. Retainers with a deeper dish will have more installed height; with a shallower dish, less installed height. (See Figure 3) You can also use a valve lock that is designed to change the location where the retainer is positioned on the valve stem. For specific retainer or valve lock height specifications and options look in the Buyers Guide section of the catalog. Longer length valves can also be used.

The shorter the installed height, the higher the valve spring tension will be, and the less distance the spring can travel before reaching coil bind.


The taller the installed height, the less the valve spring tension and the further the spring can travel before coil bind occurs.

What is Valve Spring Coil Bind and How Does it Relate to Spring Travel and Valve Lift?

When the valve spring is compressed until its coils touch one another and can travel no further, it is said to be in coil bind. The catalog (pages 317–319) shows the approximate coil bind height for the various Crane Cams valve springs. To measure this you must install the retainer in the valve spring, then compress the spring until it coil binds. Now measure from the bottom side of the retainer to the bottom of the spring. This measurement is the coil bind height. (See Figure 4) This can be done on the cylinder head with a spring compression tool, in a bench vise, or in a professional valve spring tester.

Using Figure 4, subtract the coil bind height "B" from the valve spring installed height "A". The difference "C" is the maximum spring travel. The spring travel should usually be at least .060" greater than the full lift of the valve. This safety margin of .060" (or more) is necessary to avoid the dangers of coil bind and over-stressing the spring.

If coil bind occurs, the resulting mechanical interference will severely damage the camshaft and valve train components.

Commonly Asked Valve Spring Questions (continued)

How Do You Increase the Spring Travel?

The valve spring must have sufficient travel (plus .060" safety margin) to accommodate the amount of valve lift created by the camshaft and/or an increase in rocker arm ratio. To increase spring travel you can either raise the installed height (but this will lessen the spring tension), or change to a spring with additional travel. If there is not a standard diameter spring available with enough travel, then the cylinder heads will have to be machined and a larger spring installed.

Crane Cams offers some special valve springs in standard diameters which saves you from having to machine the cylinder heads. For example, a small block Chevrolet engine can use spring kit part no. **11309-1** to handle .550" to .600" valve lift. The 85-00 302 Ford hydraulic roller engines can use spring kit part no. **44308-1** to handle .550" lift. Consult the Buyers Guide for specific spring information and options.

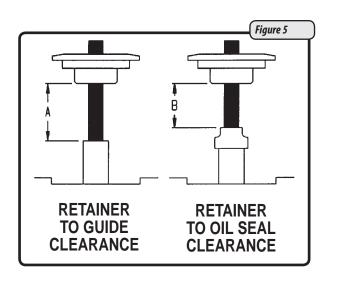
Besides Coil Bind, What Other Types of Mechanical Interference Should You Look Out For?

When you increase the valve lift with a bigger cam or increased rocker arm ratio, you must be sure that there is no interference between any of the moving parts. Some of the components that must be inspected for clearance are:

- 1. Distance from the bottom of the valve spring retainer and the top of the valve stem guide (see Figure 5), or the top of the valve stem seal (see Figure 5), must be equal to the net valve lift of the valve plus at least .060" more for clearance.
- 2. When using rocker arms mounted on a stud, the length of the slot in the rocker arm body must be inspected to be sure it is long enough to avoid binding on the stud. The ends of the slot must be at least .060" away from the stud when the rocker is at full valve lift and when the valve is closed.

Crane Cams offers steel long slot and extra long slot rocker arms to relieve this interference problem. Aluminum roller rocker arms may be required to provide sufficient travel on larger lift camshafts.

- 3. The underside of the rocker arm body cannot touch the valve spring retainer. You will need at least .040" clearance to the retainer throughout the full movement of the rocker arm. If necessary, a different shape retainer or rocker arm design will be required. In some cases, installing a lash cap on the tip of the valve stem can provide the clearance required.
- 4. Valve to piston clearance must be checked to be sure there is sufficient clearance. The intake valve must have at least .100" clearance to the piston and at least .120" clearance on the exhaust valve.


What is a Quick Way to Check Valve to Piston Clearance on an Assembled Engine?

Low tension checking springs, part no. **99881-2**, must be used (instead of your normal valve spring) to mock up your valve train and to check the piston to valve clearance on the engine. Assemble the valve train and verify correct lifter preload or valve lash. By mounting a dial indicator on the cylinder head with the plunger's tip on the valve spring retainer, you can guickly check the clearance. Hand rotate the engine through a complete cycle (two rotations of the crankshaft), stopping at several points before and after Top Dead Center (T.D.C.) to check the valve clearance. The least amount of clearance will usually occur between 15 degrees before T.D.C. and 15 degrees after T.D.C. This also provides a graphic illustration that gross valve lift does not determine piston to valve clearance, as the piston is fairly far down in the cylinder when maximum valve lift is reached. By pushing the rocker arm down with your finger, the valve will contact the piston. The amount of movement shown on the dial indicator is the valve clearance at that point of engine rotation. Rotate the crankshaft a few degrees and re-check the clearance. As the piston moves through this area, the dial indicator reading will lessen, then become larger as you rotate the engine past the critical point. The shortest reading you get is the actual valve to piston clearance.

What is the Critical Point of Crankshaft Rotation for Checking Valve to Piston Clearance?

The critical point for both valves is the "Overlap Period" as the exhaust cycle is ending and the intake cycle is beginning. You must start checking the clearance before and continue after T.D.C. on both the intake and exhaust valves to be sure you have the correct readings through the overlap period.

You can find all the tools required for checking valve to piston clearance (as well as degreeing a cam) in Crane Cams' Tune-A-Cam Kit, part no. **99030-1**.

Section Continued

Cam and Valve Train Questions

Commonly Asked Valve Train Questions (continued)

What is meant by Basic RPM?

The camshaft's basic RPM is the RPM range within which the engine will produce its best power. The width of this power band is approximately 3000 to 3500 RPM with standard lifter cams, and 3500 to 4000 RPM with roller lifter cams. It is important that you select the camshaft with the "Basic RPM Range" best suited to your application, vehicle gearing and tire diameter.

Why is Cruise RPM at 60 MPH important?

When selecting a new camshaft, you can raise or lower the engine's basic RPM range. It is important to be sure the vehicle's drive train is capable of matching your selection. The cruise RPM at 60 MPH is a way of rating your rear end gearing and tire diameter to determine if these components match the RPM potential you are desiring. You can use the formulas and chart on page 13 to calculate your cruise RPM.

What is Camshaft Duration and why is it important?

Duration is the period of time, measured in degrees of crankshaft rotation, that a valve is open. Duration (at .050" lifter rise) is the deciding factor to what the engine's basic RPM range will be. Lower duration cams produce the power in the lower RPM range. Larger duration cams operate at higher RPM, but you will lose bottom end power to gain top end power as the duration is increased. (For each ten degree change in the duration at .050", the power band moves up or down in RPM range by approximately 500 RPM.)

What is the difference in Advertised Duration and Duration at .050" Lifter Rise (Tappet Lift)?

In order for duration to have any merit as a measurement for comparing camshaft size, the method for determining the duration must be the same. There are two key components for measuring duration— the degrees of crankshaft rotation and at what point of lifter rise the measurements were taken. Advertised durations are not taken at any consistent point of lifter rise, so these numbers can vary greatly. For this reason, advertised duration figures are not good for comparing cams. Duration values expressed at .050" lifter rise state the exact point the measurement was taken. These are the only duration figures that are consistent and can accurately be used to compare camshafts.

How does Valve Lift affect the operation of an engine?

Lift is the distance the valve actually travels. It is created by the cam lobe lift, which is then increased by the rocker arm ratio. The amount of lift you have and the speed at which the valve moves is a key factor in determining the torque the engine will produce.

What is Camshaft Lobe Separation and how does it affect the engine?

Lobe separation is the distance (in **camshaft** degrees) that the intake and exhaust lobe centerlines (for a given cylinder) are spread apart. Lobe separation is a physical characteristic of the camshaft and cannot be changed without regrinding the lobes. This separation determines where peak torque will occur within the engine's power range. Tight lobe separations (such as 106°) cause the peak torque to build early in basic RPM range of the cam. The torque will be concentrated, build quickly and peak out. Broader lobe separations (such as 112°) allow the torque to be spread over a broader portion of the basic RPM range and shows better power through the upper RPM.

What are Intake and Exhaust Centerlines?

The centerline of either the intake or exhaust lobe is the theoretical maximum lift point of the lobe in relationship to Top Dead Center in degrees of crankshaft rotation. (They are shown at the bottom of the camshaft specification card as "MAX LIFT.") The centerline of the cam can be moved by installing the camshaft in the engine to an advanced or a retarded position.

How does Advancing or Retarding the camshaft's position in the engine affect performance?

Advancing the cam will shift the basic RPM range downward. Four degrees of advance (from the original position) will cause the power range to start approximately 200 RPM sooner. Retarding it this same amount will move the power upward approximately 200 RPM. This can be helpful for tuning the power range to match your situation. If the correct cam has been selected for a particular application, installing it in the normal "straight up" position (per the opening and closing events at .050" lifter rise on the spec card) is the best starting point.

Why is it necessary to know the Compression Ratio of an engine in order to choose the correct cam?

The compression ratio of the engine is one of three key factors in determining the engine's cylinder pressure. The other two are the duration of the camshaft (at .050" lifter rise) and the position of the cam in the engine (advanced or retarded). The result of how these three factors interact with one another is the amount of cylinder pressure the engine will generate. (This is usually expressed as the "cranking pressure" that can be measured with a gauge installed in the spark plug hole.) It is important to be sure that the engine's compression ratio matches the recommended ratio for the cam you are selecting. Too little compression ratio (or too much duration) will cause the cylinder pressure to drop. This will lower the power output of the engine. With too much compression ratio (or too little duration) the cylinder pressure will be too high, causing pre-ignition and detonation. This condition could severely damage engine components. It is important to follow the guidelines for compression shown on the application pages of the catalog.

Commonly Asked Valve Train Questions (continued)

How does Cylinder Pressure relate to the octane rating of today's unleaded fuel?

In very basic terms, the more cylinder pressure we make the more power the engine will produce. But look out for the fuel! Today's pump gasoline cannot tolerate excessive cylinder pressures. About 165 PSI with iron cylinder heads and 180 PSI with aluminum cylinder heads are reasonable limits to adhere to. Remember, cylinder pressure is affected by the static compression ratio and the camshaft specifications (primarily the intake valve closing event). Excessive pressures will cause detonation, resulting in internal engine damage. Octane boosters, or a racing grade of fuel, may be required to avoid difficulties.

How does an increase in Rocker Arm Ratio improve the engine's performance?

The lobe lift of the cam is increased by the ratio of the rocker arm to produce the final amount of valve lift. A cam with a .320" lobe lift using a 1.50:1 ratio rocker arm will have .480" valve lift $(.320'' \times 1.50 = .480'')$. If you install rocker arms with an increased ratio of 1.60:1, with the same cam, the lift would increase to .512" (.320" x 1.60 = .512"). The engine reacts to the movement of the valve. It doesn't know how the increased lift was generated. It responds the same way it would as if a slightly larger lift cam had been installed. In fact, since the speed of the valve is increased with the higher rocker arm ratio, the engine thinks it has also gained 2° to 4° of camshaft duration. The end result is an easy and quick way to improve the performance of the existing cam without having to install a new one. See the Buyers Guide section for availability of increased ratio rocker arms. Remember, whenever you increase the valve lift, with either a bigger cam or larger rocker arm ratio, you must check for valve spring coil bind and for other mechanical interference. Please review the previous sections concerning these matters.

Must new (Standard Design) lifters always be installed on a new camshaft?

YES! All new standard (flat-faced) hydraulic and mechanical camshafts must have new lifters installed. The face of these lifters do have a slight crown, and the mating lobe surface they ride on has been ground with a slight taper. The purpose of this is to create a "spinning" of the lifter as it rides on the lobe. This is necessary to prevent premature wear of the lifter and lobe. Therefore, these parts will be mated to one another during the initial break-in period. Used lifters will not mate properly, causing the lobe to fail.

If you are rebuilding an engine and plan to re-use the existing cam and lifters (in the same block) it can be done, as long as the lifter goes back on the same lobe it is mated to. To keep your components in order, a Crane Cams "Organizer Tray" part no. **99015-1** would be helpful. If the lifters get mixed up, they cannot be used, and a new set will be required. The new lifters would also have to go through the break-in procedure to mate to the old cam.

Can used Roller Lifters be installed on a new camshaft?

YES. Roller lifters are the only ones that can be re-used. This design lifter has a wheel (supported by needle bearings) attached to the bottom of it. The lobe the roller lifter rides on does not have any taper. This is a very low friction design and does not require the lifter to mate to the cam. As long as the wheel shows no wear, and the needle bearings are in good condition, the hydraulic roller or mechanical roller lifter can be re-used.

What Engine Oil and Lubricants should I use?

Crane Cams does not recommend the use of synthetic oils during the initial break-in period for a new camshaft. Use a good quality grade of naturally formulated motor oil during this period, such as Crane **99300-1** 10W-40 break-in oil. If you choose to use synthetic oil after the engine has been broken in, change the oil filter and follow the oil manufacturer's instructions.

When using either regular oil or synthetic it is important to pick the weight oil that best matches your engine bearing clearances, the engine's operating temperature, and the climate the vehicle will be operating in. Use the oil manufacturer's recommendation to satisfy these conditions.

Crane Cams offers lubricants to aid during the critical break-in procedure, and to prolong the engine's life. See the Buyers Guide section, page 285, for specific information on Crane Cams Lubricants and their application.

Should I use Oil Restrictors in my engine?

No, Crane Cams does not recommend the use of oil restrictors. The oil is the life blood of the engine, not only lubricating but cooling the engine components as well. For example, a valve spring builds in temperature as it compresses and relaxes. This increase of temperature affects the characteristics of the spring material, and if excessive, will shorten the life of the spring. Oil is the only means the spring has for cooling.

How do I prime the engine's oiling system?

It is critical that the engine's oiling system be primed before starting the newly built, or rebuilt, engine for the first time. This must be done by turning the oil pump with a drill motor to supply oil throughout the engine. If this is done with the valve covers off, you will be able to see that the oil is being delivered to the top of the engine and to all the valve train components. Crane Cams offers oil pump primers for Chevrolet and Ford engines, see page 311.

What is the Most Important thing to remember?

Reading and following the instructions supplied to you is most important. If there is something you don't understand, contact the people who supplied you the parts, or call one of the Crane Cams Technical Consultants. Get answers to your questions before proceeding.

Any non-roller camshaft and lifters must be pre-lubricated before installation. Use Crane Cams Assembly Lube, part number 99002-1, and Crane Cams Super-Lube, part number 99003-1, or Crane Cams 99300-1 10W-40 break-in oil.

Degreeing the Cam

Degreeing the Cam

What is Meant by Degreeing the Camshaft, and Why is it Necessary?

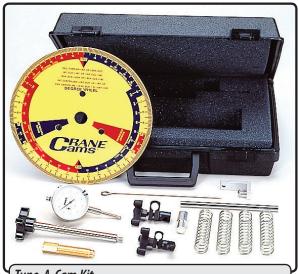
The term "Degreeing In Your Camshaft" means you are making sure the camshaft's position in the engine coincides with that of the crankshaft, so that their rotation is synchronized. This is the only way you will know if the rise and fall of the pistons properly matches the opening and closing of the valves, so the engine will run properly. A few degrees of misalignment can affect the engine's operation dramatically. If the circumstances were perfect, one would only need to line up the marks on the timing chain sprockets and the cam would be degreed. In reality, you are dealing with a group of components (the camshaft, crankshaft, timing chain, and sprockets), all with their own standards and tolerances. If these tolerances stack up against you, it could throw you out of alignment. Without degreeing the cam you can never be sure that the parts are in correct position. If you have the tools and expertise, we always recommend that the camshaft's position in the engine be degreed in.

Is There More Than One Way to Degree a Cam, and Which is Better?

Currently there are two popular methods for degreeing a cam: the **centerline method**, and the **duration at .050" lift method**. We believe it is far better to degree the camshaft with either method than not to degree the cam at all; but of the two methods, the **duration at .050" lift is much more accurate**.

The main problem with the centerline method is it has you finding the theoretical centerline of the intake and/ or exhaust lobe and line up on it. It makes the basic assumption that the lobe you are checking is symmetrical, with its opening side being the exact same shape and size as the closing side of the lobe. The truth is that most modern lobes are asymmetrical, with the opening side of the lobe being much more aggressive and the closing side being more gentle. Therefore, when you attempt to locate the middle (or centerline) of the asymmetrical lobe there is an automatic error factor. It could be as little as 2° off or as much as 6°, depending on the exact lobe shape and the procedure used during the degreeing operation. Neither does it verify that the camshaft has been properly ground with the correct duration lobes, which can drastically affect performance.

Since the duration at .050" lift method is not affected by the asymmetrical lobe design, we believe it is the more accurate way to degree.


What Tools Will I Need to Degree the Cam? The basic tools required are:

1. A degree wheel, such as Crane Cams part no. **99162-1**.

You can also use a professional fully degreed damper or hub, or install degree tape to your stock damper. Be sure to get the tape that matches the diameter of the damper. Use whatever will give you accurate markings for 360°.

- 2. A stable pointer that can be conveniently mounted to the engine.
- 3. A dial indicator with at least a half inch of travel in .001" increments. A rigid stand that mounts to the engine or with a magnetic base to hold the dial indicator will also be required.
- 4. A positive stop device to locate T.D.C. such as Crane Cams part no. 99410-1 or 99412-1 will be necessary. (You can make your own by using an old spark plug. Remove the porcelain insides, then drill and tap the interior of the spark plug housing and thread a long bolt through it.)

All of the above tools are in the Crane Cams Tune-A-Cam Kit, part no. **99030-1**.

Tune-A-Cam Kit

Critical cam and valve train checking chores can be made easier, more accurate and faster when you have the correct tools handy. Crane Cams' Tune-A-Cam Kit, Part No. **99030-1**, contains all the items required to degree-in your camshaft, check valve-to-piston clearance, etc. These items are all enclosed in their own foam protected, hard plastic carrying case.

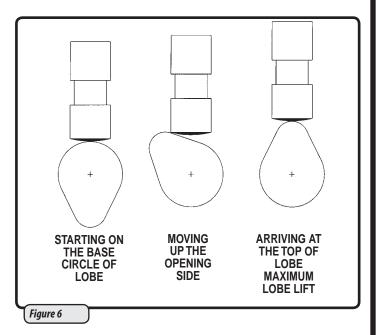
Degreeing the Cam

Degreeing the Cam (continued)

How Do You Find Top Dead Center (T.D.C.)?

Determining exactly where Top Dead Center is can be tricky. The problem in finding the true T.D.C. of the piston's travel is that the piston dwells at T.D.C. for several degrees of crankshaft rotation. You must use a device to stop the piston in the same position on either side of T.D.C. and take readings from the degree wheel. You will then split the difference in these readings and move the pointer this amount, making it the true T.D.C. point.

Begin the procedure by first mounting the degree wheel on the end of the crankshaft securely, and rotating the engine to approximately T.D.C. Mount the pointer and line it up at zero on the degree wheel. Now rotate the engine to move the piston down into the cylinder. Install your positive stop device into the spark plug hole and extend the bolt. Now hand turn the engine (**do not** use the starter motor or you will put a hole through the piston), rotating it until the piston comes up and stops against the bolt. Look at the degree wheel and write down the number of degrees shown by the pointer. Hand turn the engine in the opposite direction until the piston comes up and stops on the bolt again. Go back to the degree wheel and write down the degrees it now reads. Add these two readings together and divide the answer by two. Now either move your pointer by this many degrees, or carefully loosen the degree wheel (without disturbing the position of the crankshaft) and move the wheel this required amount. Retighten the bolts, and rotate the engine again making sure that the readings on each side of T.D.C. are equal degrees away from zero. If they are, the zero on the degree wheel will now be the true T.D.C. point.


Be sure to remove the positive stop device from the spark plug hole, as this procedure is complete.

A Simple Explanation of Cam Degreeing

In simple terms, the degreeing process can be thought of as using a dial indicator and degree wheel as tools to map out one revolution around the cam lobe. You will start on the base circle of the lobe where there is no lift. (See Figure 6) Then by rotating the engine you will move up the opening side, go over the top of the lobe, then move down the closing side, finishing back on the base circle. The dial indicator will move from zero, up to maximum lobe lift, then back to zero during this revolution. You will watch the dial indicator, and stop at two key points to take readings from the degree wheel. Both points will be when the dial indicator shows .050" of lifter rise. This .050" reading will occur on the opening side and again on the closing side of the lobe. These readings will then be compared to the specification card to see how close you are. If necessary, corrections can be made to put the camshaft in the exact position.

Important Tips to Remember When Degreeing a Camshaft

- 1. You must always **use the same type and size lifter that your camshaft was designed for**. For example, you cannot use a .842" diameter lifter on a camshaft designed for a .875" diameter lifter. You cannot use a standard (flat) lifter to degree a roller camshaft. If your roller camshaft was designed to use a .920" diameter roller, it will not degree properly with a .750" diameter roller, etc.
- Clean off any excessive lubricant from the lobes and lifters that you are checking. Thick oil, especially assembly lube (paste) can cause false readings to occur. Wipe the parts clean before checking, and remember to re-lubricate them when you are finished.
- 3. If you make a mistake and rotate the engine past the point you wished to take a reading, **do not back up the rotation**. If you do, any slack in the timing chain or lash in the gears will affect the readings, causing an error. If you miss your stopping point, just continue rotating the engine in the normal direction until you return to the desired point.

Section Continued

Degreeing the Cam

Degreeing the Cam (continued)

The Procedure to Degree the Camshaft

- 1. The dial indicator and stand must be attached securely to the engine. Any deflection could cause an error in your readings. Using the number one cylinder as a starting point, hand rotate the engine in a normal direction (usually clockwise, when standing in front of the engine) until the intake valve is closed (the lifter is down on the base circle of the cam lobe). If the intake manifold is off the engine, mount the plunger of the indicator directly on top of the intake lifter itself. If the intake manifold is on the engine, you can use the pushrod as an extension to the dial indicator and mount the plunger tip directly on top of the pushrod. In either case, it is important to make sure the angle of the dial indicator plunger is the same angle as the lifter or pushrod travel. We want to read "straight line" (linear) movement of these parts, so the plunger must be aligned properly. With the indicator in position, set the dial indicator to zero.
- 2. Hand rotate the engine in its normal direction of rotation while watching the dial indicator. As the lifter starts to move up the opening side of the lobe, the reading on the dial indicator will start to increase. Continue rotating the engine until the dial indicator shows .050" of rise. Stop and take a reading on the degree wheel and write it down.
- 3. As you continue to rotate the engine, the reading on the dial indicator will rise up to the maximum lobe lift. The lifter is now on the top of the lobe. (The maximum lobe lift is shown on the spec card and can be verified at this point). Continue the rotation and the lifter will start down the closing side of the lobe. Carefully watch the dial indicator as the numbers descend. When the indicator descends back to the .050" reading, stop, take a reading from the degree wheel and write it down. Rotate the engine and return to the base circle of the lobe. **The dial indicator must read zero again to be sure the process was correctly done.**
- 4. You now have the two important readings from the degree wheel, both taken when the dial indicator read .050". One reading as the indicator was ascending on the opening side, the other when it was descending on the closing side. Compare these numbers to those on your camshaft inspection card to verify the position of the intake lobe.

The camshaft specification card provides much information, but the numbers you are most interested in for the degreeing of the cam are at the bottom of the card. In the box identified as "Cam timing at .050" Tappet Lift". (Just a reminder, the word tappet and lifter mean the same thing. This can also be expressed as .050" lifter rise.) Inside this box are the degree readings that the degree wheel would show for the intake "opening" side of the lobe and the intake "closing" side of the lobe when the dial indicator is at .050" of lift. (Below those figures are the opening and closing figures for the exhaust.) Compare your readings for the intake to those on the card. If you're within a degree, your camshaft is installed in the correct position. (See example of Specification Card on page 364.)

5. You can follow exactly the same procedure on the exhaust lobe to determine its opening and closing degree points at .050" of tappet (or lifter) rise, and compare these readings to those on the specification card. If you also check the exhaust lobe you will have four points of reference (intake opening and closing, and the exhaust opening and closing) to go by. Remember, if you are within plus or minus one degree of these readings, your cam is in the correct location and will be synchronized to the crankshaft's rotation.

What Can You Do If Your Camshaft is Off Of Location and Needs Correction?

There are several methods of adjusting the location of the camshaft to correct for misalignment. Most high performance timing chain sets have the lower crank sprocket machined with three or more keyways, allowing you to advance or retard the camshaft. There are also offset keys made for the crankshaft. Another popular method is offset eccentric timing bushings that can be installed in the upper camshaft sprocket to change the camshaft's position in relation to the sprocket on those camshafts that use a dowel pin for indexing. Use any of these methods, then degree the camshaft once again to be sure it is correct.

See the Buyers Guide section for degreeing bushings and performance timing chain sets.

Cam Timing Explained

Cam Timing Explained

Cam advance, lobe separation, lobe centerline, intake lobe centerline, etc. are all terms being used for comparing and devising camshaft specifications. With so many similar terms being used, there can be a bit of confusion when folks from different backgrounds start talking about them.

Lobe separation is the measurement in CAM degrees between the maximum lift point of the exhaust lobe to the maximum lift point of the intake lobe on any cylinder. Some also refer to this as lobe centerline. This dimension is ground into the camshaft and can not be changed by advancing or retarding the camshaft (unless it's an engine with separate intake and exhaust cams.)

Intake lobe centerline, or intake maximum lift, refers to the distance in crankshaft degrees from the cylinder's Top Dead Center point to the maximum lift point of the intake lobe on any one cylinder. This is usually measured as degrees After Top Dead Center. This figure WILL change when the cam is advanced or retarded. As you advance the cam, this number will get smaller, as you are opening it fewer degrees AFTER Top Dead Center. Retarding the cam will make this number larger, as you are opening it more degrees AFTER Top Dead Center.

Exhaust lobe centerline, or exhaust maximum lift, is usually expressed in crankshaft degrees Before Top Dead Center. As you advance the cam, this number will get larger, since you are opening it more degrees BEFORE Top Dead Center. Retarding the cam will make this number smaller.

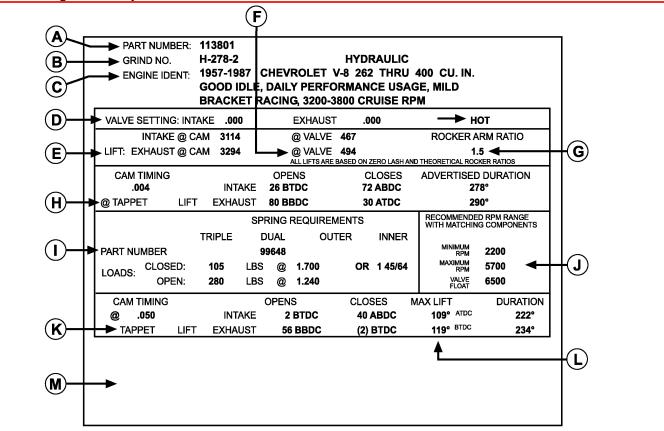
The average of the intake lobe centerline and the exhaust lobe centerline should equal your lobe separation.

The cam timing figures (as measured at a specific lobe lift: .004", .020", .050", etc.) may show the maximum lift point to be distorted when you're dealing with nonsymmetrical camshaft lobes (the opening side has a different shape than the closing side). If you split the difference between the opening and closing figures at .020" or .050" lobe lift, this figure will not coincide with the actual maximum lift point of the lobe. There are instances where a non-symmetrical intake lobe is paired with a symmetrical exhaust lobe (or vice-versa), or lobes with varying amounts of non-symmetry may be used as intake and exhaust. We believe that where the opening and closing events actually occur are the most important figures to pay attention to when degreeing your camshaft. Just finding the maximum lift points doesn't really tell you anything about the camshaft, or it's even the correct camshaft! By documenting the opening and closing numbers as you tune, you will gain more knowledge as to what actually helps or hinders your performance. This is also a good time to emphasize keeping track of your cranking compression whenever you change valve lash, cam timing, rocker arm ratio, and especially when changing camshafts.

You may have noticed that most Crane Cams have a certain amount of advance ground into them when you

check out the cam specification card. This is primarily done to insure that you have adequate torque to establish a good performance baseline. We have also found over the years, that the correct camshaft for most applications will run best with some amount of advance in it. We believe that it's certainly better to begin with too much bottom end and mid-range torque, and tune from there, than to have a shortage of torque, and try to figure out how to compensate for that.

The following is a general rule for how we grind most of our camshafts:


Lobe Separation	Degrees Advance
Up to 102 103-104	0
105	3
106-107 108 or more	4 5

This has certainly not been a list of all of the terms and philosophies we use when producing our camshafts, but it will hopefully provide a bit of insight as to some of our methods of camshaft recommendation and production. We invite any questions or comments that you may have.

Understanding the Cam Specification Card

Understanding the Cam Specification Card

A. Part Number

- **B.** Grind Number refers to engineering design information only. (This is not a part number)
- C. Identification of the engine series
- **D.** Recommended **valve setting** for the particular cam shaft profile. This represents the running clearance or Valve Lash required. This setting is chosen for maximum performance and valve train reliability.
- **E. Cam lobe lift** as measured at the lifter (tappet) with a dial indicator having .500 inch minimum travel capacity.
- **F.** The **valve lift** data is determined by multiplying the cam lobe lift by the rocker arm ratio.
- **G.** The **rocker arm ratio** listed is the engine manufacturer's standard specified (or otherwise recommended) ratio.
- H. The cam timing events used to compute advertised duration. The opening and closing events, and at what lifter rise (tappet lift) they were taken, show how the advertised duration is calculated.

Example:

- 26° B.T.D.C. Intake Opening
- + 180° Crankshaft Rotation
- + 72° A.B.D.C. Intake Closing
- = 278° Advertised Duration

These events are not meant for degreeing the cam. You should use the events (K) at .050" lifter rise (tappet lift) only for best accuracy.

- I. The **valve spring** requirements shown represent the maximum safe closed and open spring loads, and the most reliable valve springs for the camshaft profile and valve train combination.
- J. Recommended RPM range is to be used as a guideline. This will vary depending on engine displacement and other equipment combinations.
- **K. Cam timing** figures at .050" lifter rise (tappet lift) are provided for degreeing of the camshaft. They are expressed in degrees of crankshaft rotation. See pages 360–363 for additional degreeing information.
- L. The maximum lift (centerline) figures shown represent the theoretical maximum lift points of the intake and exhaust lobe centerlines. Due to most modern cam lobe designs being asymmetrical, this may not be the actual point at which the centerline occurs. This figure is provided as a point of reference and **should not be used** to degree a camshaft.
- **M.** When necessary, special instructions are provided at the bottom of the cam card.