3-9×42 IR Sniper Scope Manual

Parts of the Scope

1. Eyepiece
2. Battery Compartment
3. Rheostat
4. Zoom Ring
5. Elevation with Lockable Bell
6. Windage with Lockable Bell
7. Ring Mount

A

WARNING

BE CERTAIN THAT YOUR FIREARM IS NOT LOADED AND POINTED AWAY FROM YOU IN A SAFE DIRECTION

DIRECTLY VIEWING THE SUN OR ANY LIGHT SOURCE WITH THIS OPTICAL DEVICE CAN CAUSE PERMANENT EYE DAMAGE.

Use safe gun handling procedures at all times.
ATTENTION: All shooting should be done in an approved range and in a safe area and that eye and ear protection is used

DANGER: If you used a bore sighting collimator or another bore obstructing device, remove it before proceeding. If the barrel has been drilled for a mount, ensure that the screws do not obstruct the bore. Do not fire live or even blank ammunition with an obstructed barrel as any obstruction can cause serious damage to the gun and the possible injury to yourself and other people around you.

Focusing

1. Hold the scope about 2 to 3 inches (6 to 10 cm) away from you eye and look through the eyepiece until you see the full field of view.
2. If your reticle isn't sharp, turn the eyepiece focusing ring in either direction until the image seen is sharp and focused.

Mounting

1. Make sure you have the appropriate rail for your rifle, if not your firearms dealer will assist you.
2. Place and secure the scope onto the mount ring. Once you have fitted the scope to your desired position, tighten the mount ring down onto the rail.

Pre-Zeroing

1. Pre-zeroing sighting can be done with scope guide or a shot shaver which can be obtained from your firearms dealer.
2. With scope mounted set zoom to mid power and rest the rifle on a steady support.
3. Look through the bore from the breech at a target 50 yards away. Move to butt stock so that the target is in the center of the bore.
4. Without moving the rifle, loosen the lockable bell of the scope at the base of the turret by turning it counter clockwise with fingers (see image below)
5. Turn the windage and elevation adjustment dials in the direction you wish the bullet's point-of-impact to change. (up/down, left/right)
6. Tighten the lockable bell of the scope at the base of the turret by turning it clockwise.

\qquad
c

Why does this happen? A newly mounted riflescope's actual zero point on a rifle is unknown due to many variables; type of scope base, height of mounting rings, type of rile, type of ammunition etc.

Zeroing

Set scope zoom to the max power, and adjust the windage and elevation knobs as needed to correct the aim.
After zeroing in your scope, you can follow pre-zeroing procedure to scale back to zero.

Each click adjustment of the windage and elevation
changes/moves the bullet strikes by the amount in chart below
1/4" MOA
WINDAGE / ELEVATION (inches per click or movement)

$50 y d s$	$100 y d s$	$200 y d s$	$300 y d s$
$1 / 8$ inch	$1 / 4$ inch	$1 / 2$ inch	$3 / 4$ inch

Illuminated Mil-Dot Reticle

The black mil-dot illuminates to red for low light targeting or green for daylight targeting. The adjustable reticle brightness offers variable lighting intensities. When replacing batteries use CR2032 with the " + " side up.

Maintenance

Your riflescope is shockproof and waterproof but you should not take it apart or clean it internally. If your scope requires repairs or adjustment you should bring it your firearms dealer or an authorised service center. Please refer to the warranty section for further details.
The exposed optical surfaces can be wiped clean occasionally with the included lens cloth or with a special optical cleaning cloth. It is recommended to keep the protective lens cover on the scope when not being used.

The metal body of your scope can be cleaned by using a soft brush or a damp cloth followed by a soft cloth. To maintain the scope, you can use a silicon treated cloth to restore luster and protect the scope against corrosion, however do not touch the lenses with the silicone cloth.

Note: If a large amount of windage and elevation adjustments are needed to bore sight, make half of the scales available adjustments at a time for the windage and elevation.

Boresighting

Bore sighting your riflescope with you rifle will allow you to quickly and more accurately "zero in" or "sight in" your riflescope to the correct shooting distance. You will always need to shoot a test sighting your riflescope will reduce wasting ammunition when targeting in your rifle during test shooting.
Example: You have a newly mounted zoom power riflescope on a rifle and aim at a target 100 yards away. You aim for the center of the target with the scope and fire for the first time, but you see no impact on the target in the view of the scope. If you were not able to see where the bullet actually landed then you would need to guess how you need to adjust the scopes windage and elevation on the next shot. You would need to continue shooting multiple test shots and adjusting the scope until the actual impact of the bullet comes into view of the scope. This will waste time and ammunition.

Mil-Dot Reticle

The space between the centers of the dots equal 1 milliradian. (mil) One Mil equals 3.6 inches @ 100 yards or 36 inches @ 1000 yards

To use the MIL-DOT system effectively you must precisely estimate the size of the target. Example: Lets say an average bear is 6 feet tall. The bear is covered by 4 mils in your reticle. Convert the bear's 6 feet to yards. After converting you should be left with 2 yards. Multiply the 2 yards by 1000 yards, (average power of scope) you should be left with 2000 yards. Divide 2000 yards by the number of mils that covers the bear (4 mils) it will equal out to 500 yards. Those 500 yards are the distance between you and the bear. (below is a formula for calculating the range with your Mil-Dot Reticle and below that is a table of mils)

$\underline{\text { Height of target (yards) } \times 1000=\text { Range (yards) }}$
 Height of target

It is important that you estimate the height of the target is correct. The slightest size difference can throw off the range. A good way of knowing the height of objects is by training on your spare time.
Here are some suggestions, to increase your range estimation skills

- Build targets of known dimensions such as 1 yard squares and number them so that the targets can be seen from a distance.
- Now place the targets at various ranges making sure that the targets are visible from the start point.
- Return to the start point. With a notepad, number left side of the pad with the number of targets you have put out.
- Look at the targets you have put out and determine the range with the naked eye. Write down this figure on your note pad next to the corresponding target number. This will help you develop your eye skills and assist you in estimating range by optics.
- After your finished determining the range with the naked eye, establish a stable shooting position with your unloaded rifle or mil dot equipped spotting scope.
- Use the formula listed below to determine range. Using an odometer or a measuring wheel determine the actual range to the targets.
- Compare the actual range between using a measuring wheel, naked eye and using mils

$$
\frac{\text { Height of target (yards) } \times 1000=\text { Range (yards) }}{\text { Height of target }}
$$

Windage \& Moving Targets

It is possible for you to use your Mil-Dot scope for calling wind, this requires practice and the same goes for moving targets. Moving targets are an extremely difficult task. By practicing and attending competitions, even as an observer, will help you develop the skill for using your Mil-Dot scope. Watching and asking experienced shooters with the wind, and moving objects, will help you become stronger at using the Mil-Dot for windage \& moving targets.

This skill is extremely difficult, as well as difficult to train. However, if you have the means of making a moving target in an area where you can train you should do so at every opportunity.
Here are some suggestions on moving targets

- Start with slow speeds and then build speed as skill increases. Do not increase target speed until you can hit them 90% or better all of the time
- Use a target size that at a minimum replicates the kill zone of your intended target. In the beginning, a larger target should be used to show hits to allow you to adjust your leads/actions.

Begin training at close ranges, (50yards) and increase as your skills increase.

- You should use a partner slightly behind your shoulder with a spotting scope and looking for a bullet trace and provide you with the feedback as to where the bullet is landing

| TABLE OF MILS FOR OBJECTS IN INCHES | | | | | | | | | | |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| INCHES | | 9 | 12 | 16 | 18 | 20 | 22 | 24 | 28 | 32 |
| YARDS | 0.25 | 0.333 | 0.444 | 0.5 | 0.558 | 0.611 | 0.667 | 0.778 | 0.889 | |
| MIL | 1 | 250 | 333 | 445 | 500 | 5556 | 611 | 667 | 778 | 889 |
| MIL | 1.5 | 167 | 222 | 296 | 333 | 371 | 407 | 445 | 519 | 593 |
| MIL | 2 | 125 | 167 | 222 | 250 | 278 | 306 | 334 | 389 | 445 |
| MIL | 2.5 | 100 | 133 | 178 | 200 | 222 | 244 | 267 | 311 | 356 |
| MIL | 3 | 83 | 111 | 148 | 167 | 185 | 204 | 222 | 259 | 296 |
| MIL | 3.5 | 71 | 95 | 127 | 143 | 159 | 175 | 191 | 222 | 254 |
| MIL | 4 | 63 | 83 | 111 | 125 | 139 | 153 | 167 | 195 | 222 |
| MIL | 4.5 | 56 | 74 | 99 | 111 | 1124 | 136 | 148 | 173 | 197 |
| MIL | 5 | 50 | 67 | 898 | 100 | 111 | 122 | 133 | 156 | 178 |
| MIL | 5.5 | 45 | 61 | 81 | 91 | 101 | 111 | 121 | 141 | 162 |
| MIL | 6 | 42 | 56 | 74 | 83 | 93 | 102 | 111 | 130 | 148 |
| MIL | 6.5 | 38 | 51 | 68 | 77 | 56 | 94 | 103 | 120 | 137 |
| MIL | 7 | 36 | 48 | 63 | 71 | 79 | 87 | 95 | 111 | 127 |

